LF Demod bug fixes and add lf em em410xdemod

fixed a few bugs in lf demod that the streamlining added.  added new lf
em em410xdemod command that loops until button pressed. (similar to lf
hid fskdemod
This commit is contained in:
marshmellow42 2014-12-29 15:32:53 -05:00
parent 7db5f1ca25
commit 66707a3b3c
10 changed files with 105 additions and 365 deletions

View file

@ -657,6 +657,9 @@ void UsbPacketReceived(uint8_t *packet, int len)
case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
break;
case CMD_EM410X_DEMOD:
CmdEM410xdemod(c->arg[0], 0, 0, 1);
break;
case CMD_EM410X_WRITE_TAG:
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
break;

View file

@ -128,6 +128,7 @@ void AcquireRawBitsTI(void);
void SimulateTagLowFrequency(int period, int gap, int ledcontrol);
void CmdHIDsimTAG(int hi, int lo, int ledcontrol);
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol);
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol);
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol);
void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT); // Clone an ioProx card to T5557/T5567
void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen);

View file

@ -630,106 +630,6 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
if (ledcontrol)
LED_A_OFF();
}
/*
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_demod(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal=0;
// // we don't care about actual value, only if it's more or less than a
// // threshold essentially we capture zero crossings for later analysis
// we do care about the actual value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
if (size<100) return size;
for(idx=1; idx<100; idx++){
if(maxVal<dest[idx]) maxVal = dest[idx];
}
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
//uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if (idx-last_transition<6){
//do nothing with extra garbage
} else if (idx-last_transition < 9) {
dest[numBits]=1;
} else {
dest[numBits]=0;
}
last_transition = idx;
numBits++;
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround(float f)
{
if (f >= 2000) return 2000;//something bad happened
return (uint32_t) (f + (float)0.5);
}
//translate 11111100000 to 10
size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
continue;
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
n=myround((float)(n+1)/((float)(rfLen)/(float)8));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
if(n < maxConsequtiveBits) //Consecutive
{
if(invert==0){ //invert bits
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=dest[idx];
}//end for
return numBits;
}
*/
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
@ -818,20 +718,20 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
hi2 = hi = lo = 0;
}
WDT_HIT();
//SpinDelay(50);
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0,idx=0; //, found=0;
uint32_t hi2=0, hi=0, lo=0;
size_t size=0; //, found=0;
uint32_t bitLen=0;
int clk=0, invert=0, errCnt=0;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
@ -842,139 +742,40 @@ void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
if (size < 2000) continue;
if (size < 2000) continue;
// FSK demodulator
size = fsk_demod(dest, size);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
// 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
// do not invert
size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
//int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
bitLen=size;
//Dbprintf("DEBUG: Buffer got");
errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
//Dbprintf("DEBUG: ASK Got");
WDT_HIT();
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
//one scan
uint8_t sameCardCount =0;
while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
hi2 = (hi2<<1)|(hi>>31);
hi = (hi<<1)|(lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
lo=(lo<<1)|0;
else // 0 1
lo=(lo<<1)|
1;
numshifts++;
idx += 2;
}
//Dbprintf("Num shifts: %d ", numshifts);
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + sizeof(frame_marker_mask) < size)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
if (hi2 != 0){ //extra large HID tags
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
//Dbprintf("TAG ID: %x%08x (%d)",
// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
sameCardCount++;
if (findone){
if (ledcontrol) LED_A_OFF();
return;
}
}
}
// reset
hi2 = hi = lo = 0;
numshifts = 0;
}else
{
idx++;
if (errCnt>=0){
lo = Em410xDecode(dest,bitLen);
//Dbprintf("DEBUG: EM GOT");
//printEM410x(lo);
if (lo>0){
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF));
}
if (findone){
if (ledcontrol) LED_A_OFF();
return;
}
} else{
//Dbprintf("DEBUG: No Tag");
}
WDT_HIT();
}
lo = 0;
clk=0;
invert=0;
errCnt=0;
size=0;
//SpinDelay(50);
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
*/
/*
uint32_t bytebits_to_byte(uint8_t* src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
*/
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
@ -982,7 +783,9 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
size_t size=0;
int idx=0;
uint32_t code=0, code2=0;
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
@ -994,6 +797,7 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
//make sure buffer has data
if (size < 2000) continue;
//fskdemod and get start index
WDT_HIT();
idx = IOdemodFSK(dest,size);
if (idx>0){
//valid tag found
@ -1018,9 +822,9 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
version = bytebits_to_byte(dest+idx+27,8); //14,4
facilitycode = bytebits_to_byte(dest+idx+19,8) ;
number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
@ -1029,95 +833,16 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
//LED_A_OFF();
return;
}
code=code2=0;
version=facilitycode=0;
number=0;
idx=0;
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*
void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0, idx=0;
uint32_t code=0, code2=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
//make sure buffer has data
if (size < 64) return;
//test samples are not just noise
uint8_t testMax=0;
for(idx=0;idx<64;idx++){
if (testMax<dest[idx]) testMax=dest[idx];
}
idx=0;
//if not just noise
if (testMax>170){
//Dbprintf("testMax: %d",testMax);
// FSK demodulator
size = fsk_demod(dest, size);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
// 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
// 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
WDT_HIT();
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t sameCardCount=0;
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if (sameCardCount>2) break;
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
short version = bytebits_to_byte(dest+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
return;
}
sameCardCount++;
}
}
}
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
*/
/*------------------------------
* T5555/T5557/T5567 routines

View file

@ -442,10 +442,10 @@ int CmdBitstream(const char *Cmd)
bit ^= 1;
AppendGraph(0, clock, bit);
// for (j = 0; j < (int)(clock/2); j++)
// GraphBuffer[(i * clock) + j] = bit ^ 1;
// for (j = (int)(clock/2); j < clock; j++)
// GraphBuffer[(i * clock) + j] = bit;
// for (j = 0; j < (int)(clock/2); j++)
// GraphBuffer[(i * clock) + j] = bit ^ 1;
// for (j = (int)(clock/2); j < clock; j++)
// GraphBuffer[(i * clock) + j] = bit;
}
RepaintGraphWindow();
@ -477,18 +477,7 @@ int CmdDetectClockRate(const char *Cmd)
PrintAndLog("Auto-detected clock rate: %d", clock);
return 0;
}
/*
uint32_t bytebits_to_byte(uint8_t *src, int numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
*/
//by marshmellow
//fsk raw demod and print binary
//takes 2 arguments - Clock and invert

View file

@ -22,6 +22,20 @@
static int CmdHelp(const char *Cmd);
int CmdEMdemodASK(const char *Cmd)
{
int findone=0;
UsbCommand c={CMD_EM410X_DEMOD};
if(Cmd[0]=='1') findone=1;
c.arg[0]=findone;
SendCommand(&c);
return 0;
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
@ -581,6 +595,7 @@ int CmdWriteWordPWD(const char *Cmd)
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"em410xdemod", CmdEMdemodASK, 0, "[clock rate] -- Extract ID from EM410x tag"},
{"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"},
{"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
{"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},

View file

@ -12,7 +12,7 @@
#define CMDLFEM4X_H__
int CmdLFEM4X(const char *Cmd);
int CmdEMdemodASK(const char *Cmd);
int CmdEM410xRead(const char *Cmd);
int CmdEM410xSim(const char *Cmd);
int CmdEM410xWatch(const char *Cmd);

View file

@ -47,6 +47,9 @@ local _commands = {
CMD_PCF7931_READ = 0x0217,
CMD_EM4X_READ_WORD = 0x0218,
CMD_EM4X_WRITE_WORD = 0x0219,
CMD_IO_DEMOD_FSK = 0x021A,
CMD_IO_CLONE_TAG = 0x021B,
CMD_EM410X_DEMOD = 0x021C,
--/* CMD_SET_ADC_MUX: ext1 is 0 for lopkd, 1 for loraw, 2 for hipkd, 3 for hiraw */
--// For the 13.56 MHz tags

View file

@ -27,7 +27,7 @@
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen)
uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
@ -36,10 +36,10 @@ uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen)
uint64_t lo=0; //hi=0,
uint32_t i = 0;
uint32_t initLoopMax = 1000;
uint32_t initLoopMax = 65;
if (initLoopMax>BitLen) initLoopMax=BitLen;
for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
{
if (BitStream[i] > high)
high = BitStream[i];
@ -57,7 +57,7 @@ uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen)
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < BitLen) {
restart:
restart:
// search for a start of frame marker
if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
@ -101,17 +101,17 @@ int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
//int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default
uint8_t BitStream[MAX_BitStream_LEN] = {0};
uint8_t BitStream[252] = {0};
//sscanf(Cmd, "%i %i", &clk, &invert);
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 1000;
uint32_t initLoopMax = 200;
if (initLoopMax>*BitLen) initLoopMax=*BitLen;
// Detect high and lows
//PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
@ -142,6 +142,7 @@ int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
lastBit=iii-*clk;
bitnum=0;
//loop through to see if this start location works
for (i = iii; i < *BitLen; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
@ -176,6 +177,7 @@ int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
}
}
}
if (bitnum >250) break;
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) {
@ -220,7 +222,7 @@ int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
//run through 2 times and take least errCnt
int manrawdemod(uint8_t * BitStream, int *bitLen)
{
uint8_t BitStream2[MAX_BitStream_LEN]={0};
uint8_t BitStream2[252]={0};
int bitnum=0;
int errCnt =0;
int i=1;
@ -239,6 +241,7 @@ int manrawdemod(uint8_t * BitStream, int *bitLen)
BitStream2[bitnum++]=77;
errCnt++;
}
if(bitnum>250) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
@ -275,15 +278,15 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
// int invert=0; //invert default
int high = 0, low = 0;
*clk=DetectClock2(BinStream,*bitLen,*clk); //clock default
uint8_t BitStream[MAX_BitStream_LEN] = {0};
uint8_t BitStream[252] = {0};
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 1000;
uint32_t initLoopMax = 200;
if (initLoopMax>*bitLen) initLoopMax=*bitLen;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values
for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
@ -294,7 +297,7 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
// PrintAndLog("no data found");
return -1;
}
//13% fuzz in case highs and lows aren't clipped [marshmellow]
//25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(0.75*high);
low=(int)(0.75*low);
@ -363,8 +366,9 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
bitnum=0;//start over
break;
}
}
}
}
if (bitnum>250) break;
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) {
@ -407,15 +411,13 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert)
return errCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod2(uint8_t * dest, size_t size)
size_t fsk_wave_demod(uint8_t * dest, size_t size)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal=0;
// // we don't care about actual value, only if it's more or less than a
// // threshold essentially we capture zero crossings for later analysis
// we do care about the actual value as sometimes near the center of the
// we do care about the actual theshold value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
@ -426,8 +428,8 @@ size_t fsk_wave_demod2(uint8_t * dest, size_t size)
// set close to the top of the wave threshold with 13% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
//uint8_t threshold_value = 127;
uint8_t threshold_value = (uint8_t)(maxVal*.87); idx=1;
//uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
@ -446,11 +448,11 @@ size_t fsk_wave_demod2(uint8_t * dest, size_t size)
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if (idx-last_transition<6){
if (idx-last_transition<6){ //0-5 = garbage noise
//do nothing with extra garbage
} else if (idx-last_transition < 9) {
} else if (idx-last_transition < 9) { //6-8 = 8 waves
dest[numBits]=1;
} else {
} else { //9+ = 10 waves
dest[numBits]=0;
}
last_transition = idx;
@ -467,7 +469,7 @@ uint32_t myround2(float f)
}
//translate 11111100000 to 10
size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
@ -485,7 +487,7 @@ size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxCon
n=myround2((float)(n+1)/((float)(rfLen)/(float)8));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10));
n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10)); //-2 for fudge factor
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
@ -518,8 +520,8 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert)
// }
// size_t size = GraphTraceLen;
// FSK demodulator
size = fsk_wave_demod2(dest, size);
size = aggregate_bits2(dest, size,rfLen,192,invert);
size = fsk_wave_demod(dest, size);
size = aggregate_bits(dest, size,rfLen,192,invert);
// size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
//done messing with GraphBuffer - repaint
//RepaintGraphWindow();
@ -590,7 +592,7 @@ uint32_t bytebits_to_byte(uint8_t* src, int numbits)
int IOdemodFSK(uint8_t *dest, size_t size)
{
size_t idx=0;
uint32_t idx=0;
//make sure buffer has data
if (size < 64) return -1;
//test samples are not just noise
@ -612,14 +614,14 @@ int IOdemodFSK(uint8_t *dest, size_t size)
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 74); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
//return start position
return idx;
return (int) idx;
}
}
}

View file

@ -13,7 +13,7 @@
int DetectClock2(uint8_t dest[], size_t size, int clock);
int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen);
uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen);
int manrawdemod(uint8_t *BitStream, int *bitLen);
int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert);
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);

View file

@ -81,6 +81,8 @@ typedef struct {
#define CMD_EM4X_WRITE_WORD 0x0219
#define CMD_IO_DEMOD_FSK 0x021A
#define CMD_IO_CLONE_TAG 0x021B
#define CMD_EM410X_DEMOD 0x021C
/* CMD_SET_ADC_MUX: ext1 is 0 for lopkd, 1 for loraw, 2 for hipkd, 3 for hiraw */
// For the 13.56 MHz tags