CHG: having a go at finding the WDT death second time we run "hf mf mifare"...

This commit is contained in:
iceman1001 2016-02-10 21:46:52 +01:00
parent 5192a0a689
commit 4b78d6b317

View file

@ -1435,7 +1435,7 @@ void PrepareDelayedTransfer(uint16_t delay)
delay &= 0x07; delay &= 0x07;
if (delay) { if (delay) {
for (uint16_t i = 0; i < delay; i++) { for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i); bitmask |= (1 << i);
} }
ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) { for (uint16_t i = 0; i < ToSendMax; i++) {
@ -1572,7 +1572,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
ToSend[++ToSendMax] = SEC_Y; ToSend[++ToSendMax] = SEC_Y;
// Convert to length of command: // Convert to length of command:
ToSendMax++; ++ToSendMax;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -1580,7 +1580,8 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
{ {
CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity);
} }
@ -1703,7 +1704,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
} }
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
for (i = 0; i <= fpga_queued_bits/8 + 1; ) { for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F; AT91C_BASE_SSC->SSC_THR = SEC_F;
@ -1838,19 +1839,22 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t
LED_A_ON(); LED_A_ON();
// Log reader command in trace buffer // Log reader command in trace buffer
LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
} }
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{ {
ReaderTransmitBitsPar(frame, len*8, par, timing); //ReaderTransmitBitsPar(frame, len*8, par, timing);
ReaderTransmitBitsPar(frame, len<<3, par, timing);
} }
void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{ {
// Generate parity and redirect // Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00}; uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len/8, par); //GetParity(frame, len/8, par);
GetParity(frame, len >> 3, par);
ReaderTransmitBitsPar(frame, len, par, timing); ReaderTransmitBitsPar(frame, len, par, timing);
} }
@ -1859,7 +1863,8 @@ void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
// Generate parity and redirect // Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE] = {0x00}; uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(frame, len, par); GetParity(frame, len, par);
ReaderTransmitBitsPar(frame, len*8, par, timing); //ReaderTransmitBitsPar(frame, len*8, par, timing);
ReaderTransmitBitsPar(frame, len<<3, par, timing);
} }
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
@ -1867,7 +1872,8 @@ int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parit
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
return FALSE; return FALSE;
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len; return Demod.len;
} }
@ -1876,7 +1882,8 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
return FALSE; return FALSE;
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
return Demod.len; return Demod.len;
} }
@ -2190,16 +2197,33 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
if (nt1 == nt2) return 0; if (nt1 == nt2) return 0;
uint16_t i;
uint32_t nttmp1 = nt1; uint32_t nttmp1 = nt1;
uint32_t nttmp2 = nt2; uint32_t nttmp2 = nt2;
for (i = 1; i < 0xFFFF; ++i) { for (uint16_t i = 1; i < 0xFFFF; i += 8) {
nttmp1 = prng_successor(nttmp1, 1); nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
if (nttmp1 == nt2) return i; nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
nttmp2 = prng_successor(nttmp2, 1); nttmp1 = prng_successor(nttmp1, 2); if (nttmp1 == nt2) return i+1;
if (nttmp2 == nt1) return -i; nttmp2 = prng_successor(nttmp2, 2); if (nttmp2 == nt1) return -i-1;
nttmp1 = prng_successor(nttmp1, 3); if (nttmp1 == nt2) return i+2;
nttmp2 = prng_successor(nttmp2, 3); if (nttmp2 == nt1) return -i-2;
nttmp1 = prng_successor(nttmp1, 4); if (nttmp1 == nt2) return i+3;
nttmp2 = prng_successor(nttmp2, 4); if (nttmp2 == nt1) return -i-3;
nttmp1 = prng_successor(nttmp1, 5); if (nttmp1 == nt2) return i+4;
nttmp2 = prng_successor(nttmp2, 5); if (nttmp2 == nt1) return -i-4;
nttmp1 = prng_successor(nttmp1, 6); if (nttmp1 == nt2) return i+5;
nttmp2 = prng_successor(nttmp2, 6); if (nttmp2 == nt1) return -i-5;
nttmp1 = prng_successor(nttmp1, 7); if (nttmp1 == nt2) return i+6;
nttmp2 = prng_successor(nttmp2, 7); if (nttmp2 == nt1) return -i-6;
nttmp1 = prng_successor(nttmp1, 8); if (nttmp1 == nt2) return i+7;
nttmp2 = prng_successor(nttmp2, 8); if (nttmp2 == nt1) return -i-7;
} }
return(-99999); // either nt1 or nt2 are invalid nonces return(-99999); // either nt1 or nt2 are invalid nonces
@ -2230,9 +2254,8 @@ void ReaderMifare(bool first_try, uint8_t block )
byte_t nt_diff = 0; byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0; static byte_t par_low = 0;
bool led_on = TRUE;
uint8_t uid[10] = {0}; uint8_t uid[10] = {0};
uint32_t cuid = 0; //uint32_t cuid = 0;
uint32_t nt = 0; uint32_t nt = 0;
uint32_t previous_nt = 0; uint32_t previous_nt = 0;
@ -2256,17 +2279,11 @@ void ReaderMifare(bool first_try, uint8_t block )
uint16_t unexpected_random = 0; uint16_t unexpected_random = 0;
uint16_t sync_tries = 0; uint16_t sync_tries = 0;
int16_t debug_info_nr = -1;
uint16_t strategy = 0; uint16_t strategy = 0;
int32_t debug_info[MAX_STRATEGY+1][NUM_DEBUG_INFOS];
uint32_t select_time = 0;
uint32_t halt_time = 0; uint32_t halt_time = 0;
//uint8_t caller[7] = {0};
// init to zero. clear_trace();
for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i) set_tracing(TRUE);
