Conflicts:
	armsrc/crapto1.c
	armsrc/iclass.c
	client/nonce2key/crapto1.c
This commit is contained in:
iceman1001 2015-03-06 09:02:15 +01:00
commit 3ac59c7fed
23 changed files with 726 additions and 964 deletions

View file

@ -43,8 +43,7 @@ ARMSRC = fpgaloader.c \
legic_prng.c \
iclass.c \
BigBuf.c \
cipher.c \
cipherutils.c\
optimized_cipher.c
# stdint.h provided locally until GCC 4.5 becomes C99 compliant

View file

@ -1,272 +0,0 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#include "cipher.h"
#include "cipherutils.h"
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#ifndef ON_DEVICE
#include "fileutils.h"
#endif
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
**/
typedef struct {
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
} State;
/**
* Definition 2. The feedback function for the top register T : F 16/2 F 2
* is defined as
* T (x 0 x 1 . . . . . . x 15 ) = x 0 x 1 x 5 x 7 x 10 x 11 x 14 x 15 .
**/
bool T(State state)
{
bool x0 = state.t & 0x8000;
bool x1 = state.t & 0x4000;
bool x5 = state.t & 0x0400;
bool x7 = state.t & 0x0100;
bool x10 = state.t & 0x0020;
bool x11 = state.t & 0x0010;
bool x14 = state.t & 0x0002;
bool x15 = state.t & 0x0001;
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
}
/**
* Similarly, the feedback function for the bottom register B : F 8/2 F 2 is defined as
* B(x 0 x 1 . . . x 7 ) = x 1 x 2 x 3 x 7 .
**/
bool B(State state)
{
bool x1 = state.b & 0x40;
bool x2 = state.b & 0x20;
bool x3 = state.b & 0x10;
bool x7 = state.b & 0x01;
return x1 ^ x2 ^ x3 ^ x7;
}
/**
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
* F 8/2 F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
* z 0 = (r 0 r 2 ) (r 1 r 3 ) (r 2 r 4 )
* z 1 = (r 0 r 2 ) (r 5 r 7 ) r 1 r 6 x y
* z 2 = (r 3 r 5 ) (r 4 r 6 ) r 7 x
**/
uint8_t _select(bool x, bool y, uint8_t r)
{
bool r0 = r >> 7 & 0x1;
bool r1 = r >> 6 & 0x1;
bool r2 = r >> 5 & 0x1;
bool r3 = r >> 4 & 0x1;
bool r4 = r >> 3 & 0x1;
bool r5 = r >> 2 & 0x1;
bool r6 = r >> 1 & 0x1;
bool r7 = r & 0x1;
bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
// The three bitz z0.. z1 are packed into a uint8_t:
// 00000ZZZ
//Return value is a uint8_t
uint8_t retval = 0;
retval |= (z0 << 2) & 4;
retval |= (z1 << 1) & 2;
retval |= z2 & 1;
// Return value 0 <= retval <= 7
return retval;
}
/**
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k (F 82 ) 8
* be a key and y F 2 be the input bit. Then, the successor cipher state s =
* l , r , t , b is defined as
* t := (T (t) r 0 r 4 )t 0 . . . t 14 l := (k [select(T (t),y,r)] b ) l r
* b := (B(b) r 7 )b 0 . . . b 6 r := (k [select(T (t),y,r)] b ) l
*
* @param s - state
* @param k - array containing 8 bytes
**/
State successor(uint8_t* k, State s, bool y)
{
bool r0 = s.r >> 7 & 0x1;
bool r4 = s.r >> 3 & 0x1;
bool r7 = s.r & 0x1;
State successor = {0,0,0,0};
successor.t = s.t >> 1;
successor.t |= (T(s) ^ r0 ^ r4) << 15;
successor.b = s.b >> 1;
successor.b |= (B(s) ^ r7) << 7;
bool Tt = T(s);
successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
return successor;
}
/**
* We define the successor function suc which takes a key k (F 82 ) 8 , a state s and
* an input y F 2 and outputs the successor state s . We overload the function suc
* to multiple bit input x F n 2 which we define as
* @param k - array containing 8 bytes
**/
State suc(uint8_t* k,State s, BitstreamIn *bitstream)
{
if(bitsLeft(bitstream) == 0)
{
return s;
}
bool lastbit = tailBit(bitstream);
return successor(k,suc(k,s,bitstream), lastbit);
}
/**
* Definition 5 (Output). Define the function output which takes an internal
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
* on multiple bits input which takes a key k, a state s and an input x F n 2 as
* output(k, s, ǫ) = ǫ
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s , x 1 . . . x n )
* where s = suc(k, s, x 0 ).
**/
void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
{
if(bitsLeft(in) == 0)
{
return;
}
pushBit(out,(s.r >> 2) & 1);
//Remove first bit
uint8_t x0 = headBit(in);
State ss = successor(k,s,x0);
output(k,ss,in, out);
}
/**
* Definition 6 (Initial state). Define the function init which takes as input a
* key k (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
**/
State init(uint8_t* k)
{
State s = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
return s;
}
void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
{
uint8_t zeroes_32[] = {0,0,0,0};
BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
State initState = suc(k,init(k),&input);
output(k,initState,&input_32_zeroes,&out);
}
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
{
uint8_t cc_nr[13] = { 0 };
uint8_t div_key[8];
//cc_nr=(uint8_t*)malloc(length+1);
memcpy(cc_nr,cc_nr_p,12);
memcpy(div_key,div_key_p,8);
reverse_arraybytes(cc_nr,12);
BitstreamIn bitstream = {cc_nr,12 * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac, dest, 4);
//free(cc_nr);
return;
}
#ifndef ON_DEVICE
int testMAC()
{
prnlog("[+] Testing MAC calculation...");
//From the "dismantling.IClass" paper:
uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
//From the paper
uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
uint8_t calculated_mac[4] = {0};
doMAC(cc_nr,div_key, calculated_mac);
if(memcmp(calculated_mac, correct_MAC,4) == 0)
{
prnlog("[+] MAC calculation OK!");
}else
{
prnlog("[+] FAILED: MAC calculation failed:");
printarr(" Calculated_MAC", calculated_mac, 4);
printarr(" Correct_MAC ", correct_MAC, 4);
return 1;
}
return 0;
}
#endif

