mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-03-22 21:17:31 +08:00
CHG: "hf mf hardnested"
- latest clean up from @matrix - the device still doesnt answer when brute_force call fails. I've been trying to get the device to init after the brute_force call.
This commit is contained in:
parent
97f86b7a61
commit
4d812c139b
1 changed files with 106 additions and 93 deletions
|
@ -15,11 +15,13 @@
|
|||
// Computer and Communications Security, 2015
|
||||
//-----------------------------------------------------------------------------
|
||||
#include "cmdhfmfhard.h"
|
||||
#include "cmdhw.h"
|
||||
|
||||
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
|
||||
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
|
||||
#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
|
||||
#define CRACKING_THRESHOLD 38.00f // as 2^38
|
||||
#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
|
||||
#define MAX_BUCKETS 128
|
||||
|
||||
#define END_OF_LIST_MARKER 0xFFFFFFFF
|
||||
|
||||
|
@ -72,7 +74,8 @@ typedef struct noncelist {
|
|||
float Sum8_prob;
|
||||
bool updated;
|
||||
noncelistentry_t *first;
|
||||
float score1, score2;
|
||||
float score1;
|
||||
uint_fast8_t score2;
|
||||
} noncelist_t;
|
||||
|
||||
static size_t nonces_to_bruteforce = 0;
|
||||
|
@ -116,6 +119,22 @@ static statelist_t *candidates = NULL;
|
|||
|
||||
bool field_off = false;
|
||||
|
||||
uint64_t foundkey = 0;
|
||||
size_t keys_found = 0;
|
||||
size_t bucket_count = 0;
|
||||
statelist_t* buckets[MAX_BUCKETS];
|
||||
static uint64_t total_states_tested = 0;
|
||||
size_t thread_count = 4;
|
||||
|
||||
// these bitsliced states will hold identical states in all slices
|
||||
bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
||||
|
||||
// arrays of bitsliced states with identical values in all slices
|
||||
bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
|
||||
|
||||
#define EXACT_COUNT
|
||||
|
||||
static bool generate_candidates(uint16_t, uint16_t);
|
||||
static bool brute_force(void);
|
||||
|
||||
|
@ -283,7 +302,7 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
|
|||
if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
|
||||
|
||||
double p_S_is_K = p_K[K];
|
||||
double p_T_is_k = 0;
|
||||
double p_T_is_k = 0.0;
|
||||
for (uint16_t i = 0; i <= 256; i++) {
|
||||
if (p_K[i] != 0.0) {
|
||||
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
|
||||
|
@ -478,7 +497,7 @@ static void Tests()
|
|||
|
||||
}
|
||||
|
||||
static void sort_best_first_bytes(void)
|
||||
static uint16_t sort_best_first_bytes(void)
|
||||
{
|
||||
// sort based on probability for correct guess
|
||||
for (uint16_t i = 0; i < 256; i++ ) {
|
||||
|
@ -493,7 +512,7 @@ static void sort_best_first_bytes(void)
|
|||
best_first_bytes[k] = best_first_bytes[k-1];
|
||||
}
|
||||
}
|
||||
best_first_bytes[j] = i;
|
||||
best_first_bytes[j] = i;
|
||||
}
|
||||
|
||||
// determine how many are above the CONFIDENCE_THRESHOLD
|
||||
|
@ -504,6 +523,8 @@ static void sort_best_first_bytes(void)
|
|||
}
|
||||
}
|
||||
|
||||
if (num_good_nonces == 0) return 0;
|
||||
|
||||
uint16_t best_first_byte = 0;
|
||||
|
||||
// select the best possible first byte based on number of common bits with all {b'}
|
||||
|
@ -526,25 +547,28 @@ static void sort_best_first_bytes(void)
|
|||
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
|
||||
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
|
||||
float bitflip_prob = 1.0;
|
||||
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
|
||||
|
||||
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
|
||||
bitflip_prob = 0.09375;
|
||||
}
|
||||
|
||||
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
|
||||
if (p_K[sum8] * bitflip_prob <= min_p_K) {
|
||||
|
||||