for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
debug_info[i][j] = 0;
LED_A_ON(); LED_A_ON();
LED_B_OFF(); LED_B_OFF();
@ -2277,8 +2294,6 @@ void ReaderMifare(bool first_try, uint8_t block )
// free eventually allocated BigBuf memory. We want all for tracing. // free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free(); BigBuf_free();
clear_trace();
set_tracing(TRUE);
if (first_try) { if (first_try) {
sync_time = GetCountSspClk() & 0xfffffff8; sync_time = GetCountSspClk() & 0xfffffff8;
@ -2310,7 +2325,7 @@ void ReaderMifare(bool first_try, uint8_t block )
int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
if (len && MF_DBGLEVEL >= 3) if (len && MF_DBGLEVEL >= 3)
Dbprintf("Unexpected response of %d bytes to halt command (additional debugging).\n", len); Dbprintf("Unexpected response of %d bytes to halt command.", len);
} }
if (strategy == 3) { if (strategy == 3) {
@ -2323,61 +2338,32 @@ void ReaderMifare(bool first_try, uint8_t block )
WDT_HIT(); WDT_HIT();
} }
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) { if (!iso14443a_select_card(uid, NULL, NULL, true, 0)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n"); if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n");
continue; continue;
} }
select_time = GetCountSspClk() & 0xfffffff8; sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
elapsed_prng_sequences = 1; catch_up_cycles = 0;
if (debug_info_nr == -1) { // if we missed the sync time already, advance to the next nonce repeat
while(GetCountSspClk() > sync_time) {
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; ++elapsed_prng_sequences;
catch_up_cycles = 0; sync_time = (sync_time & 0xfffffff8) + sync_cycles;
// if we missed the sync time already, advance to the next nonce repeat
WDT_HIT();
while(GetCountSspClk() > sync_time) {
++elapsed_prng_sequences;
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
//sync_time += sync_cycles;
//sync_time &= 0xfffffff8;
}
WDT_HIT();
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
if (MF_DBGLEVEL == 2) Dbprintf("sync_time %d \n", sync_time);
} else {
// collect some information on tag nonces for debugging:
#define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
if (strategy == 0) {
// nonce distances at fixed time after card select:
sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
} else if (strategy == 1) {
// nonce distances at fixed time between authentications:
sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
} else if (strategy == 2) {
// nonce distances at fixed time after halt:
sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
} else {
// nonce_distances at fixed time after power on
sync_time = DEBUG_FIXED_SYNC_CYCLES;
}
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
} }
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce // Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
continue; continue;
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
// Transmit reader nonce with fake par // Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt); int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) { if (nt_distance == 0) {
@ -2397,22 +2383,16 @@ void ReaderMifare(bool first_try, uint8_t block )
if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break; break;
} else { // continue for a while, just to collect some debug info } else {
++debug_info_nr;
debug_info[strategy][debug_info_nr] = nt_distance;
if (debug_info_nr == NUM_DEBUG_INFOS-1) {
++strategy;
debug_info_nr = 0;
}
continue; continue;
} }
} }
sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences); sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
if (sync_cycles <= 0) if (sync_cycles <= 0)
sync_cycles += PRNG_SEQUENCE_LENGTH; sync_cycles += PRNG_SEQUENCE_LENGTH;
if (MF_DBGLEVEL >= 2) if (MF_DBGLEVEL >= 3)
Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
continue; continue;
@ -2436,7 +2416,6 @@ void ReaderMifare(bool first_try, uint8_t block )
last_catch_up = catch_up_cycles; last_catch_up = catch_up_cycles;
consecutive_resyncs = 0; consecutive_resyncs = 0;
} }
sync_cycles += catch_up_cycles;
if (consecutive_resyncs < 3) { if (consecutive_resyncs < 3) {
if (MF_DBGLEVEL >= 3) if (MF_DBGLEVEL >= 3)
@ -2454,8 +2433,6 @@ void ReaderMifare(bool first_try, uint8_t block )
continue; continue;
} }
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
@ -2463,9 +2440,6 @@ void ReaderMifare(bool first_try, uint8_t block )
if (nt_diff == 0) if (nt_diff == 0)
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
par_list[nt_diff] = SwapBits(par[0], 8); par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
@ -2478,6 +2452,7 @@ void ReaderMifare(bool first_try, uint8_t block )
nt_diff = (nt_diff + 1) & 0x07; nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
par[0] = par_low; par[0] = par_low;
} else { } else {
if (nt_diff == 0 && first_try) { if (nt_diff == 0 && first_try) {
par[0]++; par[0]++;
@ -2489,18 +2464,14 @@ void ReaderMifare(bool first_try, uint8_t block )
par[0] = ((par[0] & 0x1F) + 1) | par_low; par[0] = ((par[0] & 0x1F) + 1) | par_low;
} }
} }
consecutive_resyncs = 0;
} }
mf_nr_ar[3] &= 0x1F; mf_nr_ar[3] &= 0x1F;
WDT_HIT(); WDT_HIT();
if (isOK == -4) {
for (uint16_t i = 0; i < MAX_STRATEGY+1; ++i)
for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j)
Dbprintf("info[%d][%d] = %d", i, j, debug_info[i][j]);
}
// reset sync_time. // reset sync_time.
if ( isOK == 1) { if ( isOK == 1) {
sync_time = 0; sync_time = 0;