View file

@ -1,49 +0,0 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#ifndef CIPHER_H
#define CIPHER_H
#include <stdint.h>
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
#ifndef ON_DEVICE
int testMAC();
#endif
#endif // CIPHER_H

View file

@ -1,292 +0,0 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "cipherutils.h"
#ifndef ON_DEVICE
#include "fileutils.h"
#endif
/**
*
* @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
* @param stream
* @return
*/
bool headBit( BitstreamIn *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
* @param stream
* @return
*/
bool tailBit( BitstreamIn *stream)
{
int bitpos = stream->numbits -1 - (stream->position++);
int bytepos= bitpos >> 3;
bitpos &= 7;
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, bool bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
*(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
stream->position++;
stream->numbits++;
}
/**
* @brief Pushes the lower six bits onto the stream
* as b0 b1 b2 b3 b4 b5 b6
* @param stream
* @param bits
*/
void push6bits( BitstreamOut* stream, uint8_t bits)
{
pushBit(stream, bits & 0x20);
pushBit(stream, bits & 0x10);
pushBit(stream, bits & 0x08);
pushBit(stream, bits & 0x04);
pushBit(stream, bits & 0x02);
pushBit(stream, bits & 0x01);
}
/**
* @brief bitsLeft
* @param stream
* @return number of bits left in stream
*/
int bitsLeft( BitstreamIn *stream)
{
return stream->numbits - stream->position;
}
/**
* @brief numBits
* @param stream
* @return Number of bits stored in stream
*/
int numBits(BitstreamOut *stream)
{
return stream->numbits;
}
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t x_bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
uint8_t reversebytes(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
void reverse_arraybytes(uint8_t* arr, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
arr[i] = reversebytes(arr[i]);
}
}
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
dest[i] = reversebytes(arr[i]);
}
}
#ifndef ON_DEVICE
void printarr(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*5;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize, "uint8_t %s[] = {", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"0x%02x,",*(arr+i));//5 bytes per byte
}
cx += snprintf(output+cx,outsize-cx,"};");
prnlog(output);
}
void printvar(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*2;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize,"%s = ", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"%02x",*(arr+i));//2 bytes per byte
}
prnlog(output);
}
void printarr_human_readable(char * title, uint8_t* arr, int len)
{
int cx;
size_t outsize = 100+strlen(title)+len*4;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i;
cx = snprintf(output,outsize, "\n\t%s\n", title);
for(i =0 ; i< len ; i++)
{
if(i % 16 == 0)
cx += snprintf(output+cx,outsize-cx,"\n%02x| ", i );
cx += snprintf(output+cx,outsize-cx, "%02x ",*(arr+i));
}
prnlog(output);
free(output);
}
#endif
//-----------------------------
// Code for testing below
//-----------------------------
#ifndef ON_DEVICE
int testBitStream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0}
;
while(bitsLeft(&in) > 0)
{
pushBit(&out, headBit(&in));
//printf("Bits left: %d\n", bitsLeft(&in));
//printf("Bits out: %d\n", numBits(&out));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 1 ok");
}else
{
prnlog(" Bitstream test 1 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, OUT %02x", input[i], output[i]);
}
return 1;
}
return 0;
}
int testReversedBitstream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t reverse [] = {0,0,0,0,0,0,0,0};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0};
BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
BitstreamOut reversed_out ={ reverse,0 ,0};
while(bitsLeft(&in) > 0)
{
pushBit(&reversed_out, tailBit(&in));
}
while(bitsLeft(&reversed_in) > 0)
{
pushBit(&out, tailBit(&reversed_in));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 2 ok");
}else
{
prnlog(" Bitstream test 2 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, MIDDLE: %02x, OUT %02x", input[i],reverse[i], output[i]);
}
return 1;
}
return 0;
}
int testCipherUtils(void)
{
prnlog("[+] Testing some internals...");
int retval = 0;
retval |= testBitStream();
retval |= testReversedBitstream();
return retval;
}
#endif

View file

@ -1,76 +0,0 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#ifndef CIPHERUTILS_H
#define CIPHERUTILS_H
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
} BitstreamIn;
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
}BitstreamOut;
bool headBit( BitstreamIn *stream);
bool tailBit( BitstreamIn *stream);
void pushBit( BitstreamOut *stream, bool bit);
int bitsLeft( BitstreamIn *stream);
#ifndef ON_DEVICE
int testCipherUtils(void);
int testMAC();
void printarr(char * name, uint8_t* arr, int len);
void printvar(char * name, uint8_t* arr, int len);
void printarr_human_readable(char * title, uint8_t* arr, int len);
#endif
void push6bits( BitstreamOut* stream, uint8_t bits);
void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
uint64_t x_bytes_to_num(uint8_t* src, size_t len);
uint8_t reversebytes(uint8_t b);
void reverse_arraybytes(uint8_t* arr, size_t len);
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len);
#endif // CIPHERUTILS_H

View file

@ -34,6 +34,7 @@ static void __attribute__((constructor)) fill_lut()
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
uint32_t tmp;
if(it > rit)
return;
@ -43,13 +44,19 @@ static void quicksort(uint32_t* const start, uint32_t* const stop)
++it;
else if(*rit > *start)
--rit;
else
*it ^= ( (*it ^= *rit ), *rit ^= *it);
else {
tmp = *it;
*it = *rit;
*rit = tmp;
}
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= ( (*rit ^= *start), *start ^= *rit);
if(rit != start) {
tmp = *rit;
*rit = *start;
*start = tmp;
}
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
@ -319,9 +326,12 @@ uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
uint32_t tmp;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);

View file

@ -1,21 +1,21 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
@ -37,8 +37,8 @@ void crypto1_create(struct Crypto1State *s, uint64_t key)
void crypto1_destroy(struct Crypto1State *state)
{
// free(state);
state->odd = 0;
state->even = 0;
state->odd = 0;
state->even = 0;
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
@ -51,6 +51,7 @@ void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint32_t tmp;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
@ -59,7 +60,9 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
return ret;
}

View file

@ -48,8 +48,8 @@
#include "../common/iso14443crc.h"
#include "../common/iso15693tools.h"
//#include "iso15693tools.h"
#include "cipher.h"
#include "protocols.h"
#include "optimized_cipher.h"
static int timeout = 4096;
@ -1043,6 +1043,10 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
Dbprintf("Done...");
}
void AppendCrc(uint8_t* data, int len)
{
ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
}
/**
* @brief Does the actual simulation
@ -1054,6 +1058,8 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
State cipher_state;
// State cipher_state_reserve;
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
@ -1070,12 +1076,20 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
uint8_t diversified_key[8] = { 0 };
// e-Purse
uint8_t card_challenge_data[8] = { 0x00 };
if(simulationMode == MODE_FULLSIM)
{
//The diversified key should be stored on block 3
//Get the diversified key from emulator memory
memcpy(diversified_key, emulator+(8*3),8);
//Card challenge, a.k.a e-purse is on block 2
memcpy(card_challenge_data,emulator + (8 * 2) , 8);
//Precalculate the cipher state, feeding it the CC
cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
}
int exitLoop = 0;
@ -1087,7 +1101,7 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
// Tag CSN
uint8_t *modulated_response;
int modulated_response_size;
int modulated_response_size = 0;
uint8_t* trace_data = NULL;
int trace_data_size = 0;
@ -1134,8 +1148,12 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
//This is used for responding to READ-block commands
uint8_t *data_response = BigBuf_malloc(8 * 2 + 2);
//This is used for responding to READ-block commands or other data which is dynamically generated
//First the 'trace'-data, not encoded for FPGA
uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
//Then storage for the modulated data
//Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
// Start from off (no field generated)
//FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@ -1155,9 +1173,9 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
LED_A_ON();
bool buttonPressed = false;
uint8_t response_delay = 1;
while(!exitLoop) {
response_delay = 1;
LED_B_OFF();
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
@ -1199,25 +1217,18 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
} else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
if(simulationMode == MODE_FULLSIM)
{ //This is what we must do..
//Reader just sent us NR and MAC(k,cc * nr)
//The diversified key should be stored on block 3
//However, from a typical dump, the key will not be there
uint8_t *diversified_key = { 0 };
//Get the diversified key from emulator memory
memcpy(diversified_key, emulator+(8*3),8);
uint8_t ccnr[12] = { 0 };
//Put our cc there (block 2)
memcpy(ccnr, emulator + (8 * 2), 8);
//Put nr there
memcpy(ccnr+8, receivedCmd+1,4);
//Now, calc MAC
doMAC(ccnr,diversified_key, trace_data);
{
//NR, from reader, is in receivedCmd +1
opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
response_delay = 0;//We need to hurry here...
//exitLoop = true;
}else
{ //Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
@ -1248,12 +1259,39 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
} else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
//Read block
uint16_t blk = receivedCmd[1];
trace_data = emulator+(blk << 3);
trace_data_size = 8;
//Take the data...
memcpy(data_generic_trace, emulator+(blk << 3),8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
{//Probably the reader wants to update the nonce. Let's just ignore that for now.
// OBS! If this is implemented, don't forget to regenerate the cipher_state
//We're expected to respond with the data+crc, exactly what's already in the receivedcmd
//receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
//Take the data...
memcpy(data_generic_trace, receivedCmd+2,8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
{//Pagesel
//Pagesel enables to select a page in the selected chip memory and return its configuration block
//Chips with a single page will not answer to this command
// It appears we're fine ignoring this.
//Otherwise, we should answer 8bytes (block) + 2bytes CRC
}
else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
@ -1280,7 +1318,7 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
A legit tag has about 380us delay between reader EOT and tag SOF.
**/
if(modulated_response_size > 0) {
SendIClassAnswer(modulated_response, modulated_response_size, 1);
SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
t2r_time = GetCountSspClk();
}

