Merge pull request from Proxmark/master

Test
This commit is contained in:
marshmellow42 2014-12-29 16:14:23 -05:00
commit 6bfa18eab4
22 changed files with 1028 additions and 1008 deletions

View file

@ -36,7 +36,8 @@
// is the order in which they go out on the wire.
//=============================================================================
uint8_t ToSend[512];
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax;
static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea")));
@ -67,7 +68,7 @@ void ToSendStuffBit(int b)
ToSendBit++;
if(ToSendBit >= sizeof(ToSend)) {
if(ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!");
}
@ -195,15 +196,11 @@ int AvgAdc(int ch) // was static - merlok
void MeasureAntennaTuning(void)
{
uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
uint8_t LF_Results[256];
int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
// UsbCommand c;
LED_B_ON();
DbpString("Measuring antenna characteristics, please wait...");
memset(dest,0,FREE_BUFFER_SIZE);
LED_B_ON();
/*
* Sweeps the useful LF range of the proxmark from
@ -216,7 +213,7 @@ void MeasureAntennaTuning(void)
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
for (i=255; i>19; i--) {
for (i=255; i>=19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
@ -226,16 +223,18 @@ void MeasureAntennaTuning(void)
if (i==95) vLf125 = adcval; // voltage at 125Khz
if (i==89) vLf134 = adcval; // voltage at 134Khz
dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(dest[i] > peak) {
LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(LF_Results[i] > peak) {
peakv = adcval;
peak = dest[i];
peak = LF_Results[i];
peakf = i;
//ptr = i;
}
}
LED_A_ON();
for (i=18; i >= 0; i--) LF_Results[i] = 0;
LED_A_ON();
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
@ -244,18 +243,11 @@ void MeasureAntennaTuning(void)
// can measure voltages up to 33000 mV
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
// c.cmd = CMD_MEASURED_ANTENNA_TUNING;
// c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
// c.arg[1] = vHf;
// c.arg[2] = peakf | (peakv << 16);
DbpString("Measuring complete, sending report back to host");
cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
// UsbSendPacket((uint8_t *)&c, sizeof(c));
cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
LED_B_OFF();
return;
LED_A_OFF();
LED_B_OFF();
return;
}
void MeasureAntennaTuningHf(void)

View file

@ -20,18 +20,22 @@
// The large multi-purpose buffer, typically used to hold A/D samples,
// maybe processed in some way.
uint32_t BigBuf[10000];
// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
#define TRACE_OFFSET 0
#define TRACE_SIZE 3000
#define RECV_CMD_OFFSET 3032
#define RECV_CMD_SIZE 64
#define RECV_RES_OFFSET 3096
#define RECV_RES_SIZE 64
#define DMA_BUFFER_OFFSET 3160
#define DMA_BUFFER_SIZE 4096
#define FREE_BUFFER_OFFSET 7256
#define FREE_BUFFER_SIZE 2744
#define BIGBUF_SIZE 40000
uint32_t BigBuf[BIGBUF_SIZE / sizeof(uint32_t)];
#define TRACE_OFFSET 0
#define TRACE_SIZE 3000
#define RECV_CMD_OFFSET (TRACE_OFFSET + TRACE_SIZE)
#define MAX_FRAME_SIZE 256
#define MAX_PARITY_SIZE ((MAX_FRAME_SIZE + 1)/ 8)
#define RECV_CMD_PAR_OFFSET (RECV_CMD_OFFSET + MAX_FRAME_SIZE)
#define RECV_RESP_OFFSET (RECV_CMD_PAR_OFFSET + MAX_PARITY_SIZE)
#define RECV_RESP_PAR_OFFSET (RECV_RESP_OFFSET + MAX_FRAME_SIZE)
#define CARD_MEMORY_OFFSET (RECV_RESP_PAR_OFFSET + MAX_PARITY_SIZE)
#define CARD_MEMORY_SIZE 4096
#define DMA_BUFFER_OFFSET CARD_MEMORY_OFFSET
#define DMA_BUFFER_SIZE CARD_MEMORY_SIZE
#define FREE_BUFFER_OFFSET (CARD_MEMORY_OFFSET + CARD_MEMORY_SIZE)
#define FREE_BUFFER_SIZE (BIGBUF_SIZE - FREE_BUFFER_OFFSET - 1)
extern const uint8_t OddByteParity[256];
extern uint8_t *trace; // = (uint8_t *) BigBuf;
@ -158,8 +162,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param);
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data);
void ReaderIso14443a(UsbCommand * c);
// Also used in iclass.c
bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t iSamples, uint32_t dwParity, bool readerToTag);
uint32_t GetParity(const uint8_t * pbtCmd, int iLen);
bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t len, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag);
void GetParity(const uint8_t *pbtCmd, uint16_t len, uint8_t *parity);
void iso14a_set_trigger(bool enable);
void iso14a_clear_trace();
void iso14a_set_tracing(bool enable);

View file

@ -108,9 +108,9 @@ size_t EPA_Parse_CardAccess(uint8_t *data,
if (data[index] == 0x31 || data[index] == 0x30) {
// enter the set (skip tag + length)
index += 2;
// extended length
// check for extended length
if ((data[index - 1] & 0x80) != 0) {
index += (data[index] & 0x7F);
index += (data[index-1] & 0x7F);
}
}
// OID
@ -434,7 +434,8 @@ int EPA_Setup()
// send the PPS request
ReaderTransmit((uint8_t *)pps, sizeof(pps), NULL);
uint8_t pps_response[3];
return_code = ReaderReceive(pps_response);
uint8_t pps_response_par[1];
return_code = ReaderReceive(pps_response, pps_response_par);
if (return_code != 3 || pps_response[0] != 0xD0) {
return return_code == 0 ? 2 : return_code;
}

