Merge pull request #1095 from cmolson/em4x710-write

EM4x70 write support
This commit is contained in:
Iceman 2020-12-12 06:35:21 +01:00 committed by GitHub
commit 5ca0281c03
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 282 additions and 110 deletions

View file

@ -1170,6 +1170,10 @@ static void PacketReceived(PacketCommandNG *packet) {
em4x70_info((em4x70_data_t *)packet->data.asBytes);
break;
}
case CMD_LF_EM4X70_WRITE: {
em4x70_write((em4x70_data_t *)packet->data.asBytes);
break;
}
#endif
#ifdef WITH_ISO15693

View file

@ -29,20 +29,23 @@ static bool command_parity = true;
#define EM4X70_T_TAG_DIV 224 // Divergency Time
#define EM4X70_T_TAG_AUTH 4224 // Authentication Time
#define EM4X70_T_TAG_WEE 3072 // EEPROM write Time
#define EM4X70_T_TAG_TWALB 128 // Write Access Time of Lock Bits
#define EM4X70_T_TAG_TWALB 672 // Write Access Time of Lock Bits
#define EM4X70_T_WAITING_FOR_SNGLLIW 160 // Unsure
#define TICKS_PER_FC 12 // 1 fc = 8us, 1.5us per tick = 12 ticks
#define EM4X70_MIN_AMPLITUDE 10 // Minimum difference between a high and low signal
#define EM4X70_TAG_TOLERANCE 10
#define EM4X70_TAG_TOLERANCE 8
#define EM4X70_TAG_WORD 48
#define EM4X70_COMMAND_RETRIES 5 // Attempts to send/read command
#define EM4X70_MAX_RECEIVE_LENGTH 96 // Maximum bits to expect from any command
/**
* These IDs are from the EM4170 datasheet
* Some versions of the chip require a fourth
* Some versions of the chip require a
* (even) parity bit, others do not
*/
#define EM4X70_COMMAND_ID 0x01
@ -58,10 +61,11 @@ static uint8_t gLow = 0;
#define IS_HIGH(sample) (sample>gLow ? true : false)
#define IS_LOW(sample) (sample<gHigh ? true : false)
#define IS_TIMEOUT(timeout_ticks) (GetTicks() > timeout_ticks)
#define TICKS_ELAPSED(start_ticks) (GetTicks() - start_ticks)
static uint8_t bits2byte(uint8_t *bits, int length);
static void bits2bytes(uint8_t *bits, int length, uint8_t *out);
static uint8_t bits2byte(const uint8_t *bits, int length);
static void bits2bytes(const uint8_t *bits, int length, uint8_t *out);
static int em4x70_receive(uint8_t *bits);
static bool find_listen_window(bool command);
@ -135,7 +139,7 @@ static bool get_signalproperties(void) {
uint32_t start_ticks = GetTicks();
//AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (GetTicks() - start_ticks < TICKS_PER_FC * 3 * EM4X70_T_TAG_FULL_PERIOD) {
while (TICKS_ELAPSED(start_ticks) < TICKS_PER_FC * 3 * EM4X70_T_TAG_FULL_PERIOD) {
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@ -197,7 +201,7 @@ static uint32_t get_pulse_length(void) {
if (IS_TIMEOUT(timeout))
return 0;
return GetTicks() - start_ticks;
return TICKS_ELAPSED(start_ticks);
}
/**
@ -236,51 +240,50 @@ static uint32_t get_pulse_invert_length(void) {
if (IS_TIMEOUT(timeout))
return 0;
return GetTicks() - start_ticks;
return TICKS_ELAPSED(start_ticks);
}
static bool check_pulse_length(uint32_t pl, int length, int margin) {
static bool check_pulse_length(uint32_t pl, int length) {
// check if pulse length <pl> corresponds to given length <length>
//Dbprintf("%s: pulse length %d vs %d", __func__, pl, length * TICKS_PER_FC);
return ((pl >= TICKS_PER_FC * (length - margin)) & (pl <= TICKS_PER_FC * (length + margin)));
return ((pl >= TICKS_PER_FC * (length - EM4X70_TAG_TOLERANCE)) & (pl <= TICKS_PER_FC * (length + EM4X70_TAG_TOLERANCE)));
}
static void em4x70_send_bit(int bit) {
static void em4x70_send_bit(bool bit) {
// send single bit according to EM4170 application note and datasheet
uint32_t start_ticks = GetTicks();
if (bit == 0) {
// disable modulation (drop the field) for 4 cycles of carrier
LOW(GPIO_SSC_DOUT);
while (GetTicks() - start_ticks <= TICKS_PER_FC * 4);
while (TICKS_ELAPSED(start_ticks) <= TICKS_PER_FC * 4);
// enable modulation (activates the field) for remaining first
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (GetTicks() - start_ticks <= TICKS_PER_FC * EM4X70_T_TAG_HALF_PERIOD);
while (TICKS_ELAPSED(start_ticks) <= TICKS_PER_FC * EM4X70_T_TAG_HALF_PERIOD);
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (GetTicks() - start_ticks <= TICKS_PER_FC * EM4X70_T_TAG_FULL_PERIOD);
while (TICKS_ELAPSED(start_ticks) <= TICKS_PER_FC * EM4X70_T_TAG_FULL_PERIOD);
} else {
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (GetTicks() - start_ticks <= TICKS_PER_FC * EM4X70_T_TAG_FULL_PERIOD);
while (TICKS_ELAPSED(start_ticks) <= TICKS_PER_FC * EM4X70_T_TAG_FULL_PERIOD);
}
}
/**
* em4x70_send_command
* em4x70_send_nibble
*
* sends 4 bits of data + 1 bit of parity (with_parity)
*
*/
static void em4170_send_command(uint8_t command) {
static void em4x70_send_nibble(uint8_t nibble, bool with_parity) {
int parity = 0;
int msb_bit = 0;
@ -290,16 +293,100 @@ static void em4170_send_command(uint8_t command) {
msb_bit = 1;
for (int i = msb_bit; i < 4; i++) {
int bit = (command >> (3 - i)) & 1;
int bit = (nibble >> (3 - i)) & 1;
em4x70_send_bit(bit);
parity ^= bit;
}
if(command_parity)
if(with_parity)
em4x70_send_bit(parity);
}
static void em4x70_send_word(const uint16_t word) {
// Split into nibbles
uint8_t nibbles[4];
uint8_t j = 0;
for(int i = 0; i < 2; i++) {
uint8_t byte = (word >> (8*i)) & 0xff;
nibbles[j++] = (byte >> 4) & 0xf;
nibbles[j++] = byte & 0xf;
}
// send 16 bit word with parity bits according to EM4x70 datasheet
// sent as 4 x nibbles (4 bits + parity)
for (int i = 0; i < 4; i++) {
em4x70_send_nibble(nibbles[i], true);
}
// send column parities (4 bit)
em4x70_send_nibble(nibbles[0] ^ nibbles[1] ^ nibbles[2] ^ nibbles[3], false);
// send final stop bit (always "0")
em4x70_send_bit(0);
}
static bool check_ack(void) {
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
uint32_t start_ticks = GetTicks();
while (TICKS_ELAPSED(start_ticks) < TICKS_PER_FC * 4 * EM4X70_T_TAG_FULL_PERIOD) {
/*
ACK
64 (48+16)
64 (48+16)
NACK
64 (48+16)
48 (32+16)
*/
if (check_pulse_length(get_pulse_length(), 2 * EM4X70_T_TAG_FULL_PERIOD)) {
// The received signal is either ACK or NAK.
if (check_pulse_length(get_pulse_length(), 2 * EM4X70_T_TAG_FULL_PERIOD)) {
return true;
} else {
// It's NAK -> stop searching
break;
}
}
}
return false;
}
static int write(const uint16_t word, const uint8_t address) {
// writes <word> to specified <address>
if (find_listen_window(true)) {
// send write command
em4x70_send_nibble(EM4X70_COMMAND_WRITE, true);
// send address data with parity bit
em4x70_send_nibble(address, true);
// send data word
em4x70_send_word(word);
// Wait TWA
WaitTicks(TICKS_PER_FC * EM4X70_T_TAG_TWA);
// look for ACK sequence
if (check_ack()) {
// now EM4x70 needs T0 * EM4X70_T_TAG_TWEE (EEPROM write time)
// for saving data and should return with ACK
WaitTicks(TICKS_PER_FC * EM4X70_T_TAG_WEE);
if (check_ack()) {
return PM3_SUCCESS;
}
}
}
return PM3_ESOFT;
}
static bool find_listen_window(bool command) {
int cnt = 0;
@ -311,34 +398,33 @@ static bool find_listen_window(bool command) {
96 ( 64 + 32 )
64 ( 32 + 16 +16 )*/
if (check_pulse_length(get_pulse_invert_length(), 80, EM4X70_TAG_TOLERANCE)) {
if (check_pulse_length(get_pulse_invert_length(), 80, EM4X70_TAG_TOLERANCE)) {
if (check_pulse_length(get_pulse_length(), 96, EM4X70_TAG_TOLERANCE)) {
if (check_pulse_length(get_pulse_length(), 64, EM4X70_TAG_TOLERANCE)) {
if(command) {
/* Here we are after the 64 duration edge.
* em4170 says we need to wait about 48 RF clock cycles.
* depends on the delay between tag and us
*
* I've found between 4-5 quarter periods (32-40) works best
*/
WaitTicks(TICKS_PER_FC * 5 * EM4X70_T_TAG_QUARTER_PERIOD);
// Send RM Command
em4x70_send_bit(0);
em4x70_send_bit(0);
}
return true;
}
if ( check_pulse_length(get_pulse_invert_length(), 80) &&
check_pulse_length(get_pulse_invert_length(), 80) &&
check_pulse_length(get_pulse_length(), 96) &&
check_pulse_length(get_pulse_length(), 64) )
{
if(command) {
/* Here we are after the 64 duration edge.
* em4170 says we need to wait about 48 RF clock cycles.
* depends on the delay between tag and us
*
* I've found between 4-5 quarter periods (32-40) works best
*/
WaitTicks(TICKS_PER_FC * 4 * EM4X70_T_TAG_QUARTER_PERIOD);
// Send RM Command
em4x70_send_bit(0);
em4x70_send_bit(0);
}
return true;
}
}
cnt++;
}
return false;
}
static void bits2bytes(uint8_t *bits, int length, uint8_t *out) {
static void bits2bytes(const uint8_t *bits, int length, uint8_t *out) {
if(length%8 != 0) {
Dbprintf("Should have a multiple of 8 bits, was sent %d", length);
@ -348,12 +434,11 @@ static void bits2bytes(uint8_t *bits, int length, uint8_t *out) {
for(int i=1; i <= num_bytes; i++) {
out[num_bytes-i] = bits2byte(bits, 8);
bits+=8;
//Dbprintf("Read: %02X", out[num_bytes-i]);
bits += 8;
}
}
static uint8_t bits2byte(uint8_t *bits, int length) {
static uint8_t bits2byte(const uint8_t *bits, int length) {
// converts <length> separate bits into a single "byte"
uint8_t byte = 0;
@ -368,22 +453,27 @@ static uint8_t bits2byte(uint8_t *bits, int length) {
return byte;
}
/*static void print_array(uint8_t *bits, int len) {
if(len%8 != 0) {
Dbprintf("Should have a multiple of 8 bits, was sent %d", len);
}
static bool send_command_and_read(uint8_t command, uint8_t resp_len_bits, uint8_t *out_bytes) {
int num_bytes = len / 8; // We should have a multiple of 8 here
int retries = EM4X70_COMMAND_RETRIES;
while(retries) {
retries--;
uint8_t bytes[8];
for(int i=0;i<num_bytes;i++) {
bytes[i] = bits2byte(bits, 8);
bits+=8;
Dbprintf("Read: %02X", bytes[i]);
if(find_listen_window(true)) {
uint8_t bits[EM4X70_MAX_RECEIVE_LENGTH] = {0};
em4x70_send_nibble(command, command_parity);
int len = em4x70_receive(bits);
if(len < resp_len_bits) {
Dbprintf("Invalid data received length: %d", len);
return false;
}
bits2bytes(bits, len, out_bytes);
return true;
}
}
}*/
return false;
}
/**
@ -393,18 +483,8 @@ static uint8_t bits2byte(uint8_t *bits, int length) {
*/
static bool em4x70_read_id(void) {
if(find_listen_window(true)) {
uint8_t bits[64] = {0};
em4170_send_command(EM4X70_COMMAND_ID);
int num = em4x70_receive(bits);
if(num < 32) {
Dbprintf("Invalid ID Received");
return false;
}
bits2bytes(bits, num, &tag.data[4]);
return true;
}
return false;
return send_command_and_read(EM4X70_COMMAND_ID, 32, &tag.data[4]);
}
/**
@ -413,18 +493,9 @@ static bool em4x70_read_id(void) {
* read user memory 1 (4 bytes including lock bits)
*/
static bool em4x70_read_um1(void) {
if(find_listen_window(true)) {
uint8_t bits[64] = {0};
em4170_send_command(EM4X70_COMMAND_UM1);
int num = em4x70_receive(bits);
if(num < 32) {
Dbprintf("Invalid UM1 data received");
return false;
}
bits2bytes(bits, num, &tag.data[0]);
return true;
}
return false;
return send_command_and_read(EM4X70_COMMAND_UM1, 32, &tag.data[0]);
}
@ -434,22 +505,12 @@ static bool em4x70_read_um1(void) {
* read user memory 2 (8 bytes)
*/
static bool em4x70_read_um2(void) {
if(find_listen_window(true)) {
uint8_t bits[64] = {0};
em4170_send_command(EM4X70_COMMAND_UM2);
int num = em4x70_receive(bits);
if(num < 64) {
Dbprintf("Invalid UM2 data received");
return false;
}
bits2bytes(bits, num, &tag.data[24]);
return true;
}
return false;
return send_command_and_read(EM4X70_COMMAND_UM2, 64, &tag.data[24]);
}
static bool find_EM4X70_Tag(void) {
Dbprintf("%s: Start", __func__);
// function is used to check wether a tag on the proxmark is an
// EM4170 tag or not -> speed up "lf search" process
return find_listen_window(false);
@ -460,8 +521,6 @@ static int em4x70_receive(uint8_t *bits) {
uint32_t pl;
int bit_pos = 0;
uint8_t edge = 0;
bool foundheader = false;
// Read out the header
@ -476,7 +535,7 @@ static int em4x70_receive(uint8_t *bits) {
while(pulse_count < 12){
pl = get_pulse_invert_length();
pulse_count++;
if(check_pulse_length(pl, 3 * EM4X70_T_TAG_HALF_PERIOD, EM4X70_TAG_TOLERANCE)) {
if(check_pulse_length(pl, 3 * EM4X70_T_TAG_HALF_PERIOD)) {
foundheader = true;
break;
}
@ -494,19 +553,19 @@ static int em4x70_receive(uint8_t *bits) {
// identify remaining bits based on pulse lengths
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
while (true) {
while (bit_pos < EM4X70_MAX_RECEIVE_LENGTH) {
if(edge)
pl = get_pulse_length();
else
pl = get_pulse_invert_length();
if (check_pulse_length(pl, EM4X70_T_TAG_FULL_PERIOD, EM4X70_T_TAG_QUARTER_PERIOD)) {
if (check_pulse_length(pl, EM4X70_T_TAG_FULL_PERIOD)) {
// pulse length = 1
bits[bit_pos++] = edge;
} else if (check_pulse_length(pl, 3 * EM4X70_T_TAG_HALF_PERIOD, EM4X70_T_TAG_QUARTER_PERIOD)) {
} else if (check_pulse_length(pl, 3 * EM4X70_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5 -> flip edge detection
if(edge) {
@ -519,7 +578,7 @@ static int em4x70_receive(uint8_t *bits) {
edge = 1;
}
} else if (check_pulse_length(pl, 2 * EM4X70_T_TAG_FULL_PERIOD, EM4X70_T_TAG_QUARTER_PERIOD)) {
} else if (check_pulse_length(pl, 2 * EM4X70_T_TAG_FULL_PERIOD)) {
// pulse length of 2
if(edge) {
@ -530,15 +589,16 @@ static int em4x70_receive(uint8_t *bits) {
bits[bit_pos++] = 0;
}
} else if ( (edge && check_pulse_length(pl, 3 * EM4X70_T_TAG_FULL_PERIOD, EM4X70_T_TAG_QUARTER_PERIOD)) ||
(!edge && check_pulse_length(pl, 80, EM4X70_T_TAG_QUARTER_PERIOD))) {
} else if ( (edge && check_pulse_length(pl, 3 * EM4X70_T_TAG_FULL_PERIOD)) ||
(!edge && check_pulse_length(pl, 80))) {
// LIW detected (either invert or normal)
return --bit_pos;
}
}
return bit_pos;
// Should not get here
return --bit_pos;
}
void em4x70_info(em4x70_data_t *etd) {
@ -561,3 +621,34 @@ void em4x70_info(em4x70_data_t *etd) {
lf_finalize();
reply_ng(CMD_LF_EM4X70_INFO, status, tag.data, sizeof(tag.data));
}
void em4x70_write(em4x70_data_t *etd) {
uint8_t status = 0;
command_parity = etd->parity;
init_tag();
EM4170_setup_read();
// Find the Tag
if (get_signalproperties() && find_EM4X70_Tag()) {
// Write
status = write(etd->word, etd->address) == PM3_SUCCESS;
if(status) {
// Read Tag after writing
em4x70_read_id();
em4x70_read_um1();
em4x70_read_um2();
}
}
StopTicks();
lf_finalize();
reply_ng(CMD_LF_EM4X70_WRITE, status, tag.data, sizeof(tag.data));
}

View file

@ -18,5 +18,6 @@ typedef struct {
} em4x70_tag_t;
void em4x70_info(em4x70_data_t *etd);
void em4x70_write(em4x70_data_t *etd);
#endif /* EM4x70_H */

View file

@ -16,6 +16,9 @@
#include "commonutil.h"
#include "em4x70.h"
#define BYTES2UINT16(x) ((x[1] << 8) | (x[0]))
#define BYTES2UINT32(x) ((x[3] << 24) | (x[2] << 16) | (x[1] << 8) | (x[0]))
static int CmdHelp(const char *Cmd);
@ -33,7 +36,7 @@ static void print_info_result(uint8_t *data) {
PrintAndLogEx(NORMAL, "%02X %02X", data[32-i], data[32-i-1]);
}
PrintAndLogEx(NORMAL, "Tag ID: %02X %02X %02X %02X", data[7], data[6], data[5], data[4]);
PrintAndLogEx(NORMAL, "Lockbit 0: %d", (data[3] & 0x40) ? 1:0);
PrintAndLogEx(NORMAL, "Lockbit 0: %d %s", (data[3] & 0x40) ? 1:0, (data[3] & 0x40) ? "LOCKED":"UNLOCKED");
PrintAndLogEx(NORMAL, "Lockbit 1: %d", (data[3] & 0x80) ? 1:0);
PrintAndLogEx(NORMAL, "");
@ -83,7 +86,7 @@ int CmdEM4x70Info(const char *Cmd) {
" ID48 does not use command parity (default).\n"
" V4070 and EM4170 do require parity bit.",
"lf em 4x70 info\n"
"lf em 4x70 -p -> adds parity bit to commands\n"
"lf em 4x70 info -p -> adds parity bit to command\n"
);
void *argtable[] = {
@ -114,9 +117,74 @@ int CmdEM4x70Info(const char *Cmd) {
return PM3_ESOFT;
}
int CmdEM4x70Write(const char *Cmd) {
// write one block/word (16 bits) to the tag at given block address (0-15)
em4x70_data_t etd = {0};
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf em 4x10 write",
"Write EM4x70\n",
"lf em 4x70 write -b 15 d c0de -> write 'c0de' to block 15\n"
"lf em 4x70 write -p -b 15 -d c0de -> adds parity bit to commands\n"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("p", "parity", "Add parity bit when sending commands"),
arg_int1("b", "block", "<dec>", "block/word address, dec"),
arg_str1("d", "data", "<hex>", "data, 2 bytes"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
etd.parity = arg_get_lit(ctx, 1);
int addr = arg_get_int(ctx, 2);
int word_len = 0;
uint8_t word[2] = {0x0};
CLIGetHexWithReturn(ctx, 3, word, &word_len);
CLIParserFree(ctx);
if (addr < 0 || addr >= EM4X70_NUM_BLOCKS) {
PrintAndLogEx(FAILED, "block has to be within range [0, 15]");
return PM3_EINVARG;
}
if (word_len != 2) {
PrintAndLogEx(FAILED, "word/data length must be 2 bytes instead of %d", word_len);
return PM3_EINVARG;
}
etd.address = (uint8_t) addr;
etd.word = BYTES2UINT16(word);;
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X70_WRITE, (uint8_t *)&etd, sizeof(etd));
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_LF_EM4X70_WRITE, &resp, TIMEOUT)) {
PrintAndLogEx(WARNING, "Timeout while waiting for reply.");
return PM3_ETIMEOUT;
}
if (resp.status) {
print_info_result(resp.data.asBytes);
return PM3_SUCCESS;
}
PrintAndLogEx(FAILED, "Writing " _RED_("Failed"));
return PM3_ESOFT;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"info", CmdEM4x70Info, IfPm3EM4x70, "tag information EM4x70"},
{"info", CmdEM4x70Info, IfPm3EM4x70, "Tag information EM4x70"},
{"write", CmdEM4x70Write, IfPm3EM4x70, "Write EM4x70"},
{NULL, NULL, NULL, NULL}
};

View file

@ -18,6 +18,7 @@
int CmdLFEM4X70(const char *Cmd);
int CmdEM4x70Info(const char *Cmd);
int CmdEM4x70Write(const char *Cmd);
int em4x70_info(void);
bool detect_4x70_block(void);

View file

@ -11,8 +11,14 @@
#ifndef EM4X70_H__
#define EM4X70_H__
#define EM4X70_NUM_BLOCKS 16
typedef struct {
bool parity;
// Used for writing address
uint8_t address;
uint16_t word;
} em4x70_data_t;
#endif /* EM4X70_H__ */

View file

@ -517,6 +517,7 @@ typedef struct {
#define CMD_LF_EM4X50_ESET 0x0252
#define CMD_LF_EM4X50_CHK 0x0253
#define CMD_LF_EM4X70_INFO 0x0260
#define CMD_LF_EM4X70_WRITE 0x0261
// Sampling configuration for LF reader/sniffer
#define CMD_LF_SAMPLING_SET_CONFIG 0x021D
#define CMD_LF_FSK_SIMULATE 0x021E