mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-02-27 09:37:15 +08:00
added tiwrite command, split LF code from appmain into lfops.c
This commit is contained in:
parent
431ae7e0eb
commit
9bea179a71
8 changed files with 1136 additions and 961 deletions
|
@ -21,6 +21,7 @@ OBJLCD = $(OBJDIR)/fonts.o \
|
|||
OBJ = $(OBJDIR)/start.o \
|
||||
$(OBJDIR)/appmain.o \
|
||||
$(OBJDIR)/fpga.o \
|
||||
$(OBJDIR)/lfops.o \
|
||||
$(OBJDIR)/iso14443.o \
|
||||
$(OBJDIR)/iso14443a.o \
|
||||
$(OBJDIR)/iso15693.o \
|
||||
|
|
|
@ -32,6 +32,7 @@ OBJLCD = $(OBJDIR)/LCD.o\
|
|||
OBJ = $(OBJDIR)/start.o \
|
||||
$(OBJDIR)/appmain.o \
|
||||
$(OBJDIR)/fpga.o \
|
||||
$(OBJDIR)/lfops.o \
|
||||
$(OBJDIR)/iso15693.o \
|
||||
$(OBJDIR)/util.o
|
||||
|
||||
|
|
1285
armsrc/appmain.c
1285
armsrc/appmain.c
File diff suppressed because it is too large
Load diff
|
@ -7,7 +7,11 @@
|
|||
#ifndef __APPS_H
|
||||
#define __APPS_H
|
||||
|
||||
/// appmain.c
|
||||
// The large multi-purpose buffer, typically used to hold A/D samples,
|
||||
// maybe processed in some way.
|
||||
DWORD BigBuf[16000];
|
||||
|
||||
/// appmain.h
|
||||
void ReadMem(int addr);
|
||||
void AppMain(void);
|
||||
void SamyRun(void);
|
||||
|
@ -22,7 +26,7 @@ extern int ToSendMax;
|
|||
extern BYTE ToSend[];
|
||||
extern DWORD BigBuf[];
|
||||
|
||||
/// fpga.c
|
||||
/// fpga.h
|
||||
void FpgaSendCommand(WORD cmd, WORD v);
|
||||
void FpgaWriteConfWord(BYTE v);
|
||||
void FpgaDownloadAndGo(void);
|
||||
|
@ -58,6 +62,18 @@ void SetAdcMuxFor(int whichGpio);
|
|||
#define FPGA_HF_ISO14443A_READER_LISTEN (3<<0)
|
||||
#define FPGA_HF_ISO14443A_READER_MOD (4<<0)
|
||||
|
||||
/// lfops.h
|
||||
void AcquireRawAdcSamples125k(BOOL at134khz);
|
||||
void DoAcquisition125k(BOOL at134khz);
|
||||
void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command);
|
||||
void ReadTItag();
|
||||
void WriteTItag(DWORD idhi, DWORD idlo, WORD crc);
|
||||
void AcquireTiType(void);
|
||||
void AcquireRawBitsTI(void);
|
||||
void SimulateTagLowFrequency(int period, int ledcontrol);
|
||||
void CmdHIDsimTAG(int hi, int lo, int ledcontrol);
|
||||
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol);
|
||||
|
||||
/// iso14443.h
|
||||
void SimulateIso14443Tag(void);
|
||||
void AcquireRawAdcSamplesIso14443(DWORD parameter);
|
||||
|
|
654
armsrc/lfops.c
Normal file
654
armsrc/lfops.c
Normal file
|
@ -0,0 +1,654 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// Miscellaneous routines for low frequency tag operations.
|
||||
// Tags supported here so far are Texas Instruments (TI), HID
|
||||
// Also routines for raw mode reading/simulating of LF waveform
|
||||
//
|
||||
//-----------------------------------------------------------------------------
|
||||
#include <proxmark3.h>
|
||||
#include "apps.h"
|
||||
#include "../common/crc16.c"
|
||||
|
||||
void AcquireRawAdcSamples125k(BOOL at134khz)
|
||||
{
|
||||
if(at134khz) {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
} else {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
}
|
||||
|
||||
// Connect the A/D to the peak-detected low-frequency path.
|
||||
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
||||
|
||||
// Give it a bit of time for the resonant antenna to settle.