View file

@ -71,14 +71,13 @@ static struct {
int nOutOfCnt;
int OutOfCnt;
int syncBit;
int parityBits;
int samples;
int highCnt;
int swapper;
int counter;
int bitBuffer;
int dropPosition;
uint8_t *output;
uint8_t *output;
} Uart;
static RAMFUNC int OutOfNDecoding(int bit)
@ -137,11 +136,8 @@ static RAMFUNC int OutOfNDecoding(int bit)
if(Uart.byteCnt == 0) {
// Its not straightforward to show single EOFs
// So just leave it and do not return TRUE
Uart.output[Uart.byteCnt] = 0xf0;
Uart.output[0] = 0xf0;
Uart.byteCnt++;
// Calculate the parity bit for the client...
Uart.parityBits = 1;
}
else {
return TRUE;
@ -223,11 +219,6 @@ static RAMFUNC int OutOfNDecoding(int bit)
if(Uart.bitCnt == 8) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
// Calculate the parity bit for the client...
Uart.parityBits <<= 1;
Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
Uart.bitCnt = 0;
Uart.shiftReg = 0;
}
@ -246,11 +237,6 @@ static RAMFUNC int OutOfNDecoding(int bit)
Uart.dropPosition--;
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
Uart.byteCnt++;
// Calculate the parity bit for the client...
Uart.parityBits <<= 1;
Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
Uart.bitCnt = 0;
Uart.shiftReg = 0;
Uart.nOutOfCnt = 0;
@ -311,7 +297,6 @@ static RAMFUNC int OutOfNDecoding(int bit)
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.parityBits = 0;
Uart.nOutOfCnt = 0;
Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
Uart.dropPosition = 0;
@ -353,7 +338,6 @@ static struct {
int bitCount;
int posCount;
int syncBit;
int parityBits;
uint16_t shiftReg;
int buffer;
int buffer2;
@ -367,7 +351,7 @@ static struct {
SUB_SECOND_HALF,
SUB_BOTH
} sub;
uint8_t *output;
uint8_t *output;
} Demod;
static RAMFUNC int ManchesterDecoding(int v)
@ -420,7 +404,6 @@ static RAMFUNC int ManchesterDecoding(int v)
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.parityBits = 0;
Demod.samples = 0;
if(Demod.posCount) {
//if(trigger) LED_A_OFF(); // Not useful in this case...
@ -485,8 +468,6 @@ static RAMFUNC int ManchesterDecoding(int v)
if(Demod.state == DEMOD_SOF_COMPLETE) {
Demod.output[Demod.len] = 0x0f;
Demod.len++;
Demod.parityBits <<= 1;
Demod.parityBits ^= OddByteParity[0x0f];
Demod.state = DEMOD_UNSYNCD;
// error = 0x0f;
return TRUE;
@ -567,11 +548,9 @@ static RAMFUNC int ManchesterDecoding(int v)
// Tag response does not need to be a complete byte!
if(Demod.len > 0 || Demod.bitCount > 0) {
if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
Demod.shiftReg >>= (9 - Demod.bitCount);
Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD;
@ -608,11 +587,6 @@ static RAMFUNC int ManchesterDecoding(int v)
Demod.shiftReg >>= 1;
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
Demod.len++;
// FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
Demod.parityBits <<= 1;
Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
@ -669,8 +643,8 @@ void RAMFUNC SnoopIClass(void)
// So 32 should be enough!
uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
// The response (tag -> reader) that we're receiving.
uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// reset traceLen to 0
@ -769,10 +743,10 @@ void RAMFUNC SnoopIClass(void)
//if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
//if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
if(tracing)
{
LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE);
LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE);
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, TRUE);
}
@ -793,10 +767,10 @@ void RAMFUNC SnoopIClass(void)
rsamples = samples - Demod.samples;
LED_B_ON();
if(tracing)
{
LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE);
LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE);
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, FALSE);
}
@ -994,7 +968,7 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
{
uint8_t mac_responses[64] = { 0 };
Dbprintf("Going into attack mode");
Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
@ -1004,7 +978,7 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
memcpy(csn_crc, datain+(i*8), 8);
if(doIClassSimulation(csn_crc,1,mac_responses))
if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
{
return; // Button pressed
}
@ -1079,7 +1053,7 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
// + 1720..
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
int len;
// Prepare card messages
@ -1132,7 +1106,6 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
LED_C_OFF();
if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
buttonPressed = true;
break;
@ -1175,9 +1148,10 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
respsize = 0;
if (breakAfterMacReceived){
// dbprintf:ing ...
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
if (reader_mac_buf != NULL)
@ -1219,14 +1193,13 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
}
if (tracing) {
LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE);
LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE);
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedCmd, len, parity);
LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
if (respdata != NULL) {
LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE);
LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE);
GetParity(respdata, respsize, parity);
LogTrace(respdata, respsize, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
}
if(!tracing) {
DbpString("Trace full");
@ -1234,7 +1207,7 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
}
}
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
}
//Dbprintf("%x", cmdsRecvd);
@ -1391,21 +1364,24 @@ void CodeIClassCommand(const uint8_t * cmd, int len)
void ReaderTransmitIClass(uint8_t* frame, int len)
{
int wait = 0;
int samples = 0;
int par = 0;
int wait = 0;
int samples = 0;
// This is tied to other size changes
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIClassCommand(frame,len);
// This is tied to other size changes
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIClassCommand(frame,len);
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
if(trigger)
LED_A_ON();
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
if(trigger)
LED_A_ON();
// Store reader command in buffer
if (tracing) LogTrace(frame,len,rsamples,par,TRUE);
// Store reader command in buffer
if (tracing) {
uint8_t par[MAX_PARITY_SIZE];
GetParity(frame, len, par);
LogTrace(frame, len, rsamples, rsamples, par, TRUE);
}
}
//-----------------------------------------------------------------------------
@ -1464,7 +1440,11 @@ int ReaderReceiveIClass(uint8_t* receivedAnswer)
int samples = 0;
if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
rsamples += samples;
if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE);
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedAnswer, Demod.len, parity);
LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
}
if(samples == 0) return FALSE;
return Demod.len;
}
@ -1504,8 +1484,8 @@ void ReaderIClass(uint8_t arg0) {
uint8_t card_data[24]={0};
uint8_t last_csn[8]={0};
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
uint8_t *resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
int read_status= 0;
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
@ -1595,8 +1575,8 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
int keyaccess;
} memory;
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
uint8_t* resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
setupIclassReader();
@ -1714,7 +1694,7 @@ void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_
uint16_t crc = 0;
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
// Reset trace buffer
memset(trace, 0x44, RECV_CMD_OFFSET);

File diff suppressed because it is too large Load diff

View file

@ -15,13 +15,6 @@
#include "common.h"
#include "mifaresniff.h"
// mifare reader over DMA buffer (SnoopIso14443a())!!!
#define MIFARE_BUFF_OFFSET 3560 // \/ \/ \/
// card emulator memory
#define EML_RESPONSES 4000
#define CARD_MEMORY 6000
#define CARD_MEMORY_LEN 4096
typedef struct {
enum {
DEMOD_UNSYNCD,
@ -35,12 +28,14 @@ typedef struct {
uint16_t bitCount;
uint16_t collisionPos;
uint16_t syncBit;
uint32_t parityBits;
uint8_t parityBits;
uint8_t parityLen;
uint16_t shiftReg;
uint16_t samples;
uint16_t len;
uint32_t startTime, endTime;
uint8_t *output;
uint8_t *parity;
} tDemod;
typedef enum {
@ -66,32 +61,33 @@ typedef struct {
uint16_t byteCntMax;
uint16_t posCnt;
uint16_t syncBit;
uint32_t parityBits;
uint8_t parityBits;
uint8_t parityLen;
uint16_t highCnt;
uint16_t twoBits;
uint32_t startTime, endTime;
uint8_t *output;
uint8_t *parity;
} tUart;
extern byte_t oddparity (const byte_t bt);
extern uint32_t GetParity(const uint8_t *pbtCmd, int iLen);
extern void GetParity(const uint8_t *pbtCmd, uint16_t len, uint8_t *par);
extern void AppendCrc14443a(uint8_t *data, int len);
extern void ReaderTransmit(uint8_t *frame, int len, uint32_t *timing);
extern void ReaderTransmitBitsPar(uint8_t *frame, int bits, uint32_t par, uint32_t *timing);
extern void ReaderTransmitPar(uint8_t *frame, int len, uint32_t par, uint32_t *timing);
extern int ReaderReceive(uint8_t *receivedAnswer);
extern int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr);
extern void ReaderTransmit(uint8_t *frame, uint16_t len, uint32_t *timing);
extern void ReaderTransmitBitsPar(uint8_t *frame, uint16_t bits, uint8_t *par, uint32_t *timing);
extern void ReaderTransmitPar(uint8_t *frame, uint16_t len, uint8_t *par, uint32_t *timing);
extern int ReaderReceive(uint8_t *receivedAnswer, uint8_t *par);
extern void iso14443a_setup(uint8_t fpga_minor_mode);
extern int iso14_apdu(uint8_t *cmd, size_t cmd_len, void *data);
extern int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data);
extern int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *resp_data, uint32_t *cuid_ptr);
extern void iso14a_set_trigger(bool enable);
extern void iso14a_set_timeout(uint32_t timeout);
extern void iso14a_clear_tracelen();
extern void iso14a_clear_trace();
extern void iso14a_set_tracing(bool enable);
#endif /* __ISO14443A_H */

View file

@ -126,11 +126,8 @@ void MifareUReadBlock(uint8_t arg0,uint8_t *datain)
if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
// add trace trailer
memset(uid, 0x44, 4);
LogTrace(uid, 4, 0, 0, TRUE);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16);
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16);
LED_B_OFF();
@ -459,7 +456,7 @@ void MifareUWriteBlock_Special(uint8_t arg0, uint8_t *datain)
// Return 1 if the nonce is invalid else return 0
int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
return ((oddparity((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
(oddparity((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
(oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
@ -486,7 +483,8 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
uint16_t davg;
static uint16_t dmin, dmax;
uint8_t uid[10];
uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
uint32_t cuid, nt1, nt2, nttmp, nttest, ks1;
uint8_t par[1];
uint32_t target_nt[2], target_ks[2];
uint8_t par_array[4];
@ -494,7 +492,7 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint32_t auth1_time, auth2_time;
static uint16_t delta_time;
@ -610,19 +608,18 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
// nested authentication
auth2_time = auth1_time + delta_time;
len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par, &auth2_time);
len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time);
if (len != 4) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par[0]);
// Parity validity check
for (j = 0; j < 4; j++) {
par_array[j] = (oddparity(receivedAnswer[j]) != ((par & 0x08) >> 3));
par = par << 1;
par_array[j] = (oddparity(receivedAnswer[j]) != ((par[0] >> (7-j)) & 0x01));
}
ncount = 0;
@ -657,10 +654,6 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
// add trace trailer
memset(uid, 0x44, 4);
LogTrace(uid, 4, 0, 0, TRUE);
byte_t buf[4 + 4 * 4];
memcpy(buf, &cuid, 4);
memcpy(buf+4, &target_nt[0], 4);
@ -896,8 +889,9 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
uint32_t cuid;
memset(uid, 0x00, 10);
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
if (workFlags & 0x08) {
// clear trace
iso14a_clear_trace();
@ -931,14 +925,14 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
// reset chip
if (needWipe){
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wipeC error");
break;
};
@ -951,20 +945,20 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
// write block
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send command error");
break;
};
@ -973,7 +967,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
AppendCrc14443a(d_block, 16);
ReaderTransmit(d_block, sizeof(d_block), NULL);
if ((ReaderReceive(receivedAnswer) != 1) || (receivedAnswer[0] != 0x0a)) {
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send data error");
break;
};
@ -1021,7 +1015,8 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
uint32_t cuid = 0;
memset(data, 0x00, 18);
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
if (workFlags & 0x08) {
// clear trace
@ -1043,20 +1038,20 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
while (true) {
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
// read block
if ((mifare_sendcmd_short(NULL, 0, 0x30, blockNo, receivedAnswer, NULL) != 18)) {
if ((mifare_sendcmd_short(NULL, 0, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 18)) {
if (MF_DBGLEVEL >= 1) Dbprintf("read block send command error");
break;
};

View file

@ -11,6 +11,7 @@
#include "mifaresniff.h"
#include "apps.h"
static int sniffState = SNF_INIT;
static uint8_t sniffUIDType;
static uint8_t sniffUID[8];
@ -37,7 +38,7 @@ bool MfSniffEnd(void){
return FALSE;
}
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint32_t parity, uint16_t bitCnt, bool reader) {
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
if (reader && (len == 1) && (bitCnt == 7)) { // reset on 7-Bit commands from reader
sniffState = SNF_INIT;
@ -114,16 +115,16 @@ bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint32_t parity, ui
sniffBuf[11] = sniffSAK;
sniffBuf[12] = 0xFF;
sniffBuf[13] = 0xFF;
LogTrace(sniffBuf, 14, 0, parity, true);
LogTrace(sniffBuf, 14, 0, 0, NULL, TRUE);
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, parity, true);
LogTrace(data, len, 0, 0, NULL, TRUE);
sniffState = SNF_CARD_RESP;
timerData = GetTickCount();
break;
}
case SNF_CARD_RESP:{
LogTrace(data, len, 0, parity, false);
LogTrace(data, len, 0, 0, NULL, FALSE);
sniffState = SNF_CARD_CMD;
timerData = GetTickCount();
break;

View file

@ -39,7 +39,7 @@
#define SNF_UID_7 0
bool MfSniffInit(void);
bool RAMFUNC MfSniffLogic(const uint8_t * data, uint16_t len, uint32_t parity, uint16_t bitCnt, bool reader);
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader);
bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs);
bool intMfSniffSend();
bool MfSniffEnd(void);

View file

@ -22,17 +22,14 @@
int MF_DBGLEVEL = MF_DBG_ALL;
// memory management
uint8_t* mifare_get_bigbufptr(void) {
return (((uint8_t *)BigBuf) + MIFARE_BUFF_OFFSET); // was 3560 - tied to other size changes
uint8_t* get_bigbufptr_recvrespbuf(void) {
return (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
}
uint8_t* eml_get_bigbufptr_sendbuf(void) {
uint8_t* get_bigbufptr_recvcmdbuf(void) {
return (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
}
uint8_t* eml_get_bigbufptr_recbuf(void) {
return (((uint8_t *)BigBuf) + MIFARE_BUFF_OFFSET);
}
uint8_t* eml_get_bigbufptr_cardmem(void) {
return (((uint8_t *)BigBuf) + CARD_MEMORY);
uint8_t* get_bigbufptr_emlcardmem(void) {
return (((uint8_t *)BigBuf) + CARD_MEMORY_OFFSET);
}
// crypto1 helpers
@ -53,15 +50,15 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
return;
}
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, int len, uint32_t *par) {
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {
uint8_t bt = 0;
int i;
uint32_t mltpl = 1 << (len - 1); // for len=18 it=0x20000
*par = 0;
par[0] = 0;
for (i = 0; i < len; i++) {
bt = data[i];
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];
*par = (*par >> 1) | ( ((filter(pcs->odd) ^ oddparity(bt)) & 0x01) * mltpl );
if((i&0x0007) == 0) par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity(bt)) & 0x01)<<(7-(i&0x0007)));
}
return;
}
@ -77,18 +74,18 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
}
// send commands
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t *timing)
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{
return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, NULL, timing);
return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, answer_parity, timing);
}
int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *timing)
int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{
uint8_t dcmd[8];//, ecmd[4];
//uint32_t par=0;
uint8_t dcmd[8];//, ecmd[4];
//uint32_t par=0;
dcmd[0] = cmd;
dcmd[1] = data[0];
dcmd[0] = cmd;
dcmd[1] = data[0];
dcmd[2] = data[1];
dcmd[3] = data[2];
dcmd[4] = data[3];
@ -99,7 +96,7 @@ int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint
//memcpy(ecmd, dcmd, sizeof(dcmd));
ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer);
int len = ReaderReceive(answer, answer_parity);
if(!len)
{
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
@ -108,11 +105,11 @@ int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint
return len;
}
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr, uint32_t *timing)
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing)
{
uint8_t dcmd[4], ecmd[4];
uint32_t pos, par, res;
uint16_t pos, res;
uint8_t par[1]; // 1 Byte parity is enough here
dcmd[0] = cmd;
dcmd[1] = data;
AppendCrc14443a(dcmd, 2);
@ -120,11 +117,11 @@ int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
memcpy(ecmd, dcmd, sizeof(dcmd));
if (crypted) {
par = 0;
par[0] = 0;
for (pos = 0; pos < 4; pos++)
{
ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];
par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(dcmd[pos])) & 0x01) * 0x08 );
par[0] |= (((filter(pcs->odd) ^ oddparity(dcmd[pos])) & 0x01) << (7-pos));
}
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
@ -133,10 +130,10 @@ int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
ReaderTransmit(dcmd, sizeof(dcmd), timing);
}
int len = ReaderReceivePar(answer, &par);
int len = ReaderReceive(answer, par);
if (answer_parity) *answer_parity = par[0];
if (parptr) *parptr = par;
if (crypted == CRYPT_ALL) {
if (len == 1) {
res = 0;
@ -157,33 +154,35 @@ int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
}
// mifare commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested)
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)
{
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
}
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr, uint32_t *timing)
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)
{
// variables
int len;
uint32_t pos;
uint8_t tmp4[4];
byte_t par = 0;
byte_t ar[4];
uint8_t par[1] = {0};
byte_t nr[4];
uint32_t nt, ntpp; // Supplied tag nonce
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand nonce len: %x", len);
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len);
if (len != 4) return 1;
ar[0] = 0x55;
ar[1] = 0x41;
ar[2] = 0x49;
ar[3] = 0x92;
// "random" reader nonce:
nr[0] = 0x55;
nr[1] = 0x41;
nr[2] = 0x49;
nr[3] = 0x92;
// Save the tag nonce (nt)
nt = bytes_to_num(receivedAnswer, 4);
@ -211,12 +210,13 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
if (ntptr)
*ntptr = nt;
par = 0;
// Generate (encrypted) nr+parity by loading it into the cipher (Nr)
par[0] = 0;
for (pos = 0; pos < 4; pos++)
{
mf_nr_ar[pos] = crypto1_byte(pcs, ar[pos], 0) ^ ar[pos];
par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(ar[pos])) & 0x01) * 0x80 );
mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity(nr[pos])) & 0x01) << (7-pos));
}
// Skip 32 bits in pseudo random generator
@ -227,14 +227,14 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
{
nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
par = (par >> 1)| ( ((filter(pcs->odd) ^ oddparity(nt & 0xff)) & 0x01) * 0x80 );
par[0] |= (((filter(pcs->odd) ^ oddparity(nt & 0xff)) & 0x01) << (7-pos));
}
// Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
// Receive 4 bit answer
len = ReaderReceive(receivedAnswer);
// Receive 4 byte tag answer
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if (!len)
{
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
@ -258,10 +258,11 @@ int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blo
int len;
uint8_t bt[2];
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, NULL);
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
@ -285,13 +286,14 @@ int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blo
int mifare_ultra_readblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
int len;
uint16_t len;
uint8_t bt[2];
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer,NULL);
len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
@ -318,14 +320,15 @@ int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t bl
// variables
int len, i;
uint32_t pos;
uint32_t par = 0;
uint8_t par[3] = {0}; // enough for 18 Bytes to send
byte_t res;
uint8_t d_block[18], d_block_enc[18];
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, NULL);
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
@ -336,17 +339,16 @@ int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t bl
AppendCrc14443a(d_block, 16);
// crypto
par = 0;
for (pos = 0; pos < 18; pos++)
{
d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];
par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(d_block[pos])) & 0x01) * 0x20000 );
par[pos>>3] |= (((filter(pcs->odd) ^ oddparity(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));
}
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response
len = ReaderReceive(receivedAnswer);
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
res = 0;
for (i = 0; i < 4; i++)
@ -362,72 +364,74 @@ int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t bl
int mifare_ultra_writeblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
int len;
uint32_t par = 0;
// variables
uint16_t len;
uint8_t par[3] = {0}; // enough for 18 parity bits
uint8_t d_block[18];
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t d_block[18];
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(NULL, 1, 0xA0, blockNo, receivedAnswer,NULL);
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(NULL, true, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Addr Error: %02x", receivedAnswer[0]);
return 1;
}
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Addr Error: %02x", receivedAnswer[0]);
return 1;
}
memset(d_block,'\0',18);
memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16);
AppendCrc14443a(d_block, 16);
ReaderTransmitPar(d_block, sizeof(d_block), par, NULL);
// Receive the response
len = ReaderReceive(receivedAnswer);
// Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Data Error: %02x %d", receivedAnswer[0],len);
return 2;
}
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Data Error: %02x %d", receivedAnswer[0],len);
return 2;
}
return 0;
return 0;
}
int mifare_ultra_special_writeblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
int len;
//uint32_t par = 0;
uint16_t len;
uint8_t d_block[8];
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t d_block[8];
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
// command MIFARE_CLASSIC_WRITEBLOCK
memset(d_block,'\0',8);
d_block[0]= blockNo;
memcpy(d_block+1,blockData,4);
AppendCrc14443a(d_block, 6);
//i know the data send here is correct
len = mifare_sendcmd_short_special(NULL, 1, 0xA2, d_block, receivedAnswer,NULL);
len = mifare_sendcmd_short_special(NULL, 1, 0xA2, d_block, receivedAnswer, receivedAnswerPar, NULL);
if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0],len);
return 1;
}
return 0;
if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0],len);
return 1;
}
return 0;
}
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
{
// variables
int len;
uint16_t len;
// Mifare HALT
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
len = mifare_sendcmd_short(pcs, pcs == NULL ? 0:1, 0x50, 0x00, receivedAnswer, NULL);
len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) {
if (MF_DBGLEVEL >= 1) Dbprintf("halt error. response len: %x", len);
return 1;
@ -438,13 +442,13 @@ int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
int mifare_ultra_halt(uint32_t uid)
{
// variables
int len;
uint16_t len;
// Mifare HALT
uint8_t* receivedAnswer = mifare_get_bigbufptr();
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
len = mifare_sendcmd_short(NULL, 1, 0x50, 0x00, receivedAnswer, NULL);
len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) {
if (MF_DBGLEVEL >= 1) Dbprintf("halt error. response len: %x", len);
return 1;
@ -476,25 +480,25 @@ uint8_t FirstBlockOfSector(uint8_t sectorNo)
// work with emulator memory
void emlSetMem(uint8_t *data, int blockNum, int blocksCount) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(emCARD + blockNum * 16, data, blocksCount * 16);
}
void emlGetMem(uint8_t *data, int blockNum, int blocksCount) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(data, emCARD + blockNum * 16, blocksCount * 16);
}
void emlGetMemBt(uint8_t *data, int bytePtr, int byteCount) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(data, emCARD + bytePtr, byteCount);
}
int emlCheckValBl(int blockNum) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
if ((data[0] != (data[4] ^ 0xff)) || (data[0] != data[8]) ||
@ -509,7 +513,7 @@ int emlCheckValBl(int blockNum) {
}
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
if (emlCheckValBl(blockNum)) {
@ -523,7 +527,7 @@ int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
}
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
memcpy(data + 0, &blReg, 4);
@ -541,7 +545,7 @@ int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint64_t emlGetKey(int sectorNum, int keyType) {
uint8_t key[6];
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);
return bytes_to_num(key, 6);
@ -552,9 +556,9 @@ void emlClearMem(void) {
const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};
uint8_t* emCARD = eml_get_bigbufptr_cardmem();
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memset(emCARD, 0, CARD_MEMORY_LEN);
memset(emCARD, 0, CARD_MEMORY_SIZE);
// fill sectors trailer data
for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {

View file

@ -16,7 +16,7 @@
#define CRYPT_NONE 0
#define CRYPT_ALL 1
#define CRYPT_REQUEST 2
#define AUTH_FIRST 0
#define AUTH_FIRST 0
#define AUTH_NESTED 2
// mifare 4bit card answers
@ -54,14 +54,12 @@ extern int MF_DBGLEVEL;
//functions
uint8_t* mifare_get_bigbufptr(void);
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t *timing);
int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t *data, uint8_t* amswer, uint8_t *timing);
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr, uint32_t *timing);
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t *data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing);
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, \
uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested);
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, \
uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr, uint32_t *timing);
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested);
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t * ntptr, uint32_t *timing);
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_ultra_readblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
@ -72,13 +70,13 @@ int mifare_ultra_halt(uint32_t uid);
// crypto functions
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, int len, uint32_t *par);
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);
// memory management
uint8_t* mifare_get_bigbufptr(void);
uint8_t* eml_get_bigbufptr_sendbuf(void);
uint8_t* eml_get_bigbufptr_recbuf(void);
uint8_t* get_bigbufptr_recvrespbuf(void);
uint8_t* get_bigbufptr_recvcmdbuf(void);
uint8_t* get_bigbufptr_emlcardmem(void);
// Mifare memory structure
uint8_t NumBlocksPerSector(uint8_t sectorNo);

View file

@ -860,24 +860,56 @@ int CmdSamples(const char *Cmd)
int CmdTuneSamples(const char *Cmd)
{
int cnt = 0;
int n = 255;
uint8_t got[255];
int timeout = 0;
printf("\nMeasuring antenna characteristics, please wait...");
PrintAndLog("Reading %d samples\n", n);
GetFromBigBuf(got,n,7256); // armsrc/apps.h: #define FREE_BUFFER_OFFSET 7256
WaitForResponse(CMD_ACK,NULL);
for (int j = 0; j < n; j++) {
GraphBuffer[cnt++] = ((int)got[j]) - 128;
}
UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING};
SendCommand(&c);
UsbCommand resp;
while(!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING,&resp,1000)) {
timeout++;
printf(".");
if (timeout > 7) {
PrintAndLog("\nNo response from Proxmark. Aborting...");
return 1;
}
}
int peakv, peakf;
int vLf125, vLf134, vHf;
vLf125 = resp.arg[0] & 0xffff;
vLf134 = resp.arg[0] >> 16;
vHf = resp.arg[1] & 0xffff;;
peakf = resp.arg[2] & 0xffff;
peakv = resp.arg[2] >> 16;
PrintAndLog("");
PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
if (peakv<2000)
PrintAndLog("# Your LF antenna is unusable.");
else if (peakv<10000)
PrintAndLog("# Your LF antenna is marginal.");
if (vHf<2000)
PrintAndLog("# Your HF antenna is unusable.");
else if (vHf<5000)
PrintAndLog("# Your HF antenna is marginal.");
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = resp.d.asBytes[i] - 128;
}
PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n");
PrintAndLog("\n");
GraphTraceLen = n;
RepaintGraphWindow();
return 0;
PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n");
PrintAndLog("\n");
GraphTraceLen = 256;
ShowGraphWindow();
return 0;
}
int CmdLoad(const char *Cmd)
{
FILE *f = fopen(Cmd, "r");

View file

@ -43,136 +43,131 @@ int CmdHF14AList(const char *Cmd)
if (param == 'f') {
ShowWaitCycles = true;
}
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
// for the time being. Need better Bigbuf handling.
#define TRACE_SIZE 3000
uint8_t trace[TRACE_SIZE];
GetFromBigBuf(trace, TRACE_SIZE, 0);
WaitForResponse(CMD_ACK, NULL);
PrintAndLog("Recorded Activity");
PrintAndLog("");
PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("");
PrintAndLog(" Start | End | Src | Data");
PrintAndLog("-----------|-----------|-----|--------");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC ");
PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------------");
int i = 0;
uint32_t first_timestamp = 0;
uint16_t tracepos = 0;
uint16_t duration;
uint16_t data_len;
uint16_t parity_len;
bool isResponse;
uint32_t timestamp;
uint32_t EndOfTransmissionTimestamp = 0;
uint32_t first_timestamp;
uint32_t EndOfTransmissionTimestamp;
for (;;) {
if(i >= 1900) {
if(tracepos >= TRACE_SIZE) {
break;
}
bool isResponse;
timestamp = *((uint32_t *)(got+i));
if (timestamp & 0x80000000) {
timestamp &= 0x7fffffff;
timestamp = *((uint32_t *)(trace + tracepos));
if(tracepos == 0) {
first_timestamp = timestamp;
}
// Break and stick with current result if buffer was not completely full
if (timestamp == 0x44444444) break;
tracepos += 4;
duration = *((uint16_t *)(trace + tracepos));
tracepos += 2;
data_len = *((uint16_t *)(trace + tracepos));
tracepos += 2;
if (data_len & 0x8000) {
data_len &= 0x7fff;
isResponse = true;
} else {
isResponse = false;
}
if(i==0) {
first_timestamp = timestamp;
}
int parityBits = *((uint32_t *)(got+i+4));
parity_len = (data_len-1)/8 + 1;
int len = got[i+8];
if (len > 100) {
if (tracepos + data_len + parity_len >= TRACE_SIZE) {
break;
}
if (i + len >= 1900) {
break;
}
uint8_t *frame = (got+i+9);
// Break and stick with current result if buffer was not completely full
if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break;
char line[1000] = "";
int j;
if (len) {
for (j = 0; j < len; j++) {
int oddparity = 0x01;
int k;
for (k=0;k<8;k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
//if((parityBits >> (len - j - 1)) & 0x01) {
if (isResponse && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
sprintf(line+(j*4), "%02x! ", frame[j]);
} else {
sprintf(line+(j*4), "%02x ", frame[j]);
}
}
} else {
if (ShowWaitCycles) {
uint32_t next_timestamp = (*((uint32_t *)(got+i+9))) & 0x7fffffff;
sprintf(line, "fdt (Frame Delay Time): %d", (next_timestamp - timestamp));
}
}
char *crc;
crc = "";
if (len > 2) {
uint8_t b1, b2;
for (j = 0; j < (len - 1); j++) {
// gives problems... search for the reason..
/*if(frame[j] == 0xAA) {
switch(frame[j+1]) {
case 0x01:
crc = "[1] Two drops close after each other";
break;
case 0x02:
crc = "[2] Potential SOC with a drop in second half of bitperiod";
break;
case 0x03:
crc = "[3] Segment Z after segment X is not possible";
break;
case 0x04:
crc = "[4] Parity bit of a fully received byte was wrong";
break;
default:
crc = "[?] Unknown error";
break;
}
break;
}*/
}
if (strlen(crc)==0) {
ComputeCrc14443(CRC_14443_A, frame, len-2, &b1, &b2);
if (b1 != frame[len-2] || b2 != frame[len-1]) {
crc = (isResponse & (len < 6)) ? "" : " !crc";
} else {
crc = "";
}
}
} else {
crc = ""; // SHORT
}
i += (len + 9);
EndOfTransmissionTimestamp = (*((uint32_t *)(got+i))) & 0x7fffffff;
if (!ShowWaitCycles) i += 9;
PrintAndLog(" %9d | %9d | %s | %s %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(len?(isResponse ? "Tag" : "Rdr"):" "),
line, crc);
uint8_t *frame = trace + tracepos;
tracepos += data_len;
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
char line[16][110];
for (int j = 0; j < data_len; j++) {
int oddparity = 0x01;
int k;
for (k=0;k<8;k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]);
} else {
sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]);
}
}
char crc[5] = "";
if (data_len > 2) {
uint8_t b1, b2;
ComputeCrc14443(CRC_14443_A, frame, data_len-2, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
sprintf(crc, (isResponse & (data_len < 6)) ? "" : "!crc");
} else {
sprintf(crc, "");
}
}
EndOfTransmissionTimestamp = timestamp + duration;
int num_lines = (data_len - 1)/16 + 1;
for (int j = 0; j < num_lines; j++) {
if (j == 0) {
PrintAndLog(" %9d | %9d | %s | %-64s| %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"),
line[j],
(j == num_lines-1)?crc:"");
} else {
PrintAndLog(" | | | %-64s| %s",
line[j],
(j == num_lines-1)?crc:"");
}
}
bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000;
if (ShowWaitCycles && !isResponse && next_isResponse) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
if (next_timestamp != 0x44444444) {
PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
(next_timestamp - first_timestamp),
" ",
(next_timestamp - EndOfTransmissionTimestamp));
}
}
}
return 0;
}
@ -196,6 +191,11 @@ int CmdHF14AReader(const char *Cmd)
if(select_status == 0) {
PrintAndLog("iso14443a card select failed");
// disconnect
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
return 0;
}

