CHG: @Marshmellow42 's fixes. ref: e88096ba25

This commit is contained in:
iceman1001 2017-02-24 01:14:47 +01:00
parent f7c1147ab8
commit 5215a87442
6 changed files with 208 additions and 42 deletions

View file

@ -120,7 +120,7 @@ $(OBJDIR)/fullimage.data.o: $(OBJDIR)/fullimage.data.bin.z
$(OBJCOPY) -O elf32-littlearm -I binary -B arm --rename-section .data=compressed_data $^ $@
$(OBJDIR)/fullimage.elf: $(OBJDIR)/fullimage.nodata.o $(OBJDIR)/fullimage.data.o
$(CC) $(LDFLAGS) -Wl,-T,ldscript,-Map,$(patsubst %.elf,%.map,$@) -o $@ $^
$(CC) $(LDFLAGS) -Wl,-T,ldscript,-e,_osimage_entry,-Map,$(patsubst %.elf,%.map,$@) -o $@ $^
tarbin: $(OBJS)
$(TAR) $(TARFLAGS) ../proxmark3-$(platform)-bin.tar $(OBJS:%=armsrc/%) $(OBJS:%.s19=armsrc/%.elf)

View file

@ -380,8 +380,8 @@ void printEM410x(uint32_t hi, uint64_t id)
} else{
//output 40 bit em id
PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
PrintAndLog("\nPossible de-scramble patterns");
PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
PrintAndLog("HoneyWell IdentKey {");
PrintAndLog("DEZ 8 : %08" PRIu64, id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010" PRIu64, id & 0xFFFFFFFF);
@ -391,7 +391,7 @@ void printEM410x(uint32_t hi, uint64_t id)
PrintAndLog("DEZ 3.5C : %03" PRIu64 ".%05" PRIu64, (id & 0xFF0000) >> 16, (id & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014" PRIu64, id);
PrintAndLog("DEZ 15/IK3 : %015" PRIu64, id2lo);
PrintAndLog("DEZ 20/ZK : %02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld",
PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
(id2lo & 0xf000000000) >> 36,
(id2lo & 0x0f00000000) >> 32,
(id2lo & 0x00f0000000) >> 28,

View file

@ -470,10 +470,9 @@ int CmdHF14AMfDump(const char *Cmd) {
size_t bytes_read;
for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
bytes_read = fread( keyA[sectorNo], 1, 6, fin );
if ( bytes_read == 0) {
if ( bytes_read != 6) {
PrintAndLog("File reading error.");
fclose(fin);
fin = NULL;
return 2;
}
}
@ -481,16 +480,14 @@ int CmdHF14AMfDump(const char *Cmd) {
// Read keys B from file
for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
bytes_read = fread( keyB[sectorNo], 1, 6, fin );
if ( bytes_read == 0) {
if ( bytes_read != 6) {
PrintAndLog("File reading error.");
fclose(fin);
fin = NULL;
return 2;
}
}
fclose(fin);
fin = NULL;
PrintAndLog("|-----------------------------------------|");
PrintAndLog("|------ Reading sector access bits...-----|");
@ -643,20 +640,18 @@ int CmdHF14AMfRestore(const char *Cmd) {
size_t bytes_read;
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread( keyA[sectorNo], 1, 6, fkeys );
if ( bytes_read == 0) {
if ( bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
fkeys = NULL;
return 2;
}
}
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread( keyB[sectorNo], 1, 6, fkeys );
if ( bytes_read == 0) {
if ( bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
fkeys = NULL;
return 2;
}
}
@ -674,7 +669,7 @@ int CmdHF14AMfRestore(const char *Cmd) {
UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
bytes_read = fread(bldata, 1, 16, fdump);
if ( bytes_read == 0) {
if ( bytes_read != 16) {
PrintAndLog("File reading error (dumpdata.bin).");
fclose(fdump);
fdump = NULL;
@ -713,7 +708,6 @@ int CmdHF14AMfRestore(const char *Cmd) {
}
fclose(fdump);
fdump = NULL;
return 0;
}
@ -789,7 +783,7 @@ int CmdHF14AMfNested(const char *Cmd) {
switch (isOK) {
case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case -2 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (its random number generator is not predictable).\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random number generator is not predictable).\n"); break;
case -4 : PrintAndLog("No valid key found"); break;
case -5 :
key64 = bytes_to_num(keyBlock, 6);
@ -1584,7 +1578,7 @@ int CmdHF14AMfSniff(const char *Cmd){
if (res == 1) { // there is (more) data to be transferred
if (pckNum == 0) { // first packet, (re)allocate necessary buffer
if (traceLen > bufsize) {
if (traceLen > bufsize || buf == NULL) {
uint8_t *p;
if (buf == NULL) // not yet allocated
p = malloc(traceLen);

View file

@ -702,12 +702,13 @@ bool setDemodBufferEM(uint32_t *word, size_t idx){
PrintAndLog("DEBUG: Error - EM Parity tests failed");
return FALSE;
}
if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 44)) {
// test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
return FALSE;
}
setDemodBuf(DemodBuffer, 40, 0);
setDemodBuf(DemodBuffer, 32, 0);
*word = bytebits_to_byteLSBF(DemodBuffer, 32);
return TRUE;
}
@ -778,6 +779,18 @@ int usage_lf_em4x05_write(void) {
PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
return 0;
}
int usage_lf_em4x05_info(void) {
PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05info [h] <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05info");
PrintAndLog(" lf em 4x05info deadc0de");
return 0;
}
int CmdEM4x05Dump(const char *Cmd) {
uint8_t addr = 0;
@ -904,10 +917,166 @@ int CmdEM4x05Write(const char *Cmd) {
int isOk = demodEM4x05resp(&dummy);
if (isOk)
PrintAndLog("Write Verified");
else
PrintAndLog("Write could not be verified");
return isOk;
}
void printEM4x05config(uint32_t wordData) {
uint16_t datarate = (((wordData & 0x3F)+1)*2);
uint8_t encoder = ((wordData >> 6) & 0xF);
char enc[14];
memset(enc,0,sizeof(enc));
uint8_t PSKcf = (wordData >> 10) & 0x3;
char cf[10];
memset(cf,0,sizeof(cf));
uint8_t delay = (wordData >> 12) & 0x3;
char cdelay[33];
memset(cdelay,0,sizeof(cdelay));
uint8_t LWR = (wordData >> 14) & 0xF; //last word read
switch (encoder) {
case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
case 3: snprintf(enc,sizeof(enc),"Miller"); break;
case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
default: snprintf(enc,sizeof(enc),"Unknown"); break;
}
switch (PSKcf) {
case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
case 3: snprintf(cf,sizeof(cf),"unknown"); break;
}
switch (delay) {
case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
}
PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
PrintAndLog("Config Breakdown:", wordData);
PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
PrintAndLog(" Encoder: %u | %s", encoder, enc);
PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
PrintAndLog(" Delay: %u | %s", delay, cdelay);
PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
}
void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
switch (chipType) {
case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
//add more here when known
default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
}
switch (cap) {
case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
}
PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
if (serial != 0) {
PrintAndLog("\n Serial #: %08X\n", serial);
}
}
void printEM4x05ProtectionBits(uint32_t wordData) {
for (uint8_t i = 0; i < 15; i++) {
PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
if (i==14) {
PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
}
}
}
//quick test for EM4x05/EM4x69 tag
bool EM4x05Block0Test(uint32_t *wordData) {
// return (EM4x05ReadWord_ext(0,0,false,wordData) == 1);
return false;
}
int CmdEM4x05Info(const char *Cmd) {
/*
uint32_t pwd;
uint32_t wordData = 0;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 1, 16);
if ( pwd != 1 )
usePwd = true;
// read word 0 (chip info)
// block 0 can be read even without a password.
if ( !EM4x05Block0Test(&wordData) )
return -1;
uint8_t chipType = (wordData >> 1) & 0xF;
uint8_t cap = (wordData >> 5) & 3;
uint16_t custCode = (wordData >> 9) & 0x3FF;
// read word 1 (serial #) doesn't need pwd
wordData = 0;
if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
//failed, but continue anyway...
}
printEM4x05info(chipType, cap, custCode, wordData);
// read word 4 (config block)
// needs password if one is set
wordData = 0;
if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 )
return 0;
printEM4x05config(wordData);
// read word 14 and 15 to see which is being used for the protection bits
wordData = 0;
if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
return 0;
}
// if status bit says this is not the used protection word
if (!(wordData & 0x8000)) {
if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
return 0;
}
}
if (!(wordData & 0x8000)) {
//something went wrong
return 0;
}
printEM4x05ProtectionBits(wordData);
*/
return 1;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
@ -916,9 +1085,10 @@ static command_t CommandTable[] = {
{"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
{"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
{"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
{"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
{"4x05info", CmdEM4x05Info, 0, "Tag information EM4x05/EM4x69"},
{"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
{"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
{"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
{"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
{"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
{"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},

View file

@ -50,7 +50,7 @@ static command_t CommandTable[] =
{"hf", CmdHF, 1, "{ High Frequency commands... }"},
{"hw", CmdHW, 1, "{ Hardware commands... }"},
{"lf", CmdLF, 1, "{ Low Frequency commands... }"},
{"reveng", CmdRev, 1, "Crc calculations from the software reveng 1.40"},
{"reveng", CmdRev, 1, "Crc calculations from the software reveng 1.44"},
{"script", CmdScript, 1, "{ Scripting commands }"},
{"quit", CmdQuit, 1, "Exit program"},
{"exit", CmdQuit, 1, "Exit program"},

View file

@ -74,7 +74,7 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
if (word+pLen >= bLen) break;
if (word+pLen > bLen) break;
j--; // overwrite parity with next data
// if parity fails then return 0
@ -158,7 +158,7 @@ bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t
uint8_t foundCnt = 0;
for (int idx = 0; idx < *size - pLen; idx++){
if (memcmp(BitStream+idx, preamble, pLen) == 0){
if (g_debugMode) prnt("DEBUG: preamble found at %u", idx);
if (g_debugMode) prnt("DEBUG: preamble found at %i", idx);
//first index found
foundCnt++;
if (foundCnt == 1){
@ -205,12 +205,10 @@ size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_
// actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
{
//allow only 1s and 0s
// only checking first bitvalue?!
// sanity check
if (BitStream[1] > 1) return 0;
uint32_t i = 0, idx = 0, parityBits = 0;
uint8_t fmtlen = 0;
uint8_t fmtlen;
*startIdx = 0;
// preamble 0111111111
@ -220,23 +218,27 @@ uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_
return 0;
if (*size < 64) return 0;
fmtlen = (*size > 64) ? 22 : 10;
fmtlen = (*size == 110) ? 22 : 10;
idx = *startIdx + sizeof(preamble);
//skip last 4bit parity row for simplicity
*size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5);
switch (*size) {
case 40: {
// std em410x format
*hi = 0;
*lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
break;
}
case 88: {
// long em format
*hi = (bytebits_to_byte(BitStream, 24));
*lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
break;
}
default: return 0;
//loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
for (i=0; i < fmtlen; i++){
parityBits = bytebits_to_byte(BitStream + (i*5) + idx, 5);
//check even parity
if (parityTest(parityBits, 5, 0) == 0) return 0;
//set uint64 with ID from BitStream
for (uint8_t j = 0; j < 4; j++){
*hi = (*hi << 1) | (*lo >> 63);
*lo = (*lo << 1) | (BitStream[(i*5) + j + idx]);
}
}
//skip last 5 bit parity test for simplicity.
// *size = 64 | 128;
return 1;
}