mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-03-20 03:48:33 +08:00
CHG: started to clean up the crapto1 imp in client/nonce2key/ folder.
This commit is contained in:
parent
7d5169a0e9
commit
a0f33b6682
7 changed files with 279 additions and 486 deletions
|
@ -5,9 +5,8 @@
|
|||
#-----------------------------------------------------------------------------
|
||||
include ../common/Makefile.common
|
||||
|
||||
|
||||
CC=gcc
|
||||
CXX=g++
|
||||
CC = gcc
|
||||
CXX = g++
|
||||
#COMMON_FLAGS = -m32
|
||||
VPATH = ../common ../zlib
|
||||
OBJDIR = obj
|
||||
|
|
|
@ -574,7 +574,7 @@ int CmdHF14ASim(const char *Cmd)
|
|||
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
|
||||
memcpy(data, resp.d.asBytes, len);
|
||||
tryMfk32(uid, data, key);
|
||||
tryMfk32_moebius(uid, data, key);
|
||||
//tryMfk32_moebius(uid, data, key);
|
||||
//tryMfk64(uid, data, key);
|
||||
PrintAndLog("--");
|
||||
}
|
||||
|
|
|
@ -1218,10 +1218,12 @@ int CmdHF14AMf1kSim(const char *Cmd)
|
|||
}
|
||||
pnr +=2;
|
||||
}
|
||||
|
||||
if (param_getchar(Cmd, pnr) == 'n') {
|
||||
exitAfterNReads = param_get8(Cmd,pnr+1);
|
||||
pnr += 2;
|
||||
}
|
||||
|
||||
if (param_getchar(Cmd, pnr) == 'i' ) {
|
||||
//Using a flag to signal interactiveness, least significant bit
|
||||
flags |= FLAG_INTERACTIVE;
|
||||
|
@ -1232,10 +1234,13 @@ int CmdHF14AMf1kSim(const char *Cmd)
|
|||
//Using a flag to signal interactiveness, least significant bit
|
||||
flags |= FLAG_NR_AR_ATTACK;
|
||||
}
|
||||
|
||||
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ",
|
||||
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
|
||||
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A"
|
||||
, exitAfterNReads, flags,flags);
|
||||
, exitAfterNReads
|
||||
, flags
|
||||
, flags);
|
||||
|
||||
|
||||
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};
|
||||
|
@ -1250,40 +1255,39 @@ int CmdHF14AMf1kSim(const char *Cmd)
|
|||
|
||||
UsbCommand resp;
|
||||
PrintAndLog("Press pm3-button or send another cmd to abort simulation");
|
||||
//while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
|
||||
//We're waiting only 1.5 s at a time, otherwise we get the
|
||||
// annoying message about "Waiting for a response... "
|
||||
//}
|
||||
while(!ukbhit() ){
|
||||
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) continue;
|
||||
|
||||
while( !ukbhit() ){
|
||||
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue;
|
||||
|
||||
if ( !(flags & FLAG_NR_AR_ATTACK) ) break;
|
||||
|
||||
if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break;
|
||||
|
||||
memset(data, 0x00, sizeof(data));
|
||||
memset(key, 0x00, sizeof(key));
|
||||
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
|
||||
|
||||
memcpy(data, resp.d.asBytes, len);
|
||||
|
||||
uint64_t corr_uid = 0;
|
||||
if ( memcmp(data, "\x00\x00\x00\x00", 4) == 0 ) {
|
||||
corr_uid = ((uint64_t)(data[3] << 24)) | (data[2] << 16) | (data[1] << 8) | data[0];
|
||||
tryMfk32(corr_uid, data, key);
|
||||
} else {
|
||||
corr_uid |= (uint64_t)data[2] << 48;
|
||||
corr_uid |= (uint64_t)data[1] << 40;
|
||||
corr_uid |= (uint64_t)data[0] << 32;
|
||||
corr_uid |= (uint64_t)data[7] << 24;
|
||||
corr_uid |= (uint64_t)data[6] << 16;
|
||||
corr_uid |= (uint64_t)data[5] << 8;
|
||||
corr_uid |= (uint64_t)data[4];
|
||||
tryMfk64(corr_uid, data, key);
|
||||
}
|
||||
PrintAndLog("--");
|
||||
memset(data, 0x00, sizeof(data));
|
||||
memset(key, 0x00, sizeof(key));
|
||||
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
|
||||
|
||||
memcpy(data, resp.d.asBytes, len);
|
||||
|
||||
uint64_t corr_uid = 0;
|
||||
|
||||
// this IF? what was I thinking of?
|
||||
if ( memcmp(data, "\x00\x00\x00\x00", 4) == 0 ) {
|
||||
corr_uid = ((uint64_t)(data[3] << 24)) | (data[2] << 16) | (data[1] << 8) | data[0];
|
||||
tryMfk32(corr_uid, data, key);
|
||||
} else {
|
||||
corr_uid |= (uint64_t)data[2] << 48;
|
||||
corr_uid |= (uint64_t)data[1] << 40;
|
||||
corr_uid |= (uint64_t)data[0] << 32;
|
||||
corr_uid |= (uint64_t)data[7] << 24;
|
||||
corr_uid |= (uint64_t)data[6] << 16;
|
||||
corr_uid |= (uint64_t)data[5] << 8;
|
||||
corr_uid |= (uint64_t)data[4];
|
||||
tryMfk64(corr_uid, data, key);
|
||||
}
|
||||
}
|
||||
|
||||
PrintAndLog("--");
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -15,97 +15,49 @@
|
|||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#if !defined LOWMEM && defined __GNUC__
|
||||
uint8_t filterlut[1 << 20];
|
||||
static uint8_t filterlut[1 << 20];
|
||||
static void __attribute__((constructor)) fill_lut()
|
||||
{
|
||||
uint32_t x;
|
||||
uint32_t f;
|
||||
for(x = 0; x < 1 << 20; ++x) {
|
||||
f = 0xf22c0 >> (x & 0xf) & 16;
|
||||
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
||||
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
||||
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
||||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
||||
filterlut[x] = BIT(0xEC57E80A, f);
|
||||
}
|
||||
uint32_t i;
|
||||
for(i = 0; i < 1 << 20; ++i)
|
||||
filterlut[i] = filter(i);
|
||||
}
|
||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
typedef struct bucket {
|
||||
uint32_t *head;
|
||||
uint32_t *bp;
|
||||
} bucket_t;
|
||||
|
||||
typedef bucket_t bucket_array_t[2][0x100];
|
||||
|
||||
typedef struct bucket_info {
|
||||
struct {
|
||||
uint32_t *head, *tail;
|
||||
} bucket_info[2][0x100];
|
||||
uint32_t numbuckets;
|
||||
} bucket_info_t;
|
||||
|
||||
|
||||
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
|
||||
uint32_t* const ostart, uint32_t* const ostop,
|
||||
bucket_info_t *bucket_info, bucket_array_t bucket)
|
||||
static void quicksort(uint32_t* const start, uint32_t* const stop)
|
||||
{
|
||||
uint32_t *p1, *p2;
|
||||
uint32_t *start[2];
|
||||
uint32_t *stop[2];
|
||||
uint32_t *it = start + 1, *rit = stop, t;
|
||||
|
||||
start[0] = estart;
|
||||
stop[0] = estop;
|
||||
start[1] = ostart;
|
||||
stop[1] = ostop;
|
||||
if(it > rit)
|
||||
return;
|
||||
|
||||
// init buckets to be empty
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
for (uint32_t j = 0x00; j <= 0xff; j++) {
|
||||
bucket[i][j].bp = bucket[i][j].head;
|
||||
}
|
||||
}
|
||||
while(it < rit)
|
||||
if(*it <= *start)
|
||||
++it;
|
||||
else if(*rit > *start)
|
||||
--rit;
|
||||
else
|
||||
t = *it, *it = *rit, *rit = t;
|
||||
|
||||
// sort the lists into the buckets based on the MSB (contribution bits)
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
for (p1 = start[i]; p1 <= stop[i]; p1++) {
|
||||
uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
|
||||
*(bucket[i][bucket_index].bp++) = *p1;
|
||||
}
|
||||
}
|
||||
if(*rit >= *start)
|
||||
--rit;
|
||||
if(rit != start)
|
||||
t = *rit, *rit = *start, *start = t;
|
||||
|
||||
|
||||
// write back intersecting buckets as sorted list.
|
||||
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
|
||||
uint32_t nonempty_bucket;
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
p1 = start[i];
|
||||
nonempty_bucket = 0;
|
||||
for (uint32_t j = 0x00; j <= 0xff; j++) {
|
||||
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
|
||||
bucket_info->bucket_info[i][nonempty_bucket].head = p1;
|
||||
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
|
||||
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
|
||||
nonempty_bucket++;
|
||||
}
|
||||
}
|
||||
bucket_info->numbuckets = nonempty_bucket;
|
||||
}
|
||||
quicksort(start, rit - 1);
|
||||
quicksort(rit + 1, stop);
|
||||
}
|
||||
|
||||
/** binsearch
|
||||
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
|
||||
*/
|
||||
static inline uint32_t*
|
||||
binsearch(uint32_t *start, uint32_t *stop)
|
||||
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
|
||||
{
|
||||
uint32_t mid, val = *stop & 0xff000000;
|
||||
while(start != stop)
|
||||
|
@ -137,33 +89,25 @@ static inline void
|
|||
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
|
||||
{
|
||||
in <<= 24;
|
||||
|
||||
for(uint32_t *p = tbl; p <= *end; p++) {
|
||||
*p <<= 1;
|
||||
if(filter(*p) != filter(*p | 1)) { // replace
|
||||
*p |= filter(*p) ^ bit;
|
||||
update_contribution(p, m1, m2);
|
||||
*p ^= in;
|
||||
} else if(filter(*p) == bit) { // insert
|
||||
*++*end = p[1];
|
||||
p[1] = p[0] | 1;
|
||||
update_contribution(p, m1, m2);
|
||||
*p++ ^= in;
|
||||
update_contribution(p, m1, m2);
|
||||
*p ^= in;
|
||||
} else { // drop
|
||||
*p-- = *(*end)--;
|
||||
}
|
||||
}
|
||||
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
||||
if(filter(*tbl) ^ filter(*tbl | 1)) {
|
||||
*tbl |= filter(*tbl) ^ bit;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else if(filter(*tbl) == bit) {
|
||||
*++*end = tbl[1];
|
||||
tbl[1] = tbl[0] | 1;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl++ ^= in;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else
|
||||
*tbl-- = *(*end)--;
|
||||
}
|
||||
|
||||
|
||||
/** extend_table_simple
|
||||
* using a bit of the keystream extend the table of possible lfsr states
|
||||
*/
|
||||
static inline void
|
||||
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
||||
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
||||
{
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
||||
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
|
||||
|
@ -182,10 +126,9 @@ extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
|||
static struct Crypto1State*
|
||||
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
|
||||
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
|
||||
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
|
||||
struct Crypto1State *sl, uint32_t in)
|
||||
{
|
||||
uint32_t *o, *e;
|
||||
bucket_info_t bucket_info;
|
||||
uint32_t *o, *e, i;
|
||||
|
||||
if(rem == -1) {
|
||||
for(e = e_head; e <= e_tail; ++e) {
|
||||
|
@ -193,31 +136,41 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
|
|||
for(o = o_head; o <= o_tail; ++o, ++sl) {
|
||||
sl->even = *o;
|
||||
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
|
||||
sl[1].odd = sl[1].even = 0;
|
||||
}
|
||||
}
|
||||
sl->odd = sl->even = 0;
|
||||
return sl;
|
||||
}
|
||||
|
||||
for(uint32_t i = 0; i < 4 && rem--; i++) {
|
||||
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
|
||||
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
|
||||
for(i = 0; i < 4 && rem--; i++) {
|
||||
oks >>= 1;
|
||||
eks >>= 1;
|
||||
in >>= 2;
|
||||
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
|
||||
LF_POLY_ODD << 1, 0);
|
||||
if(o_head > o_tail)
|
||||
return sl;
|
||||
|
||||
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
|
||||
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
|
||||
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
|
||||
LF_POLY_EVEN << 1 | 1, in & 3);
|
||||
if(e_head > e_tail)
|
||||
return sl;
|
||||
}
|
||||
|
||||
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
|
||||
quicksort(o_head, o_tail);
|
||||
quicksort(e_head, e_tail);
|
||||
|
||||
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
|
||||
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
|
||||
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
|
||||
rem, sl, in, bucket);
|
||||
while(o_tail >= o_head && e_tail >= e_head)
|
||||
if(((*o_tail ^ *e_tail) >> 24) == 0) {
|
||||
o_tail = binsearch(o_head, o = o_tail);
|
||||
e_tail = binsearch(e_head, e = e_tail);
|
||||
sl = recover(o_tail--, o, oks,
|
||||
e_tail--, e, eks, rem, sl, in);
|
||||
}
|
||||
else if(*o_tail > *e_tail)
|
||||
o_tail = binsearch(o_head, o_tail) - 1;
|
||||
else
|
||||
e_tail = binsearch(e_head, e_tail) - 1;
|
||||
|
||||
return sl;
|
||||
}
|
||||
|
@ -243,19 +196,12 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
|
||||
statelist = malloc(sizeof(struct Crypto1State) << 18);
|
||||
if(!odd_tail-- || !even_tail-- || !statelist) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
statelist->odd = statelist->even = 0;
|
||||
|
||||
// allocate memory for out of place bucket_sort
|
||||
bucket_array_t bucket;
|
||||
for (uint32_t i = 0; i < 2; i++)
|
||||
for (uint32_t j = 0; j <= 0xff; j++) {
|
||||
bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
|
||||
if (!bucket[i][j].head) {
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
statelist->odd = statelist->even = 0;
|
||||
|
||||
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
|
||||
for(i = 1 << 20; i >= 0; --i) {
|
||||
|
@ -274,18 +220,13 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
|
||||
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
|
||||
// parameter into account.
|
||||
|
||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
|
||||
|
||||
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
|
||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
|
||||
recover(odd_head, odd_tail, oks,
|
||||
even_head, even_tail, eks, 11, statelist, in << 1);
|
||||
|
||||
out:
|
||||
free(odd_head);
|
||||
free(even_head);
|
||||
for (uint32_t i = 0; i < 2; i++)
|
||||
for (uint32_t j = 0; j <= 0xff; j++)
|
||||
free(bucket[i][j].head);
|
||||
|
||||
return statelist;
|
||||
}
|
||||
|
||||
|
@ -326,12 +267,12 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
|
|||
sl->odd = sl->even = 0;
|
||||
|
||||
for(i = 30; i >= 0; i -= 2) {
|
||||
oks[i >> 1] = BIT(ks2, i ^ 24);
|
||||
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
|
||||
oks[i >> 1] = BEBIT(ks2, i);
|
||||
oks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
for(i = 31; i >= 0; i -= 2) {
|
||||
eks[i >> 1] = BIT(ks2, i ^ 24);
|
||||
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
|
||||
eks[i >> 1] = BEBIT(ks2, i);
|
||||
eks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
|
||||
for(i = 0xfffff; i >= 0; --i) {
|
||||
|
@ -382,89 +323,95 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
|
|||
/** lfsr_rollback_bit
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
int out;
|
||||
uint32_t tmp;
|
||||
uint8_t ret;
|
||||
uint32_t t;
|
||||
|
||||
s->odd &= 0xffffff;
|
||||
tmp = s->odd;
|
||||
s->odd = s->even;
|
||||
s->even = tmp;
|
||||
t = s->odd, s->odd = s->even, s->even = t;
|
||||
|
||||
out = s->even & 1;
|
||||
out ^= LF_POLY_EVEN & (s->even >>= 1);
|
||||
out ^= LF_POLY_ODD & s->odd;
|
||||
out ^= !!in;
|
||||
out ^= filter(s->odd) & !!fb;
|
||||
out ^= (ret = filter(s->odd)) & !!fb;
|
||||
|
||||
s->even |= parity(out) << 23;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_byte
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/* int i;
|
||||
/*
|
||||
int i, ret = 0;
|
||||
for (i = 7; i >= 0; --i)
|
||||
lfsr_rollback_bit(s, BEBIT(in, i), fb);
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
lfsr_rollback_bit(s, BEBIT(in, 7), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 6), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 5), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 4), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 3), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 2), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 1), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 0), fb);
|
||||
uint8_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_word
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
/*
|
||||
int i;
|
||||
uint32_t ret = 0;
|
||||
for (i = 31; i >= 0; --i)
|
||||
lfsr_rollback_bit(s, BEBIT(in, i), fb);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
lfsr_rollback_bit(s, BEBIT(in, 31), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 30), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 29), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 28), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 27), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 26), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 25), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 24), fb);
|
||||
uint32_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
|
||||
|
||||
lfsr_rollback_bit(s, BEBIT(in, 23), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 22), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 21), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 20), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 19), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 18), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 17), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 16), fb);
|
||||
|
||||
lfsr_rollback_bit(s, BEBIT(in, 15), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 14), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 13), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 12), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 11), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 10), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 9), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 8), fb);
|
||||
|
||||
lfsr_rollback_bit(s, BEBIT(in, 7), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 6), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 5), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 4), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 3), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 2), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 1), fb);
|
||||
lfsr_rollback_bit(s, BEBIT(in, 0), fb);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** nonce_distance
|
||||
|
@ -498,86 +445,63 @@ static uint32_t fastfwd[2][8] = {
|
|||
* Described in the "dark side" paper. It returns an -1 terminated array
|
||||
* of possible partial(21 bit) secret state.
|
||||
* The required keystream(ks) needs to contain the keystream that was used to
|
||||
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
|
||||
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
|
||||
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
|
||||
*/
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
||||
{
|
||||
uint32_t *candidates = malloc(4 << 21);
|
||||
uint32_t *candidates = malloc(4 << 10);
|
||||
if(!candidates) return 0;
|
||||
|
||||
uint32_t c, entry;
|
||||
int size, i;
|
||||
int size = 0, i, good;
|
||||
|
||||
if(!candidates)
|
||||
return 0;
|
||||
|
||||
size = (1 << 21) - 1;
|
||||
for(i = 0; i <= size; ++i)
|
||||
candidates[i] = i;
|
||||
|
||||
for(c = 0; c < 8; ++c)
|
||||
for(i = 0;i <= size; ++i) {
|
||||
entry = candidates[i] ^ fastfwd[isodd][c];
|
||||
|
||||
if(filter(entry >> 1) == BIT(ks[c], isodd))
|
||||
if(filter(entry) == BIT(ks[c], isodd + 2))
|
||||
continue;
|
||||
|
||||
candidates[i--] = candidates[size--];
|
||||
for(i = 0; i < 1 << 21; ++i) {
|
||||
for(c = 0, good = 1; good && c < 8; ++c) {
|
||||
entry = i ^ fastfwd[isodd][c];
|
||||
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
|
||||
good &= (BIT(ks[c], isodd + 2) == filter(entry));
|
||||
}
|
||||
if(good)
|
||||
candidates[size++] = i;
|
||||
}
|
||||
|
||||
candidates[size + 1] = -1;
|
||||
candidates[size] = -1;
|
||||
|
||||
return candidates;
|
||||
}
|
||||
|
||||
/** brute_top
|
||||
/** check_pfx_parity
|
||||
* helper function which eliminates possible secret states using parity bits
|
||||
*/
|
||||
static struct Crypto1State*
|
||||
brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
|
||||
uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)
|
||||
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
|
||||
{
|
||||
struct Crypto1State s;
|
||||
uint32_t ks1, nr, ks2, rr, ks3, good, c;
|
||||
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
|
||||
|
||||
for(c = 0; c < 8; ++c) {
|
||||
s.odd = odd ^ fastfwd[1][c];
|
||||
s.even = even ^ fastfwd[0][c];
|
||||
for(c = 0; good && c < 8; ++c) {
|
||||
sl->odd = odd ^ fastfwd[1][c];
|
||||
sl->even = even ^ fastfwd[0][c];
|
||||
|
||||
lfsr_rollback_bit(&s, 0, 0);
|
||||
lfsr_rollback_bit(&s, 0, 0);
|
||||
lfsr_rollback_bit(&s, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
|
||||
lfsr_rollback_word(&s, 0, 0);
|
||||
lfsr_rollback_word(&s, prefix | c << 5, 1);
|
||||
ks3 = lfsr_rollback_bit(sl, 0, 0);
|
||||
ks2 = lfsr_rollback_word(sl, 0, 0);
|
||||
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
|
||||
|
||||
sl->odd = s.odd;
|
||||
sl->even = s.even;
|
||||
|
||||
if (no_chk)
|
||||
break;
|
||||
|
||||
ks1 = crypto1_word(&s, prefix | c << 5, 1);
|
||||
ks2 = crypto1_word(&s,0,0);
|
||||
ks3 = crypto1_word(&s, 0,0);
|
||||
nr = ks1 ^ (prefix | c << 5);
|
||||
rr = ks2 ^ rresp;
|
||||
|
||||
good = 1;
|
||||
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
|
||||
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
|
||||
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
|
||||
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
|
||||
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
|
||||
|
||||
if(!good)
|
||||
return sl;
|
||||
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
|
||||
}
|
||||
|
||||
return ++sl;
|
||||
return sl + good;
|
||||
}
|
||||
|
||||
|
||||
/** lfsr_common_prefix
|
||||
* Implentation of the common prefix attack.
|
||||
* Requires the 28 bit constant prefix used as reader nonce (pfx)
|
||||
|
@ -587,7 +511,8 @@ brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
|
|||
* It returns a zero terminated list of possible cipher states after the
|
||||
* tag nonce was fed in
|
||||
*/
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)
|
||||
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
|
||||
{
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
@ -595,92 +520,25 @@ struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8]
|
|||
odd = lfsr_prefix_ks(ks, 1);
|
||||
even = lfsr_prefix_ks(ks, 0);
|
||||
|
||||
statelist = malloc((sizeof *statelist) << 21); //how large should be?
|
||||
if(!statelist || !odd || !even)
|
||||
{
|
||||
s = statelist = malloc((sizeof *statelist) << 20);
|
||||
if(!s || !odd || !even) {
|
||||
free(statelist);
|
||||
free(odd);
|
||||
free(even);
|
||||
return 0;
|
||||
}
|
||||
|
||||
s = statelist;
|
||||
for(o = odd; *o != -1; ++o)
|
||||
for(e = even; *e != -1; ++e)
|
||||
for(o = odd; *o + 1; ++o)
|
||||
for(e = even; *e + 1; ++e)
|
||||
for(top = 0; top < 64; ++top) {
|
||||
*o = (*o & 0x1fffff) | (top << 21);
|
||||
*e = (*e & 0x1fffff) | (top >> 3) << 21;
|
||||
s = brute_top(pfx, rr, par, *o, *e, s, no_par);
|
||||
*o += 1 << 21;
|
||||
*e += (!(top & 7) + 1) << 21;
|
||||
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
|
||||
}
|
||||
|
||||
s->odd = s->even = -1;
|
||||
//printf("state count = %d\n",s-statelist);
|
||||
|
||||
free(odd);
|
||||
free(even);
|
||||
|
||||
return statelist;
|
||||
}
|
||||
|
||||
/*
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par, uint32_t nt, uint32_t uid)
|
||||
{
|
||||
long long int amount = 0;
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
||||
odd = lfsr_prefix_ks(ks, 1);
|
||||
even = lfsr_prefix_ks(ks, 0);
|
||||
|
||||
s = statelist = malloc((sizeof *statelist) << 20);
|
||||
if(!s || !odd || !even) {
|
||||
free(odd);
|
||||
free(even);
|
||||
free(statelist);
|
||||
return 0;
|
||||
}
|
||||
|
||||
char filename[50] = "archivo.txt";
|
||||
sprintf(filename, "logs/%x.txt", nt);
|
||||
PrintAndLog("Name: %s\n", filename);
|
||||
FILE *file = fopen(filename,"w+");
|
||||
if ( !file ) {
|
||||
s->odd = s->even = 0;
|
||||
free(odd);
|
||||
free(even);
|
||||
PrintAndLog("Failed to create file");
|
||||
return 0;
|
||||
}
|
||||
PrintAndLog("Creating file... ");
|
||||
uint32_t xored = uid^nt;
|
||||
|
||||
int lastOdd = 0;
|
||||
for(o = odd; *o + 1; ++o)
|
||||
for(e = even; *e + 1; ++e)
|
||||
for(top = 0; top < 64; ++top) {
|
||||
*o += 1 << 21;
|
||||
*e += (!(top & 7) + 1) << 21;
|
||||
|
||||
//added by MG
|
||||
if(lastOdd != statelist->odd){
|
||||
// Here I create a temporal crypto1 state,
|
||||
// where I load the odd and even state and work with it,
|
||||
// in order not to interfere with regular mechanism, This is what I save to file
|
||||
struct Crypto1State *state;
|
||||
lastOdd = state->odd = statelist->odd; state->even = statelist->even;
|
||||
lfsr_rollback_word(state,xored,0);
|
||||
fprintf(file,"%x %x \n",state->odd,state->even);
|
||||
amount++;
|
||||
}
|
||||
//s = check_pfx_parity(pfx, rr, par, *o, *e, s); //This is not useful at all when attacking chineese cards
|
||||
s = brute_top(pfx, rr, par, *o, *e, s, no_par);
|
||||
}
|
||||
|
||||
PrintAndLog("File created, amount %u\n",amount);
|
||||
fclose(file);
|
||||
s->odd = s->even = 0;
|
||||
|
||||
free(odd);
|
||||
free(even);
|
||||
return statelist;
|
||||
}
|
||||
*/
|
||||
return statelist;
|
||||
}
|
|
@ -15,10 +15,10 @@
|
|||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#ifndef CRAPTO1_INCLUDED
|
||||
#define CRAPTO1_INCLUDED
|
||||
#ifndef CRAPTO1_H__
|
||||
#define CRAPTO1_H__
|
||||
#include <stdint.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -36,17 +36,16 @@ uint32_t prng_successor(uint32_t x, uint32_t n);
|
|||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
|
||||
struct Crypto1State*
|
||||
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par);
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8], uint8_t par[8][8]);
|
||||
|
||||
|
||||
void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
||||
void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
||||
void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
||||
int nonce_distance(uint32_t from, uint32_t to);
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
|
||||
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
|
||||
uint32_t __n = 0,__M = 0, N = 0;\
|
||||
int __i;\
|
||||
|
@ -70,22 +69,16 @@ static inline int parity(uint32_t x)
|
|||
x ^= x >> 4;
|
||||
return BIT(0x6996, x & 0xf);
|
||||
#else
|
||||
__asm( "movl %1, %%eax\n"
|
||||
"mov %%ax, %%cx\n"
|
||||
"shrl $0x10, %%eax\n"
|
||||
"xor %%ax, %%cx\n"
|
||||
"xor %%ch, %%cl\n"
|
||||
"setpo %%al\n"
|
||||
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
|
||||
__asm__( "movl %1, %%eax\n"
|
||||
"mov %%ax, %%cx\n"
|
||||
"shrl $0x10, %%eax\n"
|
||||
"xor %%ax, %%cx\n"
|
||||
"xor %%ch, %%cl\n"
|
||||
"setpo %%al\n"
|
||||
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
|
||||
return x;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if !defined LOWMEM && defined __GNUC__
|
||||
extern uint8_t filterlut[1 << 20];
|
||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
||||
#define filter_unsafe(x) (filterlut[x])
|
||||
#else
|
||||
static inline int filter(uint32_t const x)
|
||||
{
|
||||
uint32_t f;
|
||||
|
@ -97,9 +90,6 @@ static inline int filter(uint32_t const x)
|
|||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
||||
return BIT(0xEC57E80A, f);
|
||||
}
|
||||
#define filter_unsafe(x) (filter(x))
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -20,9 +20,6 @@
|
|||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
struct Crypto1State * crypto1_create(uint64_t key)
|
||||
{
|
||||
struct Crypto1State *s = malloc(sizeof(*s));
|
||||
|
@ -38,7 +35,6 @@ void crypto1_destroy(struct Crypto1State *state)
|
|||
{
|
||||
free(state);
|
||||
}
|
||||
|
||||
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
||||
{
|
||||
int i;
|
||||
|
@ -67,13 +63,13 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|||
}
|
||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
/*
|
||||
uint8_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
*/
|
||||
// unfold loop 20161012
|
||||
uint8_t ret = 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
||||
|
@ -87,11 +83,49 @@ uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|||
}
|
||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint32_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 4; ++i, in <<= 8)
|
||||
ret = ret << 8 | crypto1_byte(s, in >> 24, is_encrypted);
|
||||
for (i = 0; i < 32; ++i)
|
||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
||||
*/
|
||||
//unfold loop 2016012
|
||||
uint32_t ret = 0;
|
||||
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
|
@ -9,14 +9,10 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// MIFARE Darkside hack
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#define __STDC_FORMAT_MACROS
|
||||
#include <inttypes.h>
|
||||
#define llx PRIx64
|
||||
|
||||
#include "nonce2key.h"
|
||||
#include "mifarehost.h"
|
||||
#include "ui.h"
|
||||
#include "proxmark3.h"
|
||||
|
||||
int compar_state(const void * a, const void * b) {
|
||||
// didn't work: (the result is truncated to 32 bits)
|
||||
|
@ -31,19 +27,8 @@ int compar_state(const void * a, const void * b) {
|
|||
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
|
||||
|
||||
struct Crypto1State *state;
|
||||
uint32_t i, pos, rr = 0, nr_diff, key_count;//, ks1, ks2;
|
||||
uint32_t i, pos, rr = 0, nr_diff;
|
||||
byte_t bt, ks3x[8], par[8][8];
|
||||
uint64_t key_recovered;
|
||||
int64_t *state_s;
|
||||
|
||||
static uint32_t last_uid;
|
||||
static int64_t *last_keylist;
|
||||
|
||||
if (last_uid != uid && last_keylist != NULL) {
|
||||
free(last_keylist);
|
||||
last_keylist = NULL;
|
||||
}
|
||||
last_uid = uid;
|
||||
|
||||
// Reset the last three significant bits of the reader nonce
|
||||
nr &= 0xffffff1f;
|
||||
|
@ -66,95 +51,16 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
|
|||
nr_diff = nr | i << 5;
|
||||
printf("| %02x |%08x|", i << 5, nr_diff);
|
||||
printf(" %01x | %01x |", ks3x[i], ks3x[i]^5);
|
||||
for (pos = 0; pos < 7; pos++)
|
||||
printf("%01x,", par[i][pos]);
|
||||
for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
|
||||
printf("%01x|\n", par[i][7]);
|
||||
}
|
||||
printf("+----+--------+---+-----+---------------+\n");
|
||||
|
||||
if ( par_info == 0 )
|
||||
PrintAndLog("Parity is all zero, try special attack! Wait for few more seconds...");
|
||||
|
||||
state = lfsr_common_prefix(nr, rr, ks3x, par, par_info==0);
|
||||
state_s = (int64_t*)state;
|
||||
|
||||
//char filename[50] ;
|
||||
//sprintf(filename, "nt_%08x_%d.txt", nt, nr);
|
||||
//printf("name %s\n", filename);
|
||||
//FILE* fp = fopen(filename,"w");
|
||||
for (i = 0; (state) && ((state + i)->odd != -1); i++)
|
||||
{
|
||||
lfsr_rollback_word(state+i, uid^nt, 0);
|
||||
crypto1_get_lfsr(state + i, &key_recovered);
|
||||
*(state_s + i) = key_recovered;
|
||||
//fprintf(fp, "%012llx\n",key_recovered);
|
||||
}
|
||||
//fclose(fp);
|
||||
|
||||
if(!state)
|
||||
return 1;
|
||||
|
||||
// quicksort statelist
|
||||
qsort(state_s, i, sizeof(*state_s), compar_state);
|
||||
|
||||
// set last element marker
|
||||
*(state_s + i) = -1;
|
||||
|
||||
//Create the intersection:
|
||||
if (par_info == 0 ) {
|
||||
if ( last_keylist != NULL) {
|
||||
int64_t *p1, *p2, *p3;
|
||||
p1 = p3 = last_keylist;
|
||||
p2 = state_s;
|
||||
while ( *p1 != -1 && *p2 != -1 ) {
|
||||
if (compar_state(p1, p2) == 0) {
|
||||
printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",
|
||||
(uint64_t)(p1-last_keylist),
|
||||
(uint64_t)(p2-state_s),
|
||||
(uint64_t)(p3-last_keylist),
|
||||
*p1);
|
||||
*p3++ = *p1++;
|
||||
p2++;
|
||||
} else {
|
||||
while (compar_state(p1, p2) == -1) ++p1;
|
||||
while (compar_state(p1, p2) == 1) ++p2;
|
||||
}
|
||||
}
|
||||
key_count = p3 - last_keylist;
|
||||
} else {
|
||||
key_count = 0;
|
||||
}
|
||||
} else {
|
||||
last_keylist = state_s;
|
||||
key_count = i;
|
||||
}
|
||||
|
||||
printf("key candidates count: %d\n", key_count);
|
||||
|
||||
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
||||
int res;
|
||||
uint8_t keyBlock[6];
|
||||
uint64_t key64;
|
||||
for (i = 0; i < key_count; i++) {
|
||||
|
||||
key64 = *(last_keylist + i);
|
||||
num_to_bytes(key64, 6, keyBlock);
|
||||
key64 = 0;
|
||||
// Call tag to verify if key is correct
|
||||
res = mfCheckKeys(0, 0, false, 1, keyBlock, &key64);
|
||||
if (!res) {
|
||||
*key = key64;
|
||||
free(last_keylist);
|
||||
last_keylist = NULL;
|
||||
if (par_info == 0)
|
||||
free(state);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
free(last_keylist);
|
||||
last_keylist = state_s;
|
||||
return 1;
|
||||
state = lfsr_common_prefix(nr, rr, ks3x, par);
|
||||
lfsr_rollback_word(state, uid^nt, 0);
|
||||
crypto1_get_lfsr(state, key);
|
||||
crypto1_destroy(state);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// *outputkey is not used...
|
||||
|
@ -203,8 +109,9 @@ int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
|
|||
break;
|
||||
}
|
||||
}
|
||||
|
||||
num_to_bytes(key, 6, outputkey);
|
||||
crypto1_destroy(t);
|
||||
crypto1_destroy(s);
|
||||
return isSuccess;
|
||||
}
|
||||
|
||||
|
@ -248,8 +155,8 @@ int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
|
|||
break;
|
||||
}
|
||||
}
|
||||
num_to_bytes(key, 6, outputkey);
|
||||
crypto1_destroy(t);
|
||||
crypto1_destroy(s);
|
||||
return isSuccess;
|
||||
}
|
||||
|
||||
|
@ -295,6 +202,7 @@ int tryMfk64(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
|
|||
lfsr_rollback_word(revstate, uid ^ nt, 0);
|
||||
crypto1_get_lfsr(revstate, &key);
|
||||
PrintAndLog("Found Key: [%012"llx"]",key);
|
||||
num_to_bytes(key, 6, outputkey);
|
||||
crypto1_destroy(revstate);
|
||||
return 0;
|
||||
}
|
Loading…
Add table
Reference in a new issue