View file

@ -54,10 +54,10 @@ int CmdHFEPACollectPACENonces(const char *Cmd)
size_t nonce_length = resp.arg[1];
char *nonce = (char *) malloc(2 * nonce_length + 1);
for(int j = 0; j < nonce_length; j++) {
snprintf(nonce + (2 * j), 3, "%02X", resp.d.asBytes[j]);
sprintf(nonce + (2 * j), "%02X", resp.d.asBytes[j]);
}
// print nonce
PrintAndLog("Length: %d, Nonce: %s",resp.arg[1], nonce);
PrintAndLog("Length: %d, Nonce: %s", nonce_length, nonce);
}
if (i < n - 1) {
sleep(d);

View file

@ -44,10 +44,9 @@ int xorbits_8(uint8_t val)
int CmdHFiClassList(const char *Cmd)
{
bool ShowWaitCycles = false;
char param = param_getchar(Cmd, 0);
if (param != 0) {
PrintAndLog("List data in trace buffer.");
PrintAndLog("Usage: hf iclass list");
@ -56,254 +55,149 @@ int CmdHFiClassList(const char *Cmd)
return 0;
}
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
// for the time being. Need better Bigbuf handling.
#define TRACE_SIZE 3000
uint8_t trace[TRACE_SIZE];
GetFromBigBuf(trace, TRACE_SIZE, 0);
WaitForResponse(CMD_ACK, NULL);
PrintAndLog("Recorded Activity");
PrintAndLog("");
PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("");
PrintAndLog(" Start | End | Src | Data");
PrintAndLog("-----------|-----------|-----|--------");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC ");
PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------------");
int i;
uint32_t first_timestamp = 0;
uint16_t tracepos = 0;
uint16_t duration;
uint16_t data_len;
uint16_t parity_len;
bool isResponse;
uint32_t timestamp;
bool tagToReader;
uint32_t parityBits;
uint8_t len;
uint8_t *frame;
uint32_t EndOfTransmissionTimestamp = 0;
uint32_t first_timestamp;
uint32_t EndOfTransmissionTimestamp;
for (;;) {
if(tracepos >= TRACE_SIZE) {
break;
}
for( i=0; i < 1900;)
{
//First 32 bits contain
// isResponse (1 bit)
// timestamp (remaining)
//Then paritybits
//Then length
timestamp = *((uint32_t *)(got+i));
parityBits = *((uint32_t *)(got+i+4));
len = got[i+8];
frame = (got+i+9);
uint32_t next_timestamp = (*((uint32_t *)(got+i+9))) & 0x7fffffff;
tagToReader = timestamp & 0x80000000;
timestamp &= 0x7fffffff;
if(i==0) {
timestamp = *((uint32_t *)(trace + tracepos));
if(tracepos == 0) {
first_timestamp = timestamp;
}
// Break and stick with current result idf buffer was not completely full
if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break;
// Break and stick with current result if buffer was not completely full
if (timestamp == 0x44444444) break;
char line[1000] = "";
if(len)//We have some data to display
{
int j,oddparity;
for(j = 0; j < len ; j++)
{
oddparity = 0x01 ^ xorbits_8(frame[j] & 0xFF);
if (tagToReader && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
sprintf(line+(j*4), "%02x! ", frame[j]);
} else {
sprintf(line+(j*4), "%02x ", frame[j]);
}
}
}else
{
if (ShowWaitCycles) {
sprintf(line, "fdt (Frame Delay Time): %d", (next_timestamp - timestamp));
}
tracepos += 4;
duration = *((uint16_t *)(trace + tracepos));
tracepos += 2;
data_len = *((uint16_t *)(trace + tracepos));
tracepos += 2;
if (data_len & 0x8000) {
data_len &= 0x7fff;
isResponse = true;
} else {
isResponse = false;
}
char *crc = "";
parity_len = (data_len-1)/8 + 1;
if(len > 2)
{
if (tracepos + data_len + parity_len >= TRACE_SIZE) {
break;
}
uint8_t *frame = trace + tracepos;
tracepos += data_len;
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
char line[16][110];
for (int j = 0; j < data_len; j++) {
int oddparity = 0x01;
int k;
for (k=0;k<8;k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]);
} else {
sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]);
}
}
char *crc = "";
if (data_len > 2) {
uint8_t b1, b2;
if(!tagToReader && len == 4) {
if(!isResponse && data_len == 4 ) {
// Rough guess that this is a command from the reader
// For iClass the command byte is not part of the CRC
ComputeCrc14443(CRC_ICLASS, &frame[1], len-3, &b1, &b2);
ComputeCrc14443(CRC_ICLASS, &frame[1], data_len-3, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
crc = "!crc";
}
}
else {
// For other data.. CRC might not be applicable (UPDATE commands etc.)
ComputeCrc14443(CRC_ICLASS, frame, len-2, &b1, &b2);
}
if (b1 != frame[len-2] || b2 != frame[len-1]) {
crc = (tagToReader & (len < 8)) ? "" : " !crc";
// For other data.. CRC might not be applicable (UPDATE commands etc.)
ComputeCrc14443(CRC_ICLASS, frame, data_len-2, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
crc = "!crc";
}
}
}
i += (len + 9);
EndOfTransmissionTimestamp = (*((uint32_t *)(got+i))) & 0x7fffffff;
EndOfTransmissionTimestamp = timestamp + duration;
int num_lines = (data_len - 1)/16 + 1;
for (int j = 0; j < num_lines; j++) {
if (j == 0) {
PrintAndLog(" %9d | %9d | %s | %-64s| %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"),
line[j],
(j == num_lines-1)?crc:"");
} else {
PrintAndLog(" | | | %-64s| %s",
line[j],
(j == num_lines-1)?crc:"");
}
}
// Not implemented for iclass on the ARM-side
//if (!ShowWaitCycles) i += 9;
PrintAndLog(" %9d | %9d | %s | %s %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(len?(tagToReader ? "Tag" : "Rdr"):" "),
line, crc);
bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000;
if (ShowWaitCycles && !isResponse && next_isResponse) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
if (next_timestamp != 0x44444444) {
PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
(next_timestamp - first_timestamp),
" ",
(next_timestamp - EndOfTransmissionTimestamp));
}
}
}
return 0;
}
int CmdHFiClassListOld(const char *Cmd)
{
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
PrintAndLog("recorded activity:");
PrintAndLog(" ETU :rssi: who bytes");
PrintAndLog("---------+----+----+-----------");
int i = 0;
int prev = -1;
for (;;) {
if(i >= 1900) {
break;
}
bool isResponse;
int timestamp = *((uint32_t *)(got+i));
if (timestamp & 0x80000000) {
timestamp &= 0x7fffffff;
isResponse = 1;
} else {
isResponse = 0;
}
int metric = 0;
int parityBits = *((uint32_t *)(got+i+4));
// 4 bytes of additional information...
// maximum of 32 additional parity bit information
//
// TODO:
// at each quarter bit period we can send power level (16 levels)
// or each half bit period in 256 levels.
int len = got[i+8];
if (len > 100) {
break;
}
if (i + len >= 1900) {
break;
}
uint8_t *frame = (got+i+9);
// Break and stick with current result if buffer was not completely full
if (frame[0] == 0x44 && frame[1] == 0x44 && frame[3] == 0x44) { break; }
char line[1000] = "";
int j;
for (j = 0; j < len; j++) {
int oddparity = 0x01;
int k;
for (k=0;k<8;k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
//if((parityBits >> (len - j - 1)) & 0x01) {
if (isResponse && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
sprintf(line+(j*4), "%02x! ", frame[j]);
}
else {
sprintf(line+(j*4), "%02x ", frame[j]);
}
}
char *crc;
crc = "";
if (len > 2) {
uint8_t b1, b2;
for (j = 0; j < (len - 1); j++) {
// gives problems... search for the reason..
/*if(frame[j] == 0xAA) {
switch(frame[j+1]) {
case 0x01:
crc = "[1] Two drops close after each other";
break;
case 0x02:
crc = "[2] Potential SOC with a drop in second half of bitperiod";
break;
case 0x03:
crc = "[3] Segment Z after segment X is not possible";
break;
case 0x04:
crc = "[4] Parity bit of a fully received byte was wrong";
break;
default:
crc = "[?] Unknown error";
break;
}
break;
}*/
}
if (strlen(crc)==0) {
if(!isResponse && len == 4) {
// Rough guess that this is a command from the reader
// For iClass the command byte is not part of the CRC
ComputeCrc14443(CRC_ICLASS, &frame[1], len-3, &b1, &b2);
}
else {
// For other data.. CRC might not be applicable (UPDATE commands etc.)
ComputeCrc14443(CRC_ICLASS, frame, len-2, &b1, &b2);
}
//printf("%1x %1x",(unsigned)b1,(unsigned)b2);
if (b1 != frame[len-2] || b2 != frame[len-1]) {
crc = (isResponse & (len < 8)) ? "" : " !crc";
} else {
crc = "";
}
}
} else {
crc = ""; // SHORT
}
char metricString[100];
if (isResponse) {
sprintf(metricString, "%3d", metric);
} else {
strcpy(metricString, " ");
}
PrintAndLog(" +%7d: %s: %s %s %s",
(prev < 0 ? 0 : (timestamp - prev)),
metricString,
(isResponse ? "TAG" : " "), line, crc);
prev = timestamp;
i += (len + 9);
}
return 0;
}
int CmdHFiClassSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ICLASS};
SendCommand(&c);
return 0;
}
#define NUM_CSNS 15
int CmdHFiClassSim(const char *Cmd)
{
uint8_t simType = 0;
@ -340,10 +234,10 @@ int CmdHFiClassSim(const char *Cmd)
if(simType == 2)
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,63}};
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,NUM_CSNS}};
UsbCommand resp = {0};
uint8_t csns[64] = {
/*uint8_t csns[8 * NUM_CSNS] = {
0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 ,
0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 ,
0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 ,
@ -352,8 +246,26 @@ int CmdHFiClassSim(const char *Cmd)
0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 ,
0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 ,
0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 };
*/
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
memcpy(c.d.asBytes, csns, 64);
memcpy(c.d.asBytes, csns, 8*NUM_CSNS);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
@ -362,9 +274,9 @@ int CmdHFiClassSim(const char *Cmd)
}
uint8_t num_mac_responses = resp.arg[1];
PrintAndLog("Mac responses: %d MACs obtained (should be 8)", num_mac_responses);
PrintAndLog("Mac responses: %d MACs obtained (should be %d)", num_mac_responses,NUM_CSNS);
size_t datalen = 8*24;
size_t datalen = NUM_CSNS*24;
/*
* Now, time to dump to file. We'll use this format:
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
@ -378,7 +290,7 @@ int CmdHFiClassSim(const char *Cmd)
void* dump = malloc(datalen);
memset(dump,0,datalen);//<-- Need zeroes for the CC-field
uint8_t i = 0;
for(i = 0 ; i < 8 ; i++)
for(i = 0 ; i < NUM_CSNS ; i++)
{
memcpy(dump+i*24, csns+i*8,8); //CSN
//8 zero bytes here...
@ -495,17 +407,31 @@ int CmdHFiClassReader_Dump(const char *Cmd)
}
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE;
SendCommand(&c);
UsbCommand resp;
uint8_t key_sel[8] = {0};
uint8_t key_sel_p[8] = { 0 };
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
//HACK -- Below is for testing without access to a tag
uint8_t fake_dummy_test = false;
if(fake_dummy_test)
{
uint8_t xdata[16] = {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0, //CSN from http://www.proxmark.org/forum/viewtopic.php?pid=11230#p11230
0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; // Just a random CC. Would be good to add a real testcase here
memcpy(resp.d.asBytes,xdata, 16);
resp.arg[0] = 2;
}
//End hack
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE;
if(!fake_dummy_test)
SendCommand(&c);
if (fake_dummy_test || WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
@ -529,6 +455,7 @@ int CmdHFiClassReader_Dump(const char *Cmd)
printvar("hash1", key_index,8);
for(i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
PrintAndLog("Pre-fortified 'permuted' HS key that would be needed by an iclass reader to talk to above CSN:");
printvar("k_sel", key_sel,8);
//Permute from iclass format to standard format
permutekey_rev(key_sel,key_sel_p);
@ -545,8 +472,11 @@ int CmdHFiClassReader_Dump(const char *Cmd)
used_key = KEY;
}
PrintAndLog("Pre-fortified key that would be needed by the OmniKey reader to talk to above CSN:");
printvar("Used key",used_key,8);
diversifyKey(CSN,used_key, div_key);
PrintAndLog("Hash0, a.k.a diversified key, that is computed using Ksel and stored in the card (Block 3):");
printvar("Div key", div_key, 8);
printvar("CC_NR:",CCNR,12);
doMAC(CCNR,12,div_key, MAC);
@ -554,7 +484,7 @@ int CmdHFiClassReader_Dump(const char *Cmd)
UsbCommand d = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(d.d.asBytes, MAC, 4);
SendCommand(&d);
if(!fake_dummy_test) SendCommand(&d);
}else{
PrintAndLog("Failed to obtain CC! Aborting");

