mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-03-09 22:46:46 +08:00
CHG: the device-side code for "hf 14a sim x"
BUG: bcc1 xored error fix in "hf mf sim" CHG: function rename Snoop -> Sniff.
This commit is contained in:
parent
e7e9508883
commit
d26849d4ae
1 changed files with 119 additions and 58 deletions
|
@ -561,7 +561,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
|
|||
// triggering so that we start recording at the point that the tag is moved
|
||||
// near the reader.
|
||||
//-----------------------------------------------------------------------------
|
||||
void RAMFUNC SnoopIso14443a(uint8_t param) {
|
||||
void RAMFUNC SniffIso14443a(uint8_t param) {
|
||||
// param:
|
||||
// bit 0 - trigger from first card answer
|
||||
// bit 1 - trigger from first reader 7-bit request
|
||||
|
@ -935,8 +935,15 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
|
|||
// Main loop of simulated tag: receive commands from reader, decide what
|
||||
// response to send, and send it.
|
||||
//-----------------------------------------------------------------------------
|
||||
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
|
||||
void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
|
||||
{
|
||||
|
||||
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
|
||||
// This can be used in a reader-only attack.
|
||||
// (it can also be retrieved via 'hf 14a list', but hey...
|
||||
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
|
||||
uint8_t ar_nr_collected = 0;
|
||||
|
||||
uint8_t sak;
|
||||
|
||||
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
|
||||
|
@ -972,7 +979,13 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
|
|||
response1[0] = 0x01;
|
||||
response1[1] = 0x0f;
|
||||
sak = 0x01;
|
||||
} break;
|
||||
} break;
|
||||
case 6: { // MIFARE Mini
|
||||
// Says: I am a Mifare Mini, 320b
|
||||
response1[0] = 0x44;
|
||||
response1[1] = 0x00;
|
||||
sak = 0x09;
|
||||
} break;
|
||||
default: {
|
||||
Dbprintf("Error: unkown tagtype (%d)",tagType);
|
||||
return;
|
||||
|
@ -985,17 +998,24 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
|
|||
// Check if the uid uses the (optional) part
|
||||
uint8_t response2a[5] = {0x00};
|
||||
|
||||
if (uid_2nd) {
|
||||
if (flags & FLAG_7B_UID_IN_DATA) {
|
||||
response2[0] = 0x88;
|
||||
num_to_bytes(uid_1st,3,response2+1);
|
||||
num_to_bytes(uid_2nd,4,response2a);
|
||||
response2[1] = data[0];
|
||||
response2[2] = data[1];
|
||||
response2[3] = data[2];
|
||||
|
||||
response2a[0] = data[3];
|
||||
response2a[1] = data[4];
|
||||
response2a[2] = data[5];
|
||||
response2a[3] = data[7];
|
||||
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
|
||||
|
||||
// Configure the ATQA and SAK accordingly
|
||||
response1[0] |= 0x40;
|
||||
sak |= 0x04;
|
||||
} else {
|
||||
num_to_bytes(uid_1st,4,response2);
|
||||
memcpy(response2, data, 4);
|
||||
//num_to_bytes(uid_1st,4,response2);
|
||||
// Configure the ATQA and SAK accordingly
|
||||
response1[0] &= 0xBF;
|
||||
sak &= 0xFB;
|
||||
|
@ -1129,9 +1149,46 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
|
|||
if (tracing) {
|
||||
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
|
||||
}
|
||||
uint32_t nonce = bytes_to_num(response5,4);
|
||||
uint32_t nr = bytes_to_num(receivedCmd,4);
|
||||
uint32_t ar = bytes_to_num(receivedCmd+4,4);
|
||||
Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
|
||||
//Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
|
||||
|
||||
if(flags & FLAG_NR_AR_ATTACK )
|
||||
{
|
||||
if(ar_nr_collected < 2){
|
||||
// Avoid duplicates... probably not necessary, nr should vary.
|
||||
//if(ar_nr_responses[3] != nr){
|
||||
ar_nr_responses[ar_nr_collected*5] = 0;
|
||||
ar_nr_responses[ar_nr_collected*5+1] = 0;
|
||||
ar_nr_responses[ar_nr_collected*5+2] = nonce;
|
||||
ar_nr_responses[ar_nr_collected*5+3] = nr;
|
||||
ar_nr_responses[ar_nr_collected*5+4] = ar;
|
||||
ar_nr_collected++;
|
||||
//}
|
||||
}
|
||||
|
||||
if(ar_nr_collected > 1 ) {
|
||||
|
||||
if (MF_DBGLEVEL >= 2) {
|
||||
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
|
||||
Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
|
||||
ar_nr_responses[0], // UID1
|
||||
ar_nr_responses[1], // UID2
|
||||
ar_nr_responses[2], // NT
|
||||
ar_nr_responses[3], // AR1
|
||||
ar_nr_responses[4], // NR1
|
||||
ar_nr_responses[8], // AR2
|
||||
ar_nr_responses[9] // NR2
|
||||
);
|
||||
}
|
||||
uint8_t len = ar_nr_collected*5*4;
|
||||
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
|
||||
ar_nr_collected = 0;
|
||||
memset(ar_nr_responses, 0x00, len);
|
||||
Dbprintf("ICE");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Check for ISO 14443A-4 compliant commands, look at left nibble
|
||||
switch (receivedCmd[0]) {
|
||||
|
@ -1235,6 +1292,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
|
|||
}
|
||||
}
|
||||
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
|
||||
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
|
||||
LED_A_OFF();
|
||||
BigBuf_free_keep_EM();
|
||||
|
@ -1958,7 +2017,7 @@ void ReaderIso14443a(UsbCommand *c)
|
|||
if(param & ISO14A_TOPAZMODE) {
|
||||
AppendCrc14443b(cmd,len);
|
||||
} else {
|
||||
AppendCrc14443a(cmd,len);
|
||||
AppendCrc14443a(cmd,len);
|
||||
}
|
||||
len += 2;
|
||||
if (lenbits) lenbits += 16;
|
||||
|
@ -2010,13 +2069,11 @@ void ReaderIso14443a(UsbCommand *c)
|
|||
// Therefore try in alternating directions.
|
||||
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
|
||||
|
||||
uint16_t i;
|
||||
uint32_t nttmp1, nttmp2;
|
||||
|
||||
if (nt1 == nt2) return 0;
|
||||
|
||||
nttmp1 = nt1;
|
||||
nttmp2 = nt2;
|
||||
uint16_t i;
|
||||
uint32_t nttmp1 = nt1;
|
||||
uint32_t nttmp2 = nt2;
|
||||
|
||||
for (i = 1; i < 32768; i++) {
|
||||
nttmp1 = prng_successor(nttmp1, 1);
|
||||
|
@ -2035,28 +2092,27 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
|
|||
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
|
||||
// (article by Nicolas T. Courtois, 2009)
|
||||
//-----------------------------------------------------------------------------
|
||||
void ReaderMifare(bool first_try)
|
||||
{
|
||||
// Mifare AUTH
|
||||
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
||||
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
||||
static uint8_t mf_nr_ar3;
|
||||
|
||||
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
|
||||
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
|
||||
|
||||
void ReaderMifare(bool first_try) {
|
||||
// free eventually allocated BigBuf memory. We want all for tracing.
|
||||
BigBuf_free();
|
||||
|
||||
clear_trace();
|
||||
set_tracing(TRUE);
|
||||
|
||||
// Mifare AUTH
|
||||
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
||||
uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
|
||||
static uint8_t mf_nr_ar3 = 0;
|
||||
|
||||
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
|
||||
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
|
||||
|
||||
byte_t nt_diff = 0;
|
||||
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
|
||||
static byte_t par_low = 0;
|
||||
bool led_on = TRUE;
|
||||
uint8_t uid[10] ={0};
|
||||
uint32_t cuid;
|
||||
uint8_t uid[10] = {0x00};
|
||||
//uint32_t cuid = 0x00;
|
||||
|
||||
uint32_t nt = 0;
|
||||
uint32_t previous_nt = 0;
|
||||
|
@ -2064,13 +2120,15 @@ void ReaderMifare(bool first_try)
|
|||
byte_t par_list[8] = {0x00};
|
||||
byte_t ks_list[8] = {0x00};
|
||||
|
||||
static uint32_t sync_time;
|
||||
static uint32_t sync_cycles;
|
||||
static uint32_t sync_time = 0;
|
||||
static uint32_t sync_cycles = 0;
|
||||
int catch_up_cycles = 0;
|
||||
int last_catch_up = 0;
|
||||
uint16_t consecutive_resyncs = 0;
|
||||
int isOK = 0;
|
||||
|
||||
int numWrongDistance = 0;
|
||||
|
||||
if (first_try) {
|
||||
mf_nr_ar3 = 0;
|
||||
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
|
||||
|
@ -2090,20 +2148,22 @@ void ReaderMifare(bool first_try)
|
|||
LED_A_ON();
|
||||
LED_B_OFF();
|
||||
LED_C_OFF();
|
||||
|
||||
LED_C_ON();
|
||||
|
||||
for(uint16_t i = 0; TRUE; i++) {
|
||||
|
||||
WDT_HIT();
|
||||
|
||||
// Test if the action was cancelled
|
||||
if(BUTTON_PRESS()) {
|
||||
if(BUTTON_PRESS()) break;
|
||||
|
||||
if (numWrongDistance > 1000) {
|
||||
isOK = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
LED_C_ON();
|
||||
|
||||
if(!iso14443a_select_card(uid, NULL, &cuid)) {
|
||||
//if(!iso14443a_select_card(uid, NULL, &cuid)) {
|
||||
if(!iso14443a_select_card(uid, NULL, NULL)) {
|
||||
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
|
||||
continue;
|
||||
}
|
||||
|
@ -2137,9 +2197,14 @@ void ReaderMifare(bool first_try)
|
|||
nt_attacked = nt;
|
||||
}
|
||||
else {
|
||||
if (nt_distance == -99999) { // invalid nonce received, try again
|
||||
|
||||
// invalid nonce received, try again
|
||||
if (nt_distance == -99999) {
|
||||
numWrongDistance++;
|
||||
if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
|
||||
continue;
|
||||
}
|
||||
|
||||
sync_cycles = (sync_cycles - nt_distance);
|
||||
if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
|
||||
continue;
|
||||
|
@ -2148,7 +2213,7 @@ void ReaderMifare(bool first_try)
|
|||
|
||||
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
|
||||
catch_up_cycles = -dist_nt(nt_attacked, nt);
|
||||
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
|
||||
if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
|
||||
catch_up_cycles = 0;
|
||||
continue;
|
||||
}
|
||||
|
@ -2206,10 +2271,10 @@ void ReaderMifare(bool first_try)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
mf_nr_ar[3] &= 0x1F;
|
||||
|
||||
byte_t buf[28];
|
||||
byte_t buf[28] = {0x00};
|
||||
|
||||
memcpy(buf + 0, uid, 4);
|
||||
num_to_bytes(nt, 4, buf + 4);
|
||||
memcpy(buf + 8, par_list, 8);
|
||||
|
@ -2218,14 +2283,13 @@ void ReaderMifare(bool first_try)
|
|||
|
||||
cmd_send(CMD_ACK,isOK,0,0,buf,28);
|
||||
|
||||
// Thats it...
|
||||
set_tracing(FALSE);
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||||
LEDsoff();
|
||||
|
||||
set_tracing(FALSE);
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
/*
|
||||
*MIFARE 1K simulate.
|
||||
*
|
||||
*@param flags :
|
||||
|
@ -2321,6 +2385,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
|||
if (_7BUID) {
|
||||
rATQA[0] = 0x44;
|
||||
rUIDBCC1[0] = 0x88;
|
||||
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
||||
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
|
||||
}
|
||||
|
||||
|
@ -2438,7 +2503,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
|||
if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
|
||||
{
|
||||
finished = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- crypto
|
||||
|
@ -2714,20 +2779,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
|||
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
|
||||
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
|
||||
ar_nr_responses[0], // UID
|
||||
ar_nr_responses[1], //NT
|
||||
ar_nr_responses[2], //AR1
|
||||
ar_nr_responses[3], //NR1
|
||||
ar_nr_responses[6], //AR2
|
||||
ar_nr_responses[7] //NR2
|
||||
ar_nr_responses[1], // NT
|
||||
ar_nr_responses[2], // AR1
|
||||
ar_nr_responses[3], // NR1
|
||||
ar_nr_responses[6], // AR2
|
||||
ar_nr_responses[7] // NR2
|
||||
);
|
||||
} else {
|
||||
Dbprintf("Failed to obtain two AR/NR pairs!");
|
||||
if(ar_nr_collected > 0 ) {
|
||||
Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
|
||||
ar_nr_responses[0], // UID
|
||||
ar_nr_responses[1], //NT
|
||||
ar_nr_responses[2], //AR1
|
||||
ar_nr_responses[3] //NR1
|
||||
ar_nr_responses[1], // NT
|
||||
ar_nr_responses[2], // AR1
|
||||
ar_nr_responses[3] // NR1
|
||||
);
|
||||
}
|
||||
}
|
||||
|
@ -2737,7 +2802,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
|
|||
}
|
||||
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// MIFARE sniffer.
|
||||
//
|
||||
|
@ -2747,6 +2811,9 @@ void RAMFUNC SniffMifare(uint8_t param) {
|
|||
// bit 0 - trigger from first card answer
|
||||
// bit 1 - trigger from first reader 7-bit request
|
||||
|
||||
// free eventually allocated BigBuf memory
|
||||
BigBuf_free();
|
||||
|
||||
// C(red) A(yellow) B(green)
|
||||
LEDsoff();
|
||||
// init trace buffer
|
||||
|
@ -2762,12 +2829,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
|
|||
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
|
||||
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
|
||||
|
||||
// As we receive stuff, we copy it from receivedCmd or receivedResponse
|
||||
// into trace, along with its length and other annotations.
|
||||
//uint8_t *trace = (uint8_t *)BigBuf;
|
||||
|
||||
// free eventually allocated BigBuf memory
|
||||
BigBuf_free();
|
||||
// allocate the DMA buffer, used to stream samples from the FPGA
|
||||
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
||||
uint8_t *data = dmaBuf;
|
||||
|
@ -2899,4 +2960,4 @@ void RAMFUNC SniffMifare(uint8_t param) {
|
|||
|
||||
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
|
||||
LEDsoff();
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue