FIX: this fixes the mftry32, mftry32moebius and trymf64 implementations. Which is used in the "hf mf sim x" and "hf 14a sim x" built in attacks.

ADD: added the nonce2key version which should be able to find the key when the collected PARITIES is ZERO.
This commit is contained in:
iceman1001 2016-04-18 13:08:18 +02:00
parent c805748f34
commit cd91e41cb5
4 changed files with 219 additions and 86 deletions

View file

@ -467,6 +467,24 @@ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, ui
return sl + good;
}
static struct Crypto1State* check_pfx_parity_ex(uint32_t prefix, uint32_t odd, uint32_t even, struct Crypto1State* sl) {
struct Crypto1State s;
uint32_t c = 0;
s.odd = odd ^ fastfwd[1][c];
s.even = even ^ fastfwd[0][c];
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_bit(&s, 0, 0);
lfsr_rollback_word(&s, 0, 0);
lfsr_rollback_word(&s, prefix | c << 5, 1);
sl->odd = s.odd;
sl->even = s.even;
return ++sl;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
@ -507,3 +525,40 @@ out:
free(even);
return statelist;
}
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
// for(o = odd; *o + 1; ++o)
// for(e = even; *e + 1; ++e)
// for(top = 0; top < 64; ++top) {
// *o += 1 << 21;
// *e += (!(top & 7) + 1) << 21;
// s = check_pfx_parity_ex(pfx, *o, *e, s);
// }
for(o = odd; *o != -1; ++o)
for(e = even; *e != -1; ++e)
for(top = 0; top < 64; ++top) {
*o = (*o & 0x1fffff) | (top << 21);
*e = (*e & 0x1fffff) | (top >> 3) << 21;
s = check_pfx_parity_ex(pfx, *o, *e, s);
}
s->odd = s->even = -1;
out:
free(odd);
free(even);
return statelist;
}

View file

@ -39,6 +39,10 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
// douvan's no-parity function
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
@ -82,7 +86,6 @@ static inline int parity(uint32_t x)
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;

View file

@ -15,8 +15,6 @@
#include "proxmark3.h"
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, rr = 0, nr_diff;
byte_t bt, ks3x[8], par[8][8];
@ -24,7 +22,7 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
PrintAndLog("\nuid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n\n", uid, nt, par_info, ks_info, nr);
PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr);
for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
@ -35,9 +33,9 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
}
}
printf("+----+--------+---+-----+---------------+\n");
printf("|diff|{nr} |ks3|ks3^5|parity |\n");
printf("+----+--------+---+-----+---------------+\n");
for ( i = 0; i < 8; i++) {
nr_diff = nr | i << 5;
printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
@ -59,35 +57,120 @@ int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_
return 0;
}
// *outputkey is not used...
int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
// call when PAR == 0, special attack?
int nonce2key_ex(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, key_count;
byte_t ks3x[8];
uint64_t key_recovered;
int64_t *state_s;
static uint32_t last_uid;
static int64_t *last_keylist;
if (last_uid != uid && last_keylist != NULL) {
free(last_keylist);
last_keylist = NULL;
}
last_uid = uid;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr);
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
}
PrintAndLog("parity is all zero,try special attack! just wait for few more seconds");
clock_t t1 = clock();
state = lfsr_common_prefix_ex(nr, ks3x);
state_s = (int64_t*)state;
//char filename[50] ;
//sprintf(filename, "nt_%08x_%d.txt", nt, nr);
//printf("name %s\n", filename);
//FILE* fp = fopen(filename,"w");
for (i = 0; (state) && ((state + i)->odd != -1); i++) {
lfsr_rollback_word(state+i, uid^nt, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
//fprintf(fp, "%012llx\n",key_recovered);
}
//fclose(fp);
if(!state)
return 1;
qsort(state_s, i, sizeof(*state_s), compar_int);
*(state_s + i) = -1;
//Create the intersection:
if ( last_keylist != NULL) {
int64_t *p1, *p2, *p3;
p1 = p3 = last_keylist;
p2 = state_s;
while ( *p1 != -1 && *p2 != -1 ) {
if (compar_int(p1, p2) == 0) {
printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
*p3++ = *p1++;
p2++;
}
else {
while (compar_int(p1, p2) == -1) ++p1;
while (compar_int(p1, p2) == 1) ++p2;
}
}
key_count = p3 - last_keylist;;
} else {
key_count = 0;
}
printf("key_count:%d\n", key_count);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
uint8_t keyBlock[6];
uint64_t key64;
for (i = 0; i < key_count; i++) {
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(0, 0, TRUE, 1, keyBlock, &key64)) { //block 0,A,
*key = key64;
free(last_keylist);
last_keylist = NULL;
free(state);
return 0;
}
}
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in nonce2key_special: %.0f ticks \n", (float)t1);
free(last_keylist);
last_keylist = state_s;
return 1;
}
int tryMfk32(uint8_t *data, uint64_t *outputkey ){
struct Crypto1State *s,*t;
uint64_t key; // recovered key
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response
uint64_t key; // recovered key
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr0_enc = le32toh(data+8); // first encrypted reader challenge
uint32_t ar0_enc = le32toh(data+12); // first encrypted reader response
//+16 uid2
//+20 nt2
uint32_t nr1_enc = le32toh(data+24); // second encrypted reader challenge
uint32_t ar1_enc = le32toh(data+28); // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4);
nt = *(uint32_t*)(data+8);
nr0_enc = *(uint32_t*)(data+12);
ar0_enc = *(uint32_t*)(data+16);
nr1_enc = *(uint32_t*)(data+32);
ar1_enc = *(uint32_t*)(data+36);
// PrintAndLog("recovering key for:");
// PrintAndLog(" uid: %08x %08x",uid, myuid);
// PrintAndLog(" nt: %08x",nt);
// PrintAndLog(" {nr_0}: %08x",nr0_enc);
// PrintAndLog(" {ar_0}: %08x",ar0_enc);
// PrintAndLog(" {nr_1}: %08x",nr1_enc);
// PrintAndLog(" {ar_1}: %08x",ar1_enc);
PrintAndLog("Enter mfkey32");
clock_t t1 = clock();
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
for(t = s; t->odd | t->even; ++t) {
@ -101,37 +184,33 @@ int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
PrintAndLog("Found Key: [%012"llx"]", key);
isSuccess = TRUE;
++counter;
if (counter==20)
if (counter==100)
break;
}
}
num_to_bytes(key, 6, outputkey);
crypto1_destroy(t);
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mf32key: %.0f ticks \n", (float)t1);
*outputkey = ( isSuccess ) ? key : 0;
crypto1_destroy(s);
return isSuccess;
}
int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
int tryMfk32_moebius(uint8_t *data, uint64_t *outputkey ){
struct Crypto1State *s, *t;
uint64_t key; // recovered key
uint32_t uid; // serial number
uint32_t nt0; // tag challenge first
uint32_t nt1; // tag challenge second
uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response
uint64_t key = 0; // recovered key
uint32_t uid = le32toh(data);
uint32_t nt0 = le32toh(data+4); // first tag challenge (nonce)
uint32_t nr0_enc = le32toh(data+8); // first encrypted reader challenge
uint32_t ar0_enc = le32toh(data+12); // first encrypted reader response
//uint32_t uid1 = le32toh(data+16);
uint32_t nt1 = le32toh(data+20); // second tag challenge (nonce)
uint32_t nr1_enc = le32toh(data+24); // second encrypted reader challenge
uint32_t ar1_enc = le32toh(data+28); // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4);
nt0 = *(uint32_t*)(data+8);
nr0_enc = *(uint32_t*)(data+12);
ar0_enc = *(uint32_t*)(data+16);
nt1 = *(uint32_t*)(data+8);
nr1_enc = *(uint32_t*)(data+32);
ar1_enc = *(uint32_t*)(data+36);
PrintAndLog("Enter mfkey32_moebius");
clock_t t1 = clock();
s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
@ -151,54 +230,45 @@ int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
break;
}
}
num_to_bytes(key, 6, outputkey);
crypto1_destroy(t);
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks \n", (float)t1);
*outputkey = ( isSuccess ) ? key : 0;
crypto1_destroy(s);
return isSuccess;
}
int tryMfk64(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
uint32_t at_enc = le32toh(data+16); // encrypted tag response
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
}
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
uint64_t key = 0; // recovered key
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State *revstate;
uint64_t key; // recovered key
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4);
nt = *(uint32_t*)(data+8);
nr_enc = *(uint32_t*)(data+12);
ar_enc = *(uint32_t*)(data+16);
PrintAndLog("Enter mfkey64");
clock_t t1 = clock();
crypto1_word(pcs, nr_enc , 1);
at_enc = prng_successor(nt, 96) ^ crypto1_word(pcs, 0, 0);
// printf("Recovering key for:\n");
// printf(" uid: %08x\n",uid);
// printf(" nt: %08x\n",nt);
// printf(" {nr}: %08x\n",nr_enc);
// printf(" {ar}: %08x\n",ar_enc);
// printf(" {at}: %08x\n",at_enc);
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLog("Found Key: [%012"llx"]",key);
num_to_bytes(key, 6, outputkey);
PrintAndLog("Found Key: [%012"llx"]", key);
crypto1_destroy(revstate);
*outputkey = key;
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
return 0;
}

View file

@ -2,7 +2,7 @@
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
// icemane - may 2015
// iceman - may 2015
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
@ -19,7 +19,12 @@
#include "common.h"
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey );
int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey );
int tryMfk64(uint64_t myuid, uint8_t *data, uint8_t *outputkey );
int nonce2key_ex(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key);
//iceman, added these to be able to crack key direct from "hf 14 sim" && "hf mf sim"
int tryMfk32(uint8_t *data, uint64_t *outputkey );
int tryMfk32_moebius(uint8_t *data, uint64_t *outputkey ); // <<-- this one has best success
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey );
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey);
#endif