View file

@ -12,7 +12,7 @@
#include "string.h"
#include "lfsampling.h"
#include "cipherutils.h"
sample_config config = { 1, 8, 1, 95, 0 } ;
void printConfig()
@ -55,20 +55,19 @@ sample_config* getSamplingConfig()
{
return &config;
}
/*
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
} BitstreamOut;
*/
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
/*void pushBit( BitstreamOut* stream, uint8_t bit)
void pushBit( BitstreamOut* stream, uint8_t bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
@ -76,7 +75,7 @@ typedef struct {
stream->position++;
stream->numbits++;
}
*/
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.

View file

@ -942,12 +942,12 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
if (workFlags & 0x01) {
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
//break;
};
if(mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
break;
//break;
};
};

288
armsrc/optimized_cipher.c Normal file
View file

@ -0,0 +1,288 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
/**
This file contains an optimized version of the MAC-calculation algorithm. Some measurements on
a std laptop showed it runs in about 1/3 of the time:
Std: 0.428962
Opt: 0.151609
Additionally, it is self-reliant, not requiring e.g. bitstreams from the cipherutils, thus can
be easily dropped into a code base.
The optimizations have been performed in the following steps:
* Parameters passed by reference instead of by value.
* Iteration instead of recursion, un-nesting recursive loops into for-loops.
* Handling of bytes instead of individual bits, for less shuffling and masking
* Less creation of "objects", structs, and instead reuse of alloc:ed memory
* Inlining some functions via #define:s
As a consequence, this implementation is less generic. Also, I haven't bothered documenting this.
For a thorough documentation, check out the MAC-calculation within cipher.c instead.
-- MHS 2015
**/
#include "optimized_cipher.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t))
#define opt_B(s) (((s->b >> 6) ^ (s->b >> 5) ^ (s->b >> 4) ^ (s->b)) & 0x1)
#define opt__select(x,y,r) (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
|(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
|(1 & (((r & ~(r << 2)) >> 4) ^ ((r & (r << 2)) >> 3) ^ r ^ x))
/*
* Some background on the expression above can be found here...
uint8_t xopt__select(bool x, bool y, uint8_t r)
{
uint8_t r_ls2 = r << 2;
uint8_t r_and_ls2 = r & r_ls2;
uint8_t r_or_ls2 = r | r_ls2;
//r: r0 r1 r2 r3 r4 r5 r6 r7
//r_ls2: r2 r3 r4 r5 r6 r7 0 0
// z0
// z1
// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original
uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1);
// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original
uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x;
return (z0 & 4) | (z1 & 2) | (z2 & 1);
}
*/
void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
{
uint8_t Tt = 1 & opt_T(s);
successor->t = (s->t >> 1);
successor->t |= (Tt ^ (s->r >> 7 & 0x1) ^ (s->r >> 3 & 0x1)) << 15;
successor->b = s->b >> 1;
successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ;
successor->l = successor->r+s->r;
}
void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes)
{
State x2;
int i;
uint8_t head = 0;
for(i =0 ; i < length ; i++)
{
head = 1 & (in[i] >> 7);
opt_successor(k,s,head,&x2);
head = 1 & (in[i] >> 6);
opt_successor(k,&x2,head,s);
head = 1 & (in[i] >> 5);
opt_successor(k,s,head,&x2);
head = 1 & (in[i] >> 4);
opt_successor(k,&x2,head,s);
head = 1 & (in[i] >> 3);
opt_successor(k,s,head,&x2);
head = 1 & (in[i] >> 2);
opt_successor(k,&x2,head,s);
head = 1 & (in[i] >> 1);
opt_successor(k,s,head,&x2);
head = 1 & in[i];
opt_successor(k,&x2,head,s);
}
//For tag MAC, an additional 32 zeroes
if(add32Zeroes)
for(i =0 ; i < 16 ; i++)
{
opt_successor(k,s,0,&x2);
opt_successor(k,&x2,0,s);
}
}
void opt_output(const uint8_t* k,State* s, uint8_t *buffer)
{
uint8_t times = 0;
uint8_t bout = 0;
State temp = {0,0,0,0};
for( ; times < 4 ; times++)
{
bout =0;
bout |= (s->r & 0x4) << 5;
opt_successor(k,s,0,&temp);
bout |= (temp.r & 0x4) << 4;
opt_successor(k,&temp,0,s);
bout |= (s->r & 0x4) << 3;
opt_successor(k,s,0,&temp);
bout |= (temp.r & 0x4) << 2;
opt_successor(k,&temp,0,s);
bout |= (s->r & 0x4) << 1;
opt_successor(k,s,0,&temp);
bout |= (temp.r & 0x4) ;
opt_successor(k,&temp,0,s);
bout |= (s->r & 0x4) >> 1;
opt_successor(k,s,0,&temp);
bout |= (temp.r & 0x4) >> 2;
opt_successor(k,&temp,0,s);
buffer[times] = bout;
}
}
void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
{
State _init = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
opt_suc(k,&_init,input,12, false);
//printf("\noutp ");
opt_output(k,&_init, out);
}
uint8_t rev_byte(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
dest[i] = rev_byte(src[i]);
}
void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
{
static uint8_t cc_nr[12];
opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12);
uint8_t dest []= {0,0,0,0,0,0,0,0};
opt_MAC(div_key_p,cc_nr, dest);
//The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4);
return;
}
void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
{
static uint8_t cc_nr[8+4+4];
opt_reverse_arraybytecpy(cc_nr, cc_p,12);
State _init = {
((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
opt_suc(div_key_p,&_init,cc_nr, 12,true);
uint8_t dest []= {0,0,0,0};
opt_output(div_key_p,&_init, dest);
//The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4);
return;
}
/**
* The tag MAC can be divided (both can, but no point in dividing the reader mac) into
* two functions, since the first 8 bytes are known, we can pre-calculate the state
* reached after feeding CC to the cipher.
* @param cc_p
* @param div_key_p
* @return the cipher state
*/
State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
{
static uint8_t cc_nr[8];
opt_reverse_arraybytecpy(cc_nr, cc_p,8);
State _init = {
((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
opt_suc(div_key_p,&_init,cc_nr, 8,false);
return _init;
}
/**
* The second part of the tag MAC calculation, since the CC is already calculated into the state,
* this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
* MAC response.
* @param _init - precalculated cipher state
* @param nr - the reader challenge
* @param mac - where to store the MAC
* @param div_key_p - the key to use
*/
void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p)
{
static uint8_t _nr [4];
opt_reverse_arraybytecpy(_nr, nr, 4);
opt_suc(div_key_p,&_init,_nr, 4, true);
//opt_suc(div_key_p,&_init,nr, 4, false);
uint8_t dest []= {0,0,0,0};
opt_output(div_key_p,&_init, dest);
//The output MAC must also be reversed
opt_reverse_arraybytecpy(mac, dest,4);
return;
}