if (p_K[sum8] * bitflip_prob <= min_p_K)
|
||||
min_p_K = p_K[sum8] * bitflip_prob;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// use number of commmon bits as a tie breaker
|
||||
uint16_t max_common_bits = 0;
|
||||
uint_fast8_t max_common_bits = 0;
|
||||
for (uint16_t i = 0; i < num_good_nonces; i++) {
|
||||
|
||||
float bitflip_prob = 1.0;
|
||||
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
|
||||
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
|
||||
bitflip_prob = 0.09375;
|
||||
}
|
||||
|
||||
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
|
||||
uint16_t sum_common_bits = 0;
|
||||
uint_fast8_t sum_common_bits = 0;
|
||||
for (uint16_t j = 0; j < num_good_nonces; j++) {
|
||||
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
|
||||
}
|
||||
|
@ -558,16 +582,16 @@ static void sort_best_first_bytes(void)
|
|||
|
||||
// swap best possible first byte to the pole position
|
||||
if (best_first_byte != 0) {
|
||||
uint16_t temp = best_first_bytes[0];
|
||||
best_first_bytes[0] = best_first_bytes[best_first_byte];
|
||||
best_first_bytes[best_first_byte] = temp;
|
||||
uint16_t temp = best_first_bytes[0];
|
||||
best_first_bytes[0] = best_first_bytes[best_first_byte];
|
||||
best_first_bytes[best_first_byte] = temp;
|
||||
}
|
||||
|
||||
return num_good_nonces;
|
||||
}
|
||||
|
||||
static uint16_t estimate_second_byte_sum(void)
|
||||
{
|
||||
|
||||
{
|
||||
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
|
||||
float Sum8_prob = 0.0;
|
||||
uint16_t Sum8 = 0;
|
||||
|
@ -584,17 +608,7 @@ static uint16_t estimate_second_byte_sum(void)
|
|||
nonces[first_byte].updated = false;
|
||||
}
|
||||
}
|
||||
|
||||
sort_best_first_bytes();
|
||||
|
||||
uint16_t num_good_nonces = 0;
|
||||
for (uint16_t i = 0; i < 256; i++) {
|
||||
if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
|
||||
++num_good_nonces;
|
||||
}
|
||||
}
|
||||
|
||||
return num_good_nonces;
|
||||
return sort_best_first_bytes();
|
||||
}
|
||||
|
||||
static int read_nonce_file(void)
|
||||
|
@ -613,6 +627,7 @@ static int read_nonce_file(void)
|
|||
}
|
||||
|
||||
PrintAndLog("Reading nonces from file nonces.bin...");
|
||||
memset (read_buf, 0, sizeof (read_buf));
|
||||
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
|
||||
if ( bytes_read == 0) {
|
||||
PrintAndLog("File reading error.");
|
||||
|
@ -622,8 +637,10 @@ static int read_nonce_file(void)
|
|||
cuid = bytes_to_num(read_buf, 4);
|
||||
trgBlockNo = bytes_to_num(read_buf+4, 1);
|
||||
trgKeyType = bytes_to_num(read_buf+5, 1);
|
||||
|
||||
while (fread(read_buf, 1, 9, fnonces) == 9) {
|
||||
size_t ret = 0;
|
||||
do {
|
||||
memset (read_buf, 0, sizeof (read_buf));
|
||||
if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
|
||||
nt_enc1 = bytes_to_num(read_buf, 4);
|
||||
nt_enc2 = bytes_to_num(read_buf+4, 4);
|
||||
par_enc = bytes_to_num(read_buf+8, 1);
|
||||
|
@ -633,6 +650,8 @@ static int read_nonce_file(void)
|
|||
add_nonce(nt_enc2, par_enc & 0x0f);
|
||||
total_num_nonces += 2;
|
||||
}
|
||||
} while (ret == 9);
|
||||
|
||||
fclose(fnonces);
|
||||
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
|
||||
return 0;
|
||||
|
@ -641,7 +660,6 @@ static int read_nonce_file(void)
|
|||
static void Check_for_FilterFlipProperties(void)
|
||||
{
|
||||
printf("Checking for Filter Flip Properties...\n");
|
||||
|
||||
uint16_t num_bitflips = 0;
|
||||
|
||||
for (uint16_t i = 0; i < 256; i++) {
|
||||
|
@ -650,6 +668,8 @@ static void Check_for_FilterFlipProperties(void)
|
|||
}
|
||||
|
||||
for (uint16_t i = 0; i < 256; i++) {
|
||||
if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
|
||||
|
||||
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
|
||||
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
|
||||