|
||||
SpinDelay(50);
|
||||
|
||||
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
||||
FpgaSetupSsc();
|
||||
|
||||
// Now call the acquisition routine
|
||||
DoAcquisition125k(at134khz);
|
||||
}
|
||||
|
||||
// split into two routines so we can avoid timing issues after sending commands //
|
||||
void DoAcquisition125k(BOOL at134khz)
|
||||
{
|
||||
BYTE *dest = (BYTE *)BigBuf;
|
||||
int n = sizeof(BigBuf);
|
||||
int i;
|
||||
|
||||
memset(dest,0,n);
|
||||
i = 0;
|
||||
for(;;) {
|
||||
if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
|
||||
SSC_TRANSMIT_HOLDING = 0x43;
|
||||
LED_D_ON();
|
||||
}
|
||||
if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
|
||||
dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
|
||||
i++;
|
||||
LED_D_OFF();
|
||||
if(i >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
DbpIntegers(dest[0], dest[1], at134khz);
|
||||
}
|
||||
|
||||
void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
|
||||
{
|
||||
BOOL at134khz;
|
||||
|
||||
// see if 'h' was specified
|
||||
if(command[strlen((char *) command) - 1] == 'h')
|
||||
at134khz= TRUE;
|
||||
else
|
||||
at134khz= FALSE;
|
||||
|
||||
if(at134khz) {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
} else {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
}
|
||||
|
||||
// Give it a bit of time for the resonant antenna to settle.
|
||||
SpinDelay(50);
|
||||
|
||||
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
||||
FpgaSetupSsc();
|
||||
|
||||
// now modulate the reader field
|
||||
while(*command != '\0' && *command != ' ')
|
||||
{
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
LED_D_OFF();
|
||||
SpinDelayUs(delay_off);
|
||||
if(at134khz) {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
} else {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
}
|
||||
LED_D_ON();
|
||||
if(*(command++) == '0')
|
||||
SpinDelayUs(period_0);
|
||||
else
|
||||
SpinDelayUs(period_1);
|
||||
}
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
LED_D_OFF();
|
||||
SpinDelayUs(delay_off);
|
||||
if(at134khz) {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
} else {
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
}
|
||||
|
||||
// now do the read
|
||||
DoAcquisition125k(at134khz);
|
||||
}
|
||||
|
||||
void AcquireTiType(void)
|
||||
{
|
||||
int i;
|
||||
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
||||
// each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
|
||||
int n = 1250;
|
||||
|
||||
// clear buffer
|
||||
memset(BigBuf,0,sizeof(BigBuf));
|
||||
|
||||
// Set up the synchronous serial port
|
||||
PIO_DISABLE = (1<<GPIO_SSC_DIN);
|
||||
PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
|
||||
|
||||
// steal this pin from the SSP and use it to control the modulation
|
||||
PIO_ENABLE = (1<<GPIO_SSC_DOUT);
|
||||
PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);
|
||||
|
||||
SSC_CONTROL = SSC_CONTROL_RESET;
|
||||
SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
|
||||
|
||||
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
||||
// 48/2 = 24 MHz clock must be divided by 12
|
||||
SSC_CLOCK_DIVISOR = 12;
|
||||
|
||||
SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
|
||||
SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
|
||||
SSC_TRANSMIT_CLOCK_MODE = 0;
|
||||
SSC_TRANSMIT_FRAME_MODE = 0;
|
||||
|
||||
LED_D_ON();
|
||||
|
||||
// modulate antenna
|
||||
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
|
||||
|
||||
// Charge TI tag for 50ms.