48
armsrc/optimized_cipher.h Normal file
View file

@ -0,0 +1,48 @@
#ifndef OPTIMIZED_CIPHER_H
#define OPTIMIZED_CIPHER_H
#include <stdint.h>
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
**/
typedef struct {
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
} State;
/** The reader MAC is MAC(key, CC * NR )
**/
void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
/**
* The tag MAC is MAC(key, CC * NR * 32x0))
*/
void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]);
/**
* The tag MAC can be divided (both can, but no point in dividing the reader mac) into
* two functions, since the first 8 bytes are known, we can pre-calculate the state
* reached after feeding CC to the cipher.
* @param cc_p
* @param div_key_p
* @return the cipher state
*/
State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
/**
* The second part of the tag MAC calculation, since the CC is already calculated into the state,
* this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
* MAC response.
* @param _init - precalculated cipher state
* @param nr - the reader challenge
* @param mac - where to store the MAC
* @param div_key_p - the key to use
*/
void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p);
#endif // OPTIMIZED_CIPHER_H

View file

@ -227,7 +227,7 @@ void printBitStream(uint8_t BitStream[], uint32_t bitLen)
return;
}
//by marshmellow
//print EM410x ID in multiple formats
//print 64 bit EM410x ID in multiple formats
void printEM410x(uint64_t id)
{
if (id !=0){
@ -317,36 +317,19 @@ int CmdAskEM410xDemod(const char *Cmd)
printDemodBuff();
}
PrintAndLog("EM410x pattern found: ");
if (BitLen > 64) PrintAndLog("\nWarning! Length not what is expected - Length: %d bits\n",BitLen);
printEM410x(lo);
return 1;
}
return 0;
}
//by marshmellow
//takes 3 arguments - clock, invert, maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
int ASKmanDemod(const char *Cmd, bool verbose, bool emSearch)
{
int invert=0;
int clk=0;
int maxErr=100;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod am [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (invert != 0 && invert != 1) {
@ -366,33 +349,58 @@ int Cmdaskmandemod(const char *Cmd)
if (g_debugMode==1) PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
}
PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
if (verbose) PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
//output
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
if (verbose) PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}
PrintAndLog("ASK/Manchester decoded bitstream:");
if (verbose) PrintAndLog("ASK/Manchester decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
setDemodBuf(BitStream,BitLen,0);
printDemodBuff();
if (verbose) printDemodBuff();
uint64_t lo =0;
size_t idx=0;
lo = Em410xDecode(BitStream, &BitLen, &idx);
if (lo>0){
//set GraphBuffer for clone or sim command
setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
if (emSearch){
lo = Em410xDecode(BitStream, &BitLen, &idx);
if (lo>0){
//set GraphBuffer for clone or sim command
setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
if (verbose) PrintAndLog("EM410x pattern found: ");
if (verbose) printEM410x(lo);
return 1;
}
PrintAndLog("EM410x pattern found: ");
printEM410x(lo);
return 1;
}
return 1;
}
//by marshmellow
//takes 3 arguments - clock, invert, maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod am [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return ASKmanDemod(Cmd, TRUE, TRUE);
}
//by marshmellow
//manchester decode
//stricktly take 10 and 01 and convert to 0 and 1
@ -505,13 +513,53 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
//takes 4 arguments - clock, invert, maxErr as integers and amplify as char
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
int Cmdaskrawdemod(const char *Cmd)
int ASKrawDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
uint8_t askAmp = 0;
char amp = param_getchar(Cmd, 0);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i %i %c", &clk, &invert, &maxErr, &amp);
if (invert != 0 && invert != 1) {
if (verbose) PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
if (clk==1){
invert=1;
clk=0;
}
if (amp == 'a' || amp == 'A') askAmp=1;
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
errCnt = askrawdemod(BitStream, &BitLen, &clk, &invert, maxErr, askAmp);
if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (verbose) PrintAndLog("no data found");
if (g_debugMode==1 && verbose) PrintAndLog("errCnt: %d, BitLen: %d, clk: %d, invert: %d", errCnt, BitLen, clk, invert);
return 0;
}
if (verbose) PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d", clk, invert, BitLen);
//move BitStream back to DemodBuffer
setDemodBuf(BitStream,BitLen,0);
//output
if (errCnt>0 && verbose){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d", errCnt);
}
if (verbose){
PrintAndLog("ASK demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(BitStream,BitLen);
}
return 1;
}
//by marshmellow - see ASKrawDemod
int Cmdaskrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 12 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod ar [clock] <invert> [maxError] [amplify]");
@ -529,40 +577,7 @@ int Cmdaskrawdemod(const char *Cmd)
PrintAndLog(" : data rawdemod ar 64 1 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i %i %c", &clk, &invert, &maxErr, &amp);
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
if (clk==1){
invert=1;
clk=0;
}
if (amp == 'a' || amp == 'A') askAmp=1;
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
errCnt = askrawdemod(BitStream, &BitLen, &clk, &invert, maxErr, askAmp);
if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
PrintAndLog("no data found");
if (g_debugMode==1) PrintAndLog("errCnt: %d, BitLen: %d, clk: %d, invert: %d", errCnt, BitLen, clk, invert);
return 0;
}
PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d", clk, invert, BitLen);
//move BitStream back to DemodBuffer
setDemodBuf(BitStream,BitLen,0);
//output
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d", errCnt);
}
PrintAndLog("ASK demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printBitStream(BitStream,BitLen);
return 1;
return ASKrawDemod(Cmd, TRUE);
}
int CmdAutoCorr(const char *Cmd)
@ -820,7 +835,7 @@ int CmdDetectClockRate(const char *Cmd)
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
int FSKrawDemod(const char *Cmd, bool verbose)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
@ -828,23 +843,7 @@ int CmdFSKrawdemod(const char *Cmd)
int invert=0;
int fchigh=0;
int fclow=0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod fs [clock] <invert> [fchigh] [fclow]");
PrintAndLog(" [set clock as integer] optional, omit for autodetect.");
PrintAndLog(" <invert>, 1 for invert output, can be used even if the clock is omitted");
PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
PrintAndLog(" [fclow], small field clock length, omit for autodetect");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return 0;
}
//set options from parameters entered with the command
sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
@ -876,22 +875,50 @@ int CmdFSKrawdemod(const char *Cmd)
rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow);
if (rfLen == 0) rfLen = 50;
}
PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
if (verbose) PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
if (size>0){
PrintAndLog("FSK decoded bitstream:");
setDemodBuf(BitStream,size,0);
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size
if (verbose) {
PrintAndLog("FSK decoded bitstream:");
printBitStream(BitStream,size);
}
return 1;
} else{
PrintAndLog("no FSK data found");
if (verbose) PrintAndLog("no FSK data found");
}
return 0;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod fs [clock] <invert> [fchigh] [fclow]");
PrintAndLog(" [set clock as integer] optional, omit for autodetect.");
PrintAndLog(" <invert>, 1 for invert output, can be used even if the clock is omitted");
PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
PrintAndLog(" [fclow], small field clock length, omit for autodetect");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return 0;
}
return FSKrawDemod(Cmd, TRUE);
}
//by marshmellow (based on existing demod + holiman's refactor)
//HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded)
//print full HID Prox ID and some bit format details if found
@ -1013,9 +1040,12 @@ int CmdFSKdemodParadox(const char *Cmd)
}
uint32_t fc = ((hi & 0x3)<<6) | (lo>>26);
uint32_t cardnum = (lo>>10)&0xFFFF;
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x",
hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF );
PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x - RAW: %08x%08x%08x",
hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF, rawHi2, rawHi, rawLo);
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, len: %d, Printing Demod Buffer:", idx, BitLen);
@ -1185,16 +1215,16 @@ int CmdFSKdemodAWID(const char *Cmd)
fc = bytebits_to_byte(BitStream+9, 8);
cardnum = bytebits_to_byte(BitStream+17, 16);
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
if (fmtLen>32){
code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else{
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
if (g_debugMode){
@ -1305,21 +1335,21 @@ int CmdFSKdemodPyramid(const char *Cmd)
fc = bytebits_to_byte(BitStream+73, 8);
cardnum = bytebits_to_byte(BitStream+81, 16);
code1 = bytebits_to_byte(BitStream+72,fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
} else if (fmtLen==45){
fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
fc = bytebits_to_byte(BitStream+53, 10);
cardnum = bytebits_to_byte(BitStream+63, 32);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+81, 16);
if (fmtLen>32){
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
//code2 = bytebits_to_byte(BitStream+(size-32),32);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else{
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
}
}
if (g_debugMode){
@ -1449,7 +1479,7 @@ int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
//by marshmellow
//attempt to psk1 demod graph buffer
int PSKDemod(const char *Cmd, uint8_t verbose)
int PSKDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
@ -1460,7 +1490,7 @@ int PSKDemod(const char *Cmd, uint8_t verbose)
clk=0;
}
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
if (verbose) PrintAndLog("Invalid argument: %s", Cmd);
return -1;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
@ -1469,11 +1499,11 @@ int PSKDemod(const char *Cmd, uint8_t verbose)
int errCnt=0;
errCnt = pskRawDemod(BitStream, &BitLen,&clk,&invert);
if (errCnt > maxErr){
if (g_debugMode==1) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
if (g_debugMode==1 && verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return -1;
}
if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
if (g_debugMode==1 && verbose) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return -1;
}
if (verbose) PrintAndLog("Tried PSK Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
@ -1567,27 +1597,12 @@ int CmdIndalaDecode(const char *Cmd)
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate nrz only
// prints binary found and saves in demodbuffer for further commands
int CmdNRZrawDemod(const char *Cmd)
int NRZrawDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod nr [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data nrzrawdemod = demod a nrz/direct tag from GraphBuffer");
PrintAndLog(" : data nrzrawdemod 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data nrzrawdemod 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data nrzrawdemod 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
PrintAndLog(" : data nrzrawdemod 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk==1){
invert=1;
@ -1603,27 +1618,48 @@ int CmdNRZrawDemod(const char *Cmd)
int errCnt=0;
errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, maxErr);
if (errCnt > maxErr){
if (g_debugMode==1) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
if (g_debugMode==1 && verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
if (g_debugMode==1 && verbose) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
if (verbose)
PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
if (errCnt>0){
if (errCnt>0 && verbose){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}else{
}
if (verbose) {
PrintAndLog("NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
return 1;
}
int CmdNRZrawDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod nr [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data nrzrawdemod = demod a nrz/direct tag from GraphBuffer");
PrintAndLog(" : data nrzrawdemod 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data nrzrawdemod 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data nrzrawdemod 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
PrintAndLog(" : data nrzrawdemod 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return NRZrawDemod(Cmd, TRUE);
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate psk only
@ -1645,7 +1681,7 @@ int CmdPSK1rawDemod(const char *Cmd)
PrintAndLog(" : data psk1rawdemod 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
errCnt = PSKDemod(Cmd, 1);
errCnt = PSKDemod(Cmd, TRUE);
//output
if (errCnt<0){
if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
@ -1653,7 +1689,6 @@ int CmdPSK1rawDemod(const char *Cmd)
}
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
}else{
}
PrintAndLog("PSK demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits

View file

@ -16,7 +16,7 @@ command_t * CmdDataCommands();
int CmdData(const char *Cmd);
void setDemodBuf(uint8_t *buff, size_t size, size_t startIdx);
void printDemodBuff();
void printBitStream(uint8_t BitStream[], uint32_t bitLen);
int CmdAmp(const char *Cmd);
int Cmdaskdemod(const char *Cmd);
int CmdAskEM410xDemod(const char *Cmd);
@ -60,6 +60,11 @@ int CmdThreshold(const char *Cmd);
int CmdDirectionalThreshold(const char *Cmd);
int CmdZerocrossings(const char *Cmd);
int CmdIndalaDecode(const char *Cmd);
int ASKmanDemod(const char *Cmd, bool verbose, bool emSearch);
int ASKrawDemod(const char *Cmd, bool verbose);
int FSKrawDemod(const char *Cmd, bool verbose);
int PSKDemod(const char *Cmd, bool verbose);
int NRZrawDemod(const char *Cmd, bool verbose);
#define MAX_DEMOD_BUF_LEN (1024*128)
extern uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];

View file

@ -288,35 +288,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
//--- Draw the data column
//char line[16][110];
char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) {
int oddparity = 0x01;
int k;
for (k=0 ; k<8 ; k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x! ", frame[j]);
} else {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x ", frame[j]);
}
}
if(data_len == 0)
{
if(data_len == 0){
sprintf(line[0],"<empty trace - possible error>");
}
}
//--- Draw the CRC column
//Check the CRC status
uint8_t crcStatus = 2;
if (data_len > 2) {
@ -344,6 +316,43 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
//0 CRC-command, CRC not ok
//1 CRC-command, CRC ok
//2 Not crc-command
//--- Draw the data column
//char line[16][110];
char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) {
int oddparity = 0x01;
int k;
for (k=0 ; k<8 ; k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x! ", frame[j]);
} else {
snprintf(line[j/16]+(( j % 16) * 4),110, "%02x ", frame[j]);
}
}
if(crcStatus == 1)
{//CRC-command
char *pos1 = line[(data_len-2)/16]+(((data_len-2) % 16) * 4)-1;
(*pos1) = '[';
char *pos2 = line[(data_len)/16]+(((data_len) % 16) * 4)-2;
(*pos2) = ']';
}
if(data_len == 0)
{
if(data_len == 0){
sprintf(line[0],"<empty trace - possible error>");
}
}
//--- Draw the CRC column
char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " "));
EndOfTransmissionTimestamp = timestamp + duration;