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
|
||||
|
@ -663,9 +683,8 @@ static void Check_for_FilterFlipProperties(void)
|
|||
}
|
||||
}
|
||||
|
||||
if (write_stats) {
|
||||
if (write_stats)
|
||||
fprintf(fstats, "%d;", num_bitflips);
|
||||
}
|
||||
}
|
||||
|
||||
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
|
||||
|
@ -722,7 +741,7 @@ static void simulate_acquire_nonces()
|
|||
num_good_first_bytes = estimate_second_byte_sum();
|
||||
if (total_num_nonces > next_fivehundred) {
|
||||
next_fivehundred = (total_num_nonces/500+1) * 500;
|
||||
printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
|
||||
printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
|
||||
total_num_nonces,
|
||||
total_added_nonces,
|
||||
CONFIDENCE_THRESHOLD * 100.0,
|
||||
|
@ -756,18 +775,23 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
|
|||
uint32_t total_added_nonces = 0;
|
||||
uint32_t idx = 1;
|
||||
FILE *fnonces = NULL;
|
||||
UsbCommand resp;
|
||||
field_off = false;
|
||||
UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 0}};
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
|
||||
UsbCommand resp;
|
||||
UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
|
||||
memcpy(c.d.asBytes, key, 6);
|
||||
c.arg[0] = blockNo + (keyType * 0x100);
|
||||
c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
|
||||
|
||||
printf("Acquiring nonces...\n");
|
||||
do {
|
||||
flags = 0;
|
||||
flags |= initialize ? 0x0001 : 0;
|
||||
//flags |= initialize ? 0x0001 : 0;
|
||||
flags |= 0x0001;
|
||||
flags |= slow ? 0x0002 : 0;
|
||||
flags |= field_off ? 0x0004 : 0;
|
||||
c.arg[2] = flags;
|
||||
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
|
||||
|
@ -777,6 +801,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
|
|||
if (fnonces) fclose(fnonces);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (resp.arg[0]) {
|
||||
if (fnonces) fclose(fnonces);
|
||||
return resp.arg[0]; // error during nested_hard
|
||||
|
@ -791,6 +816,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
|
|||
return 3;
|
||||
}
|
||||
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
|
||||
memset (write_buf, 0, sizeof (write_buf));
|
||||
num_to_bytes(cuid, 4, write_buf);
|
||||
fwrite(write_buf, 1, 4, fnonces);
|
||||
fwrite(&trgBlockNo, 1, 1, fnonces);
|
||||
|
@ -804,14 +830,12 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
|
|||
uint8_t par_enc;
|
||||
uint16_t num_acquired_nonces = resp.arg[2];
|
||||
uint8_t *bufp = resp.d.asBytes;
|
||||
for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
|
||||
for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
|
||||
nt_enc1 = bytes_to_num(bufp, 4);
|
||||
nt_enc2 = bytes_to_num(bufp+4, 4);
|
||||
par_enc = bytes_to_num(bufp+8, 1);
|
||||
|
||||
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
|
||||
total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
|
||||
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
|
||||
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
|
||||
|
||||
if (nonce_file_write && fnonces) {
|
||||
|
@ -833,23 +857,29 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
|
|||
|
||||
if (total_num_nonces > next_fivehundred) {
|
||||
next_fivehundred = (total_num_nonces/500+1) * 500;
|
||||
printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). #bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
|
||||
printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
|
||||
total_num_nonces,
|
||||
total_added_nonces,
|
||||
NONCES_THRESHOLD * idx,
|
||||
CONFIDENCE_THRESHOLD * 100.0,
|
||||
num_good_first_bytes);
|
||||
}
|
||||
|
||||
if ( num_good_first_bytes > 0 ) {
|
||||
//printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
|
||||
if ( total_added_nonces >= (NONCES_THRESHOLD * idx)) {