|
||||
SpinDelay(50);
|
||||
|
||||
// stop modulating antenna and listen
|
||||
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
|
||||
|
||||
LED_D_OFF();
|
||||
|
||||
i = 0;
|
||||
for(;;) {
|
||||
if(SSC_STATUS & SSC_STATUS_RX_READY) {
|
||||
BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
|
||||
i++; if(i >= n) return;
|
||||
}
|
||||
WDT_HIT();
|
||||
}
|
||||
|
||||
// return stolen pin to SSP
|
||||
PIO_DISABLE = (1<<GPIO_SSC_DOUT);
|
||||
PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);
|
||||
}
|
||||
|
||||
void ReadTItag()
|
||||
{
|
||||
}
|
||||
|
||||
void WriteTIbyte(BYTE b)
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
// modulate 8 bits out to the antenna
|
||||
for (i=0; i<8; i++)
|
||||
{
|
||||
if (b&(1<<i)) {
|
||||
// stop modulating antenna
|
||||
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelayUs(1000);
|
||||
// modulate antenna
|
||||
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelayUs(1000);
|
||||
} else {
|
||||
// stop modulating antenna
|
||||
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelayUs(300);
|
||||
// modulate antenna
|
||||
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelayUs(1700);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void AcquireRawBitsTI(void)
|
||||
{
|
||||
// TI tags charge at 134.2Khz
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
|
||||
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
||||
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
||||
// whether we're modulating the antenna (high)
|
||||
// or listening to the antenna (low)
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
||||
|
||||
// get TI tag data into the buffer
|
||||
AcquireTiType();
|
||||
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
}
|
||||
|
||||
// this is a dummy function to get around
|
||||
// a possible flash bug in the bootloader
|
||||
// delete once you've added more code.
|
||||
void DummyDummyDummy(void)
|
||||
{
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
||||
AcquireTiType();
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
}
|
||||
|
||||
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
||||
// if crc provided, it will be written with the data verbatim (even if bogus)
|
||||
// if not provided a valid crc will be computed from the data and written.
|
||||
void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
|
||||
{
|
||||
|
||||
// WARNING the order of the bytes in which we calc crc below needs checking
|
||||
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
||||
// bytes in reverse or something
|
||||
|
||||
if(crc == 0) {
|
||||
crc = update_crc16(crc, (idlo)&0xff);
|
||||
crc = update_crc16(crc, (idlo>>8)&0xff);
|
||||
crc = update_crc16(crc, (idlo>>16)&0xff);
|
||||
crc = update_crc16(crc, (idlo>>24)&0xff);
|
||||
crc = update_crc16(crc, (idhi)&0xff);
|
||||
crc = update_crc16(crc, (idhi>>8)&0xff);
|
||||
crc = update_crc16(crc, (idhi>>16)&0xff);
|
||||
crc = update_crc16(crc, (idhi>>24)&0xff);
|
||||
}
|
||||
DbpString("Writing the following data to tag:");
|
||||
DbpIntegers(idhi, idlo, crc);
|
||||
|
||||
// TI tags charge at 134.2Khz
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
|
||||
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
||||
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
||||
// whether we're modulating the antenna (high)
|
||||
// or listening to the antenna (low)
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
||||
LED_A_ON();
|
||||
|
||||
// steal this pin from the SSP and use it to control the modulation
|
||||
PIO_ENABLE = (1<<GPIO_SSC_DOUT);
|
||||
PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);
|
||||
|
||||
// writing algorithm:
|
||||
// a high bit consists of a field off for 1ms and field on for 1ms
|
||||
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
||||
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
||||
// start by writing 0xBB (keyword) and 0xEB (password)
|
||||
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
||||
// finally end with 0x0300 (write frame)
|
||||
// all data is sent lsb firts
|
||||
// finish with 15ms programming time
|
||||
|
||||
// modulate antenna
|
||||
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelay(50); // charge time
|
||||
|
||||
WriteTIbyte(0xbb); // keyword
|
||||
WriteTIbyte(0xeb); // password
|
||||
WriteTIbyte( (idlo )&0xff );
|
||||
WriteTIbyte( (idlo>>8 )&0xff );
|
||||
WriteTIbyte( (idlo>>16)&0xff );
|
||||
WriteTIbyte( (idlo>>24)&0xff );
|
||||
WriteTIbyte( (idhi )&0xff );
|
||||
WriteTIbyte( (idhi>>8 )&0xff );
|
||||
WriteTIbyte( (idhi>>16)&0xff );