View file

@ -668,9 +668,9 @@ int CmdHF15CmdRaw (const char *cmd) {
*/
int prepareHF15Cmd(char **cmd, UsbCommand *c, uint8_t iso15cmd[], int iso15cmdlen) {
int temp;
uint8_t *req=c->d.asBytes;
uint8_t *req = c->d.asBytes;
uint8_t uid[8] = {0x00};
uint32_t reqlen=0;
uint32_t reqlen = 0;
// strip
while (**cmd==' ' || **cmd=='\t') (*cmd)++;
@ -763,10 +763,10 @@ int CmdHF15CmdSysinfo(const char *Cmd) {
UsbCommand resp;
uint8_t *recv;
UsbCommand c = {CMD_ISO_15693_COMMAND, {0, 1, 1}}; // len,speed,recv?
uint8_t *req=c.d.asBytes;
int reqlen=0;
uint8_t *req = c.d.asBytes;
int reqlen = 0;
char cmdbuf[100];
char *cmd=cmdbuf;
char *cmd = cmdbuf;
char output[2048]="";
int i;
@ -782,13 +782,11 @@ int CmdHF15CmdSysinfo(const char *Cmd) {
PrintAndLog(" s selected tag");
PrintAndLog(" u unaddressed mode");
PrintAndLog(" * scan for tag");
PrintAndLog(" start#: page number to start 0-255");
PrintAndLog(" count#: number of pages");
return 0;
}
prepareHF15Cmd(&cmd, &c,(uint8_t[]){ISO15_CMD_SYSINFO},1);
reqlen=c.arg[0];
reqlen = c.arg[0];
reqlen=AddCrc(req,reqlen);
c.arg[0]=reqlen;

View file

@ -1023,6 +1023,7 @@ int CmdHF14AMf1kSim(const char *Cmd)
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
PrintAndLog("");
PrintAndLog(" sample: hf mf sim u 0a0a0a0a ");
PrintAndLog(" : hf mf sim u 0a0a0a0a i x");
return 0;
}
uint8_t pnr = 0;

View file

@ -158,20 +158,6 @@ local _keys = {
'eff603e1efe9',
'644672bd4afe',
'b5ff67cba951',
}
--[[
Kiev metro cards
--]]
'8fe644038790',
'f14ee7cae863',
'632193be1c3c',
'569369c5a0e5',
'9de89e070277',
'eff603e1efe9',
'644672bd4afe',
'b5ff67cba951',
}

View file

@ -135,7 +135,7 @@ local Utils =
while IN>0 do
I=I+1
IN , D = math.floor(IN/B), math.modf(IN,B)+1
OUT=string.sub(K,D,D)..OUT
OUT = string.sub(K,D,D)..OUT
end
return OUT
end,
@ -191,6 +191,30 @@ local Utils =
return table.concat(t)
end,
Chars2num = function(s)
return (s:byte(1)*16777216)+(s:byte(2)*65536)+(s:byte(3)*256)+(s:byte(4))
end,
-- use length of string to determine 8,16,32,64 bits
bytes_to_int = function(str,endian,signed)
local t={str:byte(1,-1)}
if endian=="big" then --reverse bytes
local tt={}
for k=1,#t do
tt[#t-k+1]=t[k]
end
t=tt
end
local n=0
for k=1,#t do
n=n+t[k]*2^((k-1)*8)
end
if signed then
n = (n > 2^(#t*8-1) -1) and (n - 2^(#t*8)) or n -- if last bit set, negative.
end
return n
end,
-- function convertStringToBytes(str)
-- local bytes = {}
-- local strLength = string.len(str)

View file

@ -147,7 +147,7 @@ extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in
*p ^= in;
} else { // drop
*p-- = *(*end)--;
}
}
}
}
@ -382,9 +382,12 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint32_t tmp;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
@ -548,7 +551,7 @@ lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8],
free(statelist);
free(odd);
free(even);
return 0;
return 0;
}
s = statelist;

View file

@ -1,21 +1,21 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
@ -49,6 +49,7 @@ void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint32_t tmp;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
@ -57,7 +58,9 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
return ret;
}

Binary file not shown.

View file

@ -35,10 +35,12 @@ wire tag_modulation = ssp_dout & !lf_field;
wire reader_modulation = !ssp_dout & lf_field & pck_divclk;
// No logic, straight through.
assign pwr_oe1 = 1'b0; // not used in LF mode
assign pwr_oe1 = 1'b0; // not used in LF mode
assign pwr_oe3 = 1'b0; // base antenna load = 33 Ohms
// when modulating, add another 33 Ohms and 10k Ohms in parallel:
assign pwr_oe2 = tag_modulation;
assign pwr_oe3 = tag_modulation;
assign pwr_oe4 = tag_modulation;
assign ssp_clk = cross_lo;
assign pwr_lo = reader_modulation;
assign pwr_hi = 1'b0;