|
||||
|
||||
if (total_added_nonces >= (NONCES_THRESHOLD * idx) && num_good_first_bytes > 0 ) {
|
||||
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
|
||||
if (cracking || known_target_key != -1) {
|
||||
field_off = brute_force(); // switch off field with next SendCommand and then finish
|
||||
CmdFPGAOff("");
|
||||
|
||||
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
|
||||
if (cracking || known_target_key != -1) {
|
||||
field_off = brute_force(); // switch off field with next SendCommand and then finish
|
||||
if (field_off) break;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
} while (!finished);
|
||||
|
||||
if (nonce_file_write && fnonces)
|
||||
|
@ -937,7 +967,7 @@ static void init_BitFlip_statelist(void)
|
|||
// set len and add End Of List marker
|
||||
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
|
||||
*p = END_OF_LIST_MARKER;
|
||||
statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
|
||||
//statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
|
||||
}
|
||||
|
||||
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
|
||||
|
@ -1237,6 +1267,7 @@ static bool TestIfKeyExists(uint64_t key)
|
|||
}
|
||||
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
|
||||
if (found_odd && found_even) {
|
||||
if (known_target_key != -1) {
|
||||
PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
|
||||
count,
|
||||
log(count)/log(2),
|
||||
|
@ -1246,15 +1277,18 @@ static bool TestIfKeyExists(uint64_t key)
|
|||
if (write_stats) {
|
||||
fprintf(fstats, "1\n");
|
||||
}
|
||||
}
|
||||
crypto1_destroy(pcs);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (known_target_key != -1) {
|
||||
printf("Key NOT found!\n");
|
||||
if (write_stats) {
|
||||
fprintf(fstats, "0\n");
|
||||
}
|
||||
}
|
||||
crypto1_destroy(pcs);
|
||||
|
||||
return false;
|
||||
|
@ -1325,7 +1359,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
|
|||
|
||||
maximum_states = 0;
|
||||
unsigned int n = 0;
|
||||
for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
|
||||
for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
|
||||
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
|
||||
}
|
||||
|
||||
|
@ -1334,11 +1368,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
|
|||
float kcalc = log(maximum_states)/log(2);
|
||||
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
|
||||
if (write_stats) {
|
||||
if (maximum_states != 0) {
|
||||
fprintf(fstats, "%1.1f;", kcalc);
|
||||
} else {
|
||||
fprintf(fstats, "%1.1f;", 0.0);
|
||||
}
|
||||
fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
|
||||
}
|
||||
if (kcalc < CRACKING_THRESHOLD) return true;
|
||||
|
||||
|
@ -1366,23 +1396,6 @@ static void free_statelist_cache(void)
|
|||
}
|
||||
}
|
||||
|
||||
#define MAX_BUCKETS 128
|
||||
uint64_t foundkey = 0;
|
||||
size_t keys_found = 0;
|
||||
size_t bucket_count = 0;
|
||||
statelist_t* buckets[MAX_BUCKETS];
|
||||
size_t total_states_tested = 0;
|
||||
size_t thread_count = 4;
|
||||
|
||||
// these bitsliced states will hold identical states in all slices
|
||||
bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
|
||||
|
||||
// arrays of bitsliced states with identical values in all slices
|
||||
bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
|
||||
bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
|
||||
|
||||
#define EXACT_COUNT
|
||||
|
||||
static const uint64_t crack_states_bitsliced(statelist_t *p){
|
||||
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
|
||||
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
|
||||
|
@ -1471,11 +1484,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
|
|||
crypto1_bs_rewind_a0();
|
||||
// set odd bits
|
||||
for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
|
||||