|
||||
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
|
||||
WriteTIbyte( (crc )&0xff ); // crc lo
|
||||
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
|
||||
WriteTIbyte(0x00); // write frame lo
|
||||
WriteTIbyte(0x03); // write frame hi
|
||||
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
|
||||
SpinDelay(50); // programming time
|
||||
|
||||
LED_A_OFF();
|
||||
|
||||
// get TI tag data into the buffer
|
||||
AcquireTiType();
|
||||
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
DbpString("Now use tibits and tidemod");
|
||||
}
|
||||
|
||||
void SimulateTagLowFrequency(int period, int ledcontrol)
|
||||
{
|
||||
int i;
|
||||
BYTE *tab = (BYTE *)BigBuf;
|
||||
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
|
||||
|
||||
PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
|
||||
|
||||
PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
|
||||
PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
|
||||
|
||||
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
|
||||
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
|
||||
|
||||
i = 0;
|
||||
for(;;) {
|
||||
while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
|
||||
if(BUTTON_PRESS()) {
|
||||
DbpString("Stopped");
|
||||
return;
|
||||
}
|
||||
WDT_HIT();
|
||||
}
|
||||
|
||||
if (ledcontrol)
|
||||
LED_D_ON();
|
||||
|
||||
if(tab[i])
|
||||
OPEN_COIL();
|
||||
else
|
||||
SHORT_COIL();
|
||||
|
||||
if (ledcontrol)
|
||||
LED_D_OFF();
|
||||
|
||||
while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
|
||||
if(BUTTON_PRESS()) {
|
||||
DbpString("Stopped");
|
||||
return;
|
||||
}
|
||||
WDT_HIT();
|
||||
}
|
||||
|
||||
i++;
|
||||
if(i == period) i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// compose fc/8 fc/10 waveform
|
||||
static void fc(int c, int *n) {
|
||||
BYTE *dest = (BYTE *)BigBuf;
|
||||
int idx;
|
||||
|
||||
// for when we want an fc8 pattern every 4 logical bits
|
||||
if(c==0) {
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
}
|
||||
// an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
|
||||
if(c==8) {
|
||||
for (idx=0; idx<6; idx++) {
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
}
|
||||
}
|
||||
|
||||
// an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
|
||||
if(c==10) {
|
||||
for (idx=0; idx<5; idx++) {
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=1;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
dest[((*n)++)]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// prepare a waveform pattern in the buffer based on the ID given then
|
||||
// simulate a HID tag until the button is pressed
|
||||
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
|
||||
{
|
||||
int n=0, i=0;
|
||||
/*
|
||||
HID tag bitstream format
|
||||
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
||||
A 1 bit is represented as 6 fc8 and 5 fc10 patterns
|
||||
A 0 bit is represented as 5 fc10 and 6 fc8 patterns
|
||||
A fc8 is inserted before every 4 bits
|
||||
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
||||
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
||||
*/
|
||||
|
||||
if (hi>0xFFF) {
|
||||
DbpString("Tags can only have 44 bits.");
|
||||
return;
|
||||
}
|
||||
fc(0,&n);
|
||||
// special start of frame marker containing invalid bit sequences
|
||||
fc(8, &n); fc(8, &n); // invalid
|
||||
fc(8, &n); fc(10, &n); // logical 0
|
||||
fc(10, &n); fc(10, &n); // invalid
|
||||
fc(8, &n); fc(10, &n); // logical 0
|
||||
|
||||
WDT_HIT();
|
||||
// manchester encode bits 43 to 32
|
||||
for (i=11; i>=0; i--) {
|
||||
if ((i%4)==3) fc(0,&n);
|
||||
if ((hi>>i)&1) {
|
||||
fc(10, &n); fc(8, &n); // low-high transition
|
||||
} else {
|
||||
fc(8, &n); fc(10, &n); // high-low transition
|
||||
}
|
||||
}
|
||||
|
||||
WDT_HIT();
|
||||
// manchester encode bits 31 to 0
|
||||
for (i=31; i>=0; i--) {
|
||||
if ((i%4)==3) fc(0,&n);
|
||||
if ((lo>>i)&1) {
|
||||
fc(10, &n); fc(8, &n); // low-high transition
|
||||
} else {
|
||||
fc(8, &n); fc(10, &n); // high-low transition
|
||||
}
|
||||
}
|
||||
|
||||
if (ledcontrol)
|
||||
LED_A_ON();
|
||||
SimulateTagLowFrequency(n, ledcontrol);
|
||||
|
||||
if (ledcontrol)
|
||||
LED_A_OFF();
|
||||
}
|
||||
|
||||
|
||||
// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
|
||||
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
|
||||
{
|
||||
BYTE *dest = (BYTE *)BigBuf;
|
||||
int m=0, n=0, i=0, idx=0, found=0, lastval=0;
|
||||
DWORD hi=0, lo=0;
|
||||
|
||||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
||||
|
||||
// Connect the A/D to the peak-detected low-frequency path.
|
||||
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
||||
|
||||
// Give it a bit of time for the resonant antenna to settle.
|
||||
SpinDelay(50);
|
||||
|
||||
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
||||
FpgaSetupSsc();
|
||||
|
||||
for(;;) {
|
||||
WDT_HIT();
|
||||
if (ledcontrol)
|
||||
LED_A_ON();
|
||||
if(BUTTON_PRESS()) {
|
||||
DbpString("Stopped");
|
||||
if (ledcontrol)
|
||||
LED_A_OFF();
|
||||
return;
|
||||
}
|
||||
|
||||
i = 0;
|
||||
m = sizeof(BigBuf);
|
||||
memset(dest,128,m);
|
||||
for(;;) {
|
||||
if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
|
||||
SSC_TRANSMIT_HOLDING = 0x43;
|
||||
if (ledcontrol)
|
||||
LED_D_ON();
|
||||
}
|
||||
if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
|
||||
dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
|
||||
// we don't care about actual value, only if it's more or less than a
|
||||
// threshold essentially we capture zero crossings for later analysis
|
||||
if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
|
||||
i++;
|
||||
if (ledcontrol)
|
||||
LED_D_OFF();
|
||||
if(i >= m) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FSK demodulator
|
||||
|
||||
// sync to first lo-hi transition
|
||||
for( idx=1; idx<m; idx++) {
|
||||
if (dest[idx-1]<dest[idx])
|
||||
lastval=idx;
|
||||
break;
|
||||
}
|
||||
WDT_HIT();
|
||||
|
||||
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
|
||||
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
|
||||
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
|
||||
for( i=0; idx<m; idx++) {
|
||||
if (dest[idx-1]<dest[idx]) {
|
||||
dest[i]=idx-lastval;
|
||||
if (dest[i] <= 8) {
|
||||
dest[i]=1;
|
||||
} else {
|
||||
dest[i]=0;
|
||||
}
|
||||
|
||||
lastval=idx;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
m=i;
|
||||
WDT_HIT();
|
||||
|
||||
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
|
||||
lastval=dest[0];
|
||||
idx=0;
|
||||
i=0;
|
||||
n=0;
|
||||
for( idx=0; idx<m; idx++) {
|
||||
if (dest[idx]==lastval) {
|
||||
n++;
|
||||
} else {
|
||||
// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
|
||||
// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
|
||||
// swallowed up by rounding
|
||||
// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
|
||||
// special start of frame markers use invalid manchester states (no transitions) by using sequences
|
||||
// like 111000
|
||||
if (dest[idx-1]) {
|
||||
n=(n+1)/6; // fc/8 in sets of 6
|
||||
} else {
|
||||
n=(n+1)/5; // fc/10 in sets of 5
|
||||
}
|
||||
switch (n) { // stuff appropriate bits in buffer
|
||||
case 0:
|
||||
case 1: // one bit
|
||||
dest[i++]=dest[idx-1];
|
||||
break;
|
||||
case 2: // two bits
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
break;
|
||||
case 3: // 3 bit start of frame markers
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
break;
|
||||
// When a logic 0 is immediately followed by the start of the next transmisson
|
||||
// (special pattern) a pattern of 4 bit duration lengths is created.
|
||||
case 4:
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
dest[i++]=dest[idx-1];
|
||||
break;
|
||||
default: // this shouldn't happen, don't stuff any bits
|
||||
break;
|
||||
}
|
||||
n=0;
|
||||
lastval=dest[idx];
|
||||
}
|
||||
}
|
||||
m=i;
|
||||
WDT_HIT();
|
||||
|
||||
// final loop, go over previously decoded manchester data and decode into usable tag ID
|
||||
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
|
||||
for( idx=0; idx<m-6; idx++) {
|
||||
// search for a start of frame marker
|
||||
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
||||
{
|
||||
found=1;
|
||||
idx+=6;
|
||||
if (found && (hi|lo)) {
|
||||
DbpString("TAG ID");
|
||||
DbpIntegers(hi, lo, (lo>>1)&0xffff);
|
||||
/* if we're only looking for one tag */
|
||||
if (findone)
|
||||
{
|
||||
*high = hi;
|
||||
*low = lo;
|
||||
return;
|
||||
}
|
||||
hi=0;
|
||||
lo=0;
|
||||
found=0;
|
||||
}
|
||||
}
|
||||
if (found) {
|
||||
if (dest[idx] && (!dest[idx+1]) ) {
|
||||
hi=(hi<<1)|(lo>>31);
|
||||
lo=(lo<<1)|0;
|
||||
} else if ( (!dest[idx]) && dest[idx+1]) {
|
||||
hi=(hi<<1)|(lo>>31);
|
||||
lo=(lo<<1)|1;
|
||||
} else {
|
||||
found=0;
|
||||
hi=0;
|
||||
lo=0;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
|
||||
{
|
||||
found=1;
|
||||
idx+=6;
|
||||
if (found && (hi|lo)) {
|
||||
DbpString("TAG ID");
|
||||
DbpIntegers(hi, lo, (lo>>1)&0xffff);
|
||||
/* if we're only looking for one tag */
|
||||
if (findone)
|
||||
{
|
||||
*high = hi;
|
||||
*low = lo;
|
||||
return;
|
||||
}
|
||||
hi=0;
|
||||
lo=0;
|
||||
found=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
WDT_HIT();
|
||||
}
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
unsigned short update_crc16( WORD crc, BYTE c ) {
|
||||
WORD update_crc16( WORD crc, BYTE c ) {
|
||||
WORD i, v, tcrc = 0;
|
||||
|
||||
v = (crc ^ c) & 0xff;
|
||||
|
@ -7,5 +7,5 @@ unsigned short update_crc16( WORD crc, BYTE c ) {
|
|||
v >>= 1;
|
||||
}
|
||||
|
||||
return (crc >> 8) ^ tcrc;
|
||||
return ((crc >> 8) ^ tcrc)&0xffff;
|
||||
}
|
||||
|
|
|
@ -20,60 +20,59 @@ typedef struct {
|
|||
} UsbCommand;
|
||||
|
||||
// For the bootloader
|
||||
#define CMD_DEVICE_INFO 0x0000
|
||||
#define CMD_SETUP_WRITE 0x0001
|
||||
#define CMD_FINISH_WRITE 0x0003
|
||||
#define CMD_HARDWARE_RESET 0x0004
|
||||
#define CMD_START_FLASH 0x0005
|
||||
#define CMD_ACK 0x00ff
|
||||
#define CMD_DEVICE_INFO 0x0000
|
||||
#define CMD_SETUP_WRITE 0x0001
|
||||
#define CMD_FINISH_WRITE 0x0003
|
||||
#define CMD_HARDWARE_RESET 0x0004
|
||||
#define CMD_START_FLASH 0x0005
|
||||
#define CMD_ACK 0x00ff
|
||||
|
||||
// For general mucking around
|
||||
#define CMD_DEBUG_PRINT_STRING 0x0100
|
||||
#define CMD_DEBUG_PRINT_INTEGERS 0x0101
|
||||
#define CMD_DEBUG_PRINT_BYTES 0x0102
|
||||
#define CMD_LCD_RESET 0x0103
|
||||
#define CMD_LCD 0x0104
|
||||
#define CMD_BUFF_CLEAR 0x0105
|
||||
#define CMD_READ_MEM 0x0106
|
||||
#define CMD_DEBUG_PRINT_STRING 0x0100
|
||||
#define CMD_DEBUG_PRINT_INTEGERS 0x0101
|
||||
#define CMD_DEBUG_PRINT_BYTES 0x0102
|
||||
#define CMD_LCD_RESET 0x0103
|
||||
#define CMD_LCD 0x0104
|
||||
#define CMD_BUFF_CLEAR 0x0105
|
||||
#define CMD_READ_MEM 0x0106
|
||||
|
||||
// For low-frequency tags
|
||||
#define CMD_ACQUIRE_RAW_BITS_TI_TYPE 0x0200
|
||||
#define CMD_DOWNLOAD_RAW_BITS_TI_TYPE 0x0201
|
||||
#define CMD_DOWNLOADED_RAW_BITS_TI_TYPE 0x0202
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0203
|
||||
#define CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K 0x0204
|
||||
#define CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K 0x0205
|
||||
#define CMD_DOWNLOADED_SIM_SAMPLES_125K 0x0206
|
||||
#define CMD_SIMULATE_TAG_125K 0x0207
|
||||
#define CMD_HID_DEMOD_FSK 0x0208 // ## New command: demodulate HID tag ID
|
||||
#define CMD_HID_SIM_TAG 0x0209 // ## New command: simulate HID tag by ID
|
||||
#define CMD_SET_LF_DIVISOR 0x020A
|
||||
#define CMD_SWEEP_LF 0x020B
|
||||
#define CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K 0x020C
|
||||
#define CMD_ACQUIRE_RAW_BITS_TI_TYPE 0x0200
|
||||
#define CMD_DOWNLOAD_RAW_BITS_TI_TYPE 0x0201
|
||||
#define CMD_READ_TI_TYPE 0x0202
|
||||
#define CMD_WRITE_TI_TYPE 0x0203
|
||||
#define CMD_DOWNLOADED_RAW_BITS_TI_TYPE 0x0204
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0205
|
||||
#define CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0206
|
||||
#define CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K 0x0207
|
||||
#define CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K 0x0208
|
||||
#define CMD_DOWNLOADED_SIM_SAMPLES_125K 0x0209
|
||||
#define CMD_SIMULATE_TAG_125K 0x020A
|
||||
#define CMD_HID_DEMOD_FSK 0x020B
|
||||
#define CMD_HID_SIM_TAG 0x020C
|
||||
#define CMD_SET_LF_DIVISOR 0x020D
|
||||
|
||||
// For the 13.56 MHz tags
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693 0x0300
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443 0x0301
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443_SIM 0x0302
|
||||
#define CMD_READ_SRI512_TAG 0x0303
|
||||
#define CMD_READER_ISO_15693 0x0310 // ## New command to act like a 15693 reader - greg
|
||||
#define CMD_SIMTAG_ISO_15693 0x0311 // ## New command to act like a 15693 reader - greg
|
||||
|
||||
#define CMD_SIMULATE_TAG_HF_LISTEN 0x0380
|
||||
#define CMD_SIMULATE_TAG_ISO_14443 0x0381
|
||||
#define CMD_SNOOP_ISO_14443 0x0382
|
||||
#define CMD_SNOOP_ISO_14443a 0x0383 // ## New snoop command
|
||||
#define CMD_SIMULATE_TAG_ISO_14443a 0x0384 // ## New command: Simulate tag 14443a
|
||||
#define CMD_READER_ISO_14443a 0x0385 // ## New command to act like a 14443a reader
|
||||
#define CMD_SIMULATE_MIFARE_CARD 0x0386
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693 0x0300
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443 0x0301
|
||||
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443_SIM 0x0302
|
||||
#define CMD_READ_SRI512_TAG 0x0303
|
||||
#define CMD_READER_ISO_15693 0x0310
|
||||
#define CMD_SIMTAG_ISO_15693 0x0311
|
||||
#define CMD_SIMULATE_TAG_HF_LISTEN 0x0380
|
||||
#define CMD_SIMULATE_TAG_ISO_14443 0x0381
|
||||
#define CMD_SNOOP_ISO_14443 0x0382
|
||||
#define CMD_SNOOP_ISO_14443a 0x0383
|
||||
#define CMD_SIMULATE_TAG_ISO_14443a 0x0384
|
||||
#define CMD_READER_ISO_14443a 0x0385
|
||||
#define CMD_SIMULATE_MIFARE_CARD 0x0386
|
||||
|
||||
// For measurements of the antenna tuning
|
||||
#define CMD_MEASURE_ANTENNA_TUNING 0x0400
|
||||
#define CMD_MEASURED_ANTENNA_TUNING 0x0401
|
||||
#define CMD_LISTEN_READER_FIELD 0x0402
|
||||
#define CMD_MEASURE_ANTENNA_TUNING 0x0400
|
||||
#define CMD_MEASURED_ANTENNA_TUNING 0x0401
|
||||
#define CMD_LISTEN_READER_FIELD 0x0402
|
||||
|
||||
// For direct FPGA control
|
||||
#define CMD_FPGA_MAJOR_MODE_OFF 0x0500 // ## FPGA Control
|
||||
#define CMD_TEST 0x0501
|
||||
#define CMD_FPGA_MAJOR_MODE_OFF 0x0500
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1395,14 +1395,14 @@ static void CmdHi15demod(char *str)
|
|||
PrintToScrollback("CRC=%04x", Iso15693Crc(outBuf, k-2));
|
||||
}
|
||||
|
||||
static void CmdTiread(char *str)
|
||||
static void CmdTIReadRaw(char *str)
|
||||
{
|
||||
UsbCommand c;
|
||||
c.cmd = CMD_ACQUIRE_RAW_BITS_TI_TYPE;
|
||||
SendCommand(&c, FALSE);
|
||||
}
|
||||
|
||||
static void CmdTibits(char *str)
|
||||
static void CmdTIBits(char *str)
|
||||
{
|
||||
int cnt = 0;
|
||||
int i;
|
||||
|
@ -1554,7 +1554,30 @@ static void CmdFSKdemod(char *cmdline)
|
|||
PrintToScrollback("hex: %08x %08x", hi, lo);
|
||||
}
|
||||
|
||||
static void CmdTidemod(char *cmdline)
|
||||
// read a TI tag and return its ID
|
||||
static void CmdTIRead(char *str)
|
||||
{
|
||||
UsbCommand c;
|
||||
c.cmd = CMD_READ_TI_TYPE;
|
||||
SendCommand(&c, FALSE);
|
||||
}
|
||||
|
||||
// write new data to a r/w TI tag
|
||||
static void CmdTIWrite(char *str)
|
||||
{
|
||||
UsbCommand c;
|
||||
int res=0;
|
||||
|
||||
c.cmd = CMD_WRITE_TI_TYPE;
|
||||
res = sscanf(str, "0x%x 0x%x 0x%x ", &c.ext1, &c.ext2, &c.ext3);
|
||||
if (res == 2) c.ext3=0;
|
||||
if (res<2)
|
||||
PrintToScrollback("Please specify 2 or three hex strings, eg 0x1234 0x5678");
|
||||
else
|
||||
SendCommand(&c, FALSE);
|
||||
}
|
||||
|
||||
static void CmdTIDemod(char *cmdline)
|
||||
{
|
||||
/* MATLAB as follows:
|
||||
f_s = 2000000; % sampling frequency
|
||||
|
@ -1754,9 +1777,13 @@ h = sign(sin(cumsum(h)));
|
|||
// align 16 bit "end bits" or "ident" into lower half of shift3
|
||||
shift3 >>= 16;
|
||||
|
||||
if ( (shift3^shift0)&0xffff ) {
|
||||
// only 15 bits compare, last bit of ident is not valid
|
||||
if ( (shift3^shift0)&0x7fff ) {
|
||||
PrintToScrollback("Error: Ident mismatch!");
|
||||
}
|
||||
// WARNING the order of the bytes in which we calc crc below needs checking
|
||||
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
||||
// bytes in reverse or something
|
||||
// calculate CRC
|
||||
crc=0;
|
||||
crc = update_crc16(crc, (shift0)&0xff);
|
||||
|
@ -2841,9 +2868,11 @@ static struct {
|
|||
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
|
||||
{"setlfdivisor", CmdSetDivisor, 0, "<19 - 255> -- Drive LF antenna at 12Mhz/(divisor+1)"},
|
||||
{"sri512read", CmdSri512read, 0, "<int> -- Read contents of a SRI512 tag"},
|
||||
{"tibits", CmdTibits, 0, "Get raw bits for TI-type LF tag"},
|
||||
{"tidemod", CmdTidemod, 1, "Demodulate raw bits for TI-type LF tag"},
|
||||
{"tiread", CmdTiread, 0, "Read a TI-type 134 kHz tag"},
|
||||
{"tibits", CmdTIBits, 0, "Get raw bits for TI-type LF tag"},
|
||||
{"tidemod", CmdTIDemod, 1, "Demodulate raw bits for TI-type LF tag"},
|
||||
{"tireadraw", CmdTIReadRaw, 0, "Read a TI-type 134 kHz tag in raw mode"},
|
||||
{"tiread", CmdTIRead, 0, "Read and decode a TI 134 kHz tag"},
|
||||
{"tiwrite", CmdTIWrite, 0, "Write new data to a r/w TI 134 kHz tag"},
|
||||
{"threshold", CmdThreshold, 1, "Maximize/minimize every value in the graph window depending on threshold"},
|
||||
{"tune", CmdTune, 0, "Measure antenna tuning"},
|
||||
{"vchdemod", CmdVchdemod, 0, "['clone'] -- Demodulate samples for VeriChip"},
|
||||
|
|
Loading…
Reference in a new issue