View file

@ -1894,7 +1894,6 @@ int CmdHF14AMfSniff(const char *Cmd){
uint8_t atqa[2];
uint8_t sak;
bool isTag;
uint32_t parity;
uint8_t buf[3000];
uint8_t * bufPtr = buf;
memset(buf, 0x00, 3000);
@ -1961,14 +1960,17 @@ int CmdHF14AMfSniff(const char *Cmd){
printf(">\n");
PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum);
num = 0;
while (bufPtr - buf + 9 < blockLen) {
isTag = bufPtr[3] & 0x80 ? true:false;
bufPtr += 4;
parity = *((uint32_t *)(bufPtr));
bufPtr += 4;
len = bufPtr[0];
bufPtr++;
if ((len == 14) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff)) {
while (bufPtr - buf < blockLen) {
bufPtr += 6; // ignore void timing information
len = *((uint16_t *)bufPtr);
if(len & 0x8000) {
isTag = true;
len &= 0x7fff;
} else {
isTag = false;
}
bufPtr += 2;
if ((len == 14) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[12] == 0xff) && (bufPtr[13] == 0xff)) {
memcpy(uid, bufPtr + 2, 7);
memcpy(atqa, bufPtr + 2 + 7, 2);
uid_len = (atqa[0] & 0xC0) == 0x40 ? 7 : 4;
@ -1987,9 +1989,10 @@ int CmdHF14AMfSniff(const char *Cmd){
} else {
PrintAndLog("%s(%d):%s", isTag ? "TAG":"RDR", num, sprint_hex(bufPtr, len));
if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG: ":"RDR: ", bufPtr, len);
if (wantDecrypt) mfTraceDecode(bufPtr, len, parity, wantSaveToEmlFile);
if (wantDecrypt) mfTraceDecode(bufPtr, len, wantSaveToEmlFile);
}
bufPtr += len;
bufPtr += ((len-1)/8+1); // ignore parity
num++;
}
}

View file

@ -18,6 +18,7 @@
#include "cmdparser.h"
#include "cmdhw.h"
#include "cmdmain.h"
#include "cmddata.h"
/* low-level hardware control */
@ -391,9 +392,7 @@ int CmdSetMux(const char *Cmd)
int CmdTune(const char *Cmd)
{
UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING};
SendCommand(&c);
return 0;
return CmdTuneSamples(Cmd);
}
int CmdVersion(const char *Cmd)

View file

@ -206,28 +206,28 @@ void UsbCommandReceived(UsbCommand *UC)
return;
} break;
case CMD_MEASURED_ANTENNA_TUNING: {
int peakv, peakf;
int vLf125, vLf134, vHf;
vLf125 = UC->arg[0] & 0xffff;
vLf134 = UC->arg[0] >> 16;
vHf = UC->arg[1] & 0xffff;;
peakf = UC->arg[2] & 0xffff;
peakv = UC->arg[2] >> 16;
PrintAndLog("");
PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
if (peakv<2000)
PrintAndLog("# Your LF antenna is unusable.");
else if (peakv<10000)
PrintAndLog("# Your LF antenna is marginal.");
if (vHf<2000)
PrintAndLog("# Your HF antenna is unusable.");
else if (vHf<5000)
PrintAndLog("# Your HF antenna is marginal.");
} break;
// case CMD_MEASURED_ANTENNA_TUNING: {
// int peakv, peakf;
// int vLf125, vLf134, vHf;
// vLf125 = UC->arg[0] & 0xffff;
// vLf134 = UC->arg[0] >> 16;
// vHf = UC->arg[1] & 0xffff;;
// peakf = UC->arg[2] & 0xffff;
// peakv = UC->arg[2] >> 16;
// PrintAndLog("");
// PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
// PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
// PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
// PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
// if (peakv<2000)
// PrintAndLog("# Your LF antenna is unusable.");
// else if (peakv<10000)
// PrintAndLog("# Your LF antenna is marginal.");
// if (vHf<2000)
// PrintAndLog("# Your HF antenna is unusable.");
// else if (vHf<5000)
// PrintAndLog("# Your HF antenna is marginal.");
// } break;
case CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K: {
// printf("received samples: ");

View file

@ -113,9 +113,9 @@ void hash1(uint8_t csn[] , uint8_t k[])
k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7];
k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7];
k[2] = rr(swap( csn[2]+k[1] ));
k[3] = rr(swap( csn[3]+k[0] ));
k[4] = ~rr(swap( csn[4]+k[2] ))+1;
k[5] = ~rr(swap( csn[5]+k[3] ))+1;
k[3] = rl(swap( csn[3]+k[0] ));
k[4] = ~rr( csn[4]+k[2] )+1;
k[5] = ~rl( csn[5]+k[3] )+1;
k[6] = rr( csn[6]+(k[4]^0x3c) );
k[7] = rl( csn[7]+(k[5]^0xc3) );
int i;

View file

@ -18,7 +18,7 @@ int fileExists(const char *filename) {
int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen)
{
int size = sizeof(char) * (strlen(preferredName)+strlen(suffix)+5);
int size = sizeof(char) * (strlen(preferredName)+strlen(suffix)+10);
char * fileName = malloc(size);
memset(fileName,0,size);
@ -34,13 +34,14 @@ int saveFile(const char *preferredName, const char *suffix, const void* data, si
/*Opening file for writing in binary mode*/
FILE *fileHandle=fopen(fileName,"wb");
if(!fileHandle) {
prnlog("Failed to write to file '%s'", fileName);
PrintAndLog("Failed to write to file '%s'", fileName);
free(fileName);
return 1;
}
fwrite(data, 1, datalen, fileHandle);
fclose(fileHandle);
prnlog("Saved data to '%s'", fileName);
PrintAndLog(">Saved data to '%s'", fileName);
free(fileName);
return 0;

View file

@ -238,7 +238,7 @@ int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
// "MAGIC" CARD
int mfCSetUID(uint8_t *uid, uint8_t *oldUID, int wantWipe) {
int mfCSetUID(uint8_t *uid, uint8_t *oldUID, bool wantWipe) {
uint8_t block0[16];
memset(block0, 0, 16);
memcpy(block0, uid, 4);
@ -251,7 +251,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *oldUID, int wantWipe) {
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, int wantWipe, uint8_t params) {
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_EML_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
@ -310,12 +310,9 @@ uint32_t ks3;
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nt_par;
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t nr_ar_par;
uint32_t at_enc; // encrypted tag response
uint32_t at_par;
int isTraceCardEmpty(void) {
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
@ -424,7 +421,7 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool i
}
int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEmlFile) {
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
uint8_t data[64];
if (traceState == TRACE_ERROR) return 1;
@ -527,7 +524,6 @@ int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEm
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
nt_par = parity;
return 0;
} else {
traceState = TRACE_ERROR;
@ -541,7 +537,6 @@ int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEm
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
nr_ar_par = parity;
return 0;
} else {
traceState = TRACE_ERROR;
@ -554,7 +549,6 @@ int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEm
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
at_par = parity;
// decode key here)
ks2 = ar_enc ^ prng_successor(nt, 64);

View file

@ -56,12 +56,12 @@ int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * key
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount);
int mfCSetUID(uint8_t *uid, uint8_t *oldUID, int wantWipe);
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, int wantWipe, uint8_t params);
int mfCSetUID(uint8_t *uid, uint8_t *oldUID, bool wantWipe);
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params);
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params);
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile);
int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEmlFile);
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile);
int isTraceCardEmpty(void);
int isBlockEmpty(int blockN);