if(o & 1){
|
||||
state_p[state_idx] = bs_ones;
|
||||
} else {
|
||||
state_p[state_idx] = bs_zeroes;
|
||||
}
|
||||
state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
|
||||
}
|
||||
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
|
||||
|
||||
|
@ -1505,7 +1514,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
|
|||
}
|
||||
|
||||
#ifdef EXACT_COUNT
|
||||
bucket_states_tested += bucket_size[block_idx];
|
||||
bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
|
||||
#endif
|
||||
// pre-compute first keystream and feedback bit vectors
|
||||
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
|
||||
|
@ -1616,34 +1625,39 @@ out:
|
|||
static void* crack_states_thread(void* x){
|
||||
const size_t thread_id = (size_t)x;
|
||||
size_t current_bucket = thread_id;
|
||||
statelist_t *bucket = NULL;
|
||||
|
||||
while(current_bucket < bucket_count){
|
||||
statelist_t * bucket = buckets[current_bucket];
|
||||
if(bucket){
|
||||
if (keys_found) break;
|
||||
|
||||
if ((bucket = buckets[current_bucket])) {
|
||||
const uint64_t key = crack_states_bitsliced(bucket);
|
||||
if(key != -1){
|
||||
|
||||
if (keys_found) break;
|
||||
else if(key != -1 && TestIfKeyExists(key)) {
|
||||
__sync_fetch_and_add(&keys_found, 1);
|
||||
__sync_fetch_and_add(&foundkey, key);
|
||||
break;
|
||||
} else if(keys_found){
|
||||
break;
|
||||
} else {
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
current_bucket += thread_count;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static bool brute_force(void) {
|
||||
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
|
||||
|
||||
bool ret = false;
|
||||
if (known_target_key != -1) {
|
||||
PrintAndLog("Looking for known target key in remaining key space...");
|
||||
ret = TestIfKeyExists(known_target_key);
|
||||
} else {
|
||||
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
|
||||
|
||||
PrintAndLog("Brute force phase starting.");
|
||||
|
||||
clock_t time1 = clock();
|
||||
|
@ -1651,6 +1665,9 @@ static bool brute_force(void) {
|
|||
foundkey = 0;
|
||||
|
||||
crypto1_bs_init();
|
||||
memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
|
||||
memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
|
||||
memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
|
||||
|
||||
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
|
||||
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
|
||||
|
@ -1670,11 +1687,12 @@ static bool brute_force(void) {
|
|||
|
||||
// count number of states to go
|
||||
bucket_count = 0;
|
||||
buckets[MAX_BUCKETS-1] = NULL;
|
||||
for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
|
||||
buckets[bucket_count] = p;
|
||||
bucket_count++;
|
||||
}
|
||||
buckets[bucket_count] = NULL;
|
||||
if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
|
||||
|
||||
#ifndef __WIN32
|
||||
thread_count = sysconf(_SC_NPROCESSORS_CONF);
|
||||
|
@ -1697,7 +1715,7 @@ static bool brute_force(void) {
|
|||
time1 = clock() - time1;
|
||||
PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
|
||||
|
||||
if (keys_found && TestIfKeyExists(foundkey)) {
|
||||
if (keys_found) {
|
||||
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
|
||||
ret = true;
|
||||
}
|
||||
|
@ -1756,12 +1774,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
|
|||
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
|
||||
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
|
||||
|
||||
clock_t time1 = clock();
|
||||
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
|
||||
time1 = clock() - time1;
|
||||
if (time1 > 0)
|
||||
PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
|
||||
|
||||
if (cracking || known_target_key != -1) {
|
||||
brute_force();
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue