partial make style

This commit is contained in:
Philippe Teuwen 2019-08-27 17:28:08 +02:00
parent 13aa4ee6ab
commit d88b76beda
2 changed files with 119 additions and 119 deletions

View file

@ -71,7 +71,7 @@
* Removing many unnecessary bit maskings (& 0x1)
* updating state in place instead of alternating use of a second state structure
* remove the necessity to reverse bits of input and output bytes
opt_doTagMAC_2() now completes in 270 microseconds.
-- piwi 2019
@ -80,22 +80,22 @@
#include "optimized_cipher.h"
static const uint8_t opt_select_LUT[256] = {
00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04,
01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06,
06, 05, 04, 07, 04, 05, 06, 07, 02, 01, 01, 02, 00, 01, 03, 02,
03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00,
05, 06, 07, 04, 06, 07, 04, 05, 05, 06, 06, 05, 06, 07, 05, 04,
02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
02, 01, 00, 03, 00, 01, 02, 03, 02, 01, 01, 02, 00, 01, 03, 02,
03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00,
01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00
00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04,
01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06,
06, 05, 04, 07, 04, 05, 06, 07, 02, 01, 01, 02, 00, 01, 03, 02,
03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00,
05, 06, 07, 04, 06, 07, 04, 05, 05, 06, 06, 05, 06, 07, 05, 04,
02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
02, 01, 00, 03, 00, 01, 02, 03, 02, 01, 01, 02, 00, 01, 03, 02,
03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00,
01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00
};
/********************** the table above has been generated with this code: ********
@ -143,65 +143,65 @@ uint8_t xopt__select(bool x, bool y, uint8_t r)
static void opt_successor(const uint8_t *k, State *s, uint8_t y) {
// #define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14) ^ (s->t >> 10) ^ (s->t >> 8) ^ (s->t >> 5) ^ (s->t >> 4)^ (s->t >> 1) ^ s->t))
// uint8_t Tt = opt_T(s);
uint16_t Tt = s->t & 0xc533;
Tt = Tt ^ (Tt >> 1);
Tt = Tt ^ (Tt >> 4);
Tt = Tt ^ (Tt >> 10);
Tt = Tt ^ (Tt >> 8);
// uint8_t Tt = opt_T(s);
uint16_t Tt = s->t & 0xc533;
Tt = Tt ^ (Tt >> 1);
Tt = Tt ^ (Tt >> 4);
Tt = Tt ^ (Tt >> 10);
Tt = Tt ^ (Tt >> 8);
s->t = (s->t >> 1);
s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
s->t = (s->t >> 1);
s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
uint8_t opt_B = s->b;
opt_B ^= s->b >> 6;
opt_B ^= s->b >> 5;
opt_B ^= s->b >> 4;
uint8_t opt_B = s->b;
opt_B ^= s->b >> 6;
opt_B ^= s->b >> 5;
opt_B ^= s->b >> 4;
s->b = s->b >> 1;
s->b |= (opt_B ^ s->r) << 7;
s->b = s->b >> 1;
s->b |= (opt_B ^ s->r) << 7;
uint8_t opt_select = opt_select_LUT[s->r] & 0x04;
opt_select |= (opt_select_LUT[s->r] ^ ((Tt ^ y) << 1)) & 0x02;
opt_select |= (opt_select_LUT[s->r] ^ Tt) & 0x01;
uint8_t opt_select = opt_select_LUT[s->r] & 0x04;
opt_select |= (opt_select_LUT[s->r] ^ ((Tt ^ y) << 1)) & 0x02;
opt_select |= (opt_select_LUT[s->r] ^ Tt) & 0x01;
uint8_t r = s->r;
s->r = (k[opt_select] ^ s->b) + s->l ;
s->l = s->r + r;
uint8_t r = s->r;
s->r = (k[opt_select] ^ s->b) + s->l ;
s->l = s->r + r;
}
static void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, bool add32Zeroes) {
for (int i = 0; i < length; i++) {
uint8_t head;
head = in[i];
opt_successor(k, s, head);
head = in[i];
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
head >>= 1;
opt_successor(k, s, head);
}
//For tag MAC, an additional 32 zeroes
if (add32Zeroes) {
for (int i = 0; i < 16; i++) {
opt_successor(k, s, 0);
opt_successor(k, s, 0);
opt_successor(k, s, 0);
opt_successor(k, s, 0);
}
}
}
@ -209,22 +209,22 @@ static void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, boo
static void opt_output(const uint8_t *k, State *s, uint8_t *buffer) {
for (uint8_t times = 0; times < 4; times++) {
uint8_t bout = 0;
bout |= (s->r & 0x4) >> 2;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) >> 2;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) >> 1;
opt_successor(k, s, 0);
bout |= (s->r & 0x4);
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 1;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 2;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 3;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 4;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 5;
opt_successor(k, s, 0);
opt_successor(k, s, 0);
bout |= (s->r & 0x4);
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 1;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 2;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 3;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 4;
opt_successor(k, s, 0);
bout |= (s->r & 0x4) << 5;
opt_successor(k, s, 0);
buffer[times] = bout;
}
}
@ -243,8 +243,8 @@ static void opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) {
void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
uint8_t dest [] = {0, 0, 0, 0, 0, 0, 0, 0};
opt_MAC(div_key_p, cc_nr_p, dest);
memcpy(mac, dest, 4);
opt_MAC(div_key_p, cc_nr_p, dest);
memcpy(mac, dest, 4);
return;
}
@ -255,8 +255,8 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) {
0x4c, // b
0xE012 // t
};
opt_suc(div_key_p, &_init, cc_p, 12, true);
opt_output(div_key_p, &_init, mac);
opt_suc(div_key_p, &_init, cc_p, 12, true);
opt_output(div_key_p, &_init, mac);
return;
}
@ -275,7 +275,7 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
0x4c, // b
0xE012 // t
};
opt_suc(div_key_p, &_init, cc_p, 8, false);
opt_suc(div_key_p, &_init, cc_p, 8, false);
return _init;
}
@ -289,7 +289,7 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
* @param div_key_p - the key to use
*/
void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
opt_suc(div_key_p, &_init, nr, 4, true);
opt_output(div_key_p, &_init, mac);
opt_suc(div_key_p, &_init, nr, 4, true);
opt_output(div_key_p, &_init, mac);
return;
}

View file

@ -752,10 +752,10 @@ static uint8_t NumBlocksPerSector(uint8_t sectorNo) {
}
}
static uint8_t GetSectorFromBlockNo(uint8_t blockNo) {
if ( blockNo < 128 )
return blockNo / 4;
else
return 32 + ((128 - blockNo) / 16);
if (blockNo < 128)
return blockNo / 4;
else
return 32 + ((128 - blockNo) / 16);
}
static int CmdHF14AMfDump(const char *Cmd) {
@ -963,11 +963,11 @@ static int CmdHF14AMfDump(const char *Cmd) {
PrintAndLogEx(SUCCESS, "\nSucceded in dumping all blocks");
if (strlen(dataFilename) < 1) {
fptr = GenerateFilename("hf-mf-", "-data");
if (fptr == NULL)
return PM3_ESOFT;
fptr = GenerateFilename("hf-mf-", "-data");
if (fptr == NULL)
return PM3_ESOFT;
strcpy(dataFilename, fptr);
strcpy(dataFilename, fptr);
}
uint16_t bytes = 16 * (FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1));
@ -1229,9 +1229,9 @@ static int CmdHF14AMfNested(const char *Cmd) {
e_sector = calloc(SectorsCnt, sizeof(sector_t));
if (e_sector == NULL) return PM3_EMALLOC;
// add our known key
e_sector[GetSectorFromBlockNo(blockNo)].foundKey[keyType] = 1;
e_sector[GetSectorFromBlockNo(blockNo)].Key[keyType] = key64;
// add our known key
e_sector[GetSectorFromBlockNo(blockNo)].foundKey[keyType] = 1;
e_sector[GetSectorFromBlockNo(blockNo)].Key[keyType] = key64;
//test current key and additional standard keys first
// add parameter key
@ -1703,7 +1703,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Create the key storage stucture
e_sector = calloc(sectors_cnt, sizeof(sector_t));
if (e_sector == NULL) return PM3_EMALLOC;
// clear the key storage
for (int i = 0; i < sectors_cnt; i++) {
for (int j = 0; j < 2; j++) {
@ -1740,7 +1740,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
blockNo,
keyType ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
// Store the key for the nested / hardnested attack (if supplied by the user)
e_sector[blockNo].Key[keyType] = bytes_to_num(key, 6);
@ -1751,7 +1751,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
blockNo,
keyType ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
PrintAndLogEx(WARNING, "Falling back to dictionary");
}
// Check if the user supplied key is used by other sectors
@ -1765,7 +1765,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
i,
j ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
// If the user supplied secctor / keytype was wrong --> just be nice and correct it ;)
if (know_target_key == false) {
@ -1778,7 +1778,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
blockNo,
keyType ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
}
}
}
@ -1792,7 +1792,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
loadFileDICTIONARY(filename, keyBlock, &data_length, 6, &key_cnt);
if ((data_length / 6) > max_dictionary_size) {
// This is not a good solution (loadFileDICTIONARY needs a maxdatalen)!
// loadfiledictionary will reallocate to correct size.
// loadfiledictionary will reallocate to correct size.
PrintAndLogEx(FAILED, "Dictionary is too large: %d (allowed: %d)", data_length, max_dictionary_size);
free(keyBlock);
free(e_sector);
@ -1813,7 +1813,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Use the dictionary to find sector keys on the card
PrintAndLogEx(INFO, "Enter dictionary run...");
if (legacy_mfchk) {
// Check all the sectors
for (int i = 0; i < sectors_cnt; i++) {
@ -1877,7 +1877,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
i,
j ? 'B' : 'A',
sprint_hex(tmp_key, sizeof(tmp_key))
);
);
// Store valid credentials for the nested / hardnested attack if none exist
if (know_target_key == false) {
@ -1890,7 +1890,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
blockNo,
keyType ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
}
}
}
@ -1931,7 +1931,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
blockNo,
keyType ? 'B' : 'A',
sprint_hex(key, sizeof(key))
);
);
goto noValidKeyFound;
}
// Store the keys
@ -1965,17 +1965,17 @@ noValidKeyFound:
for (int j = 0; j < 2; j++) {
// Check if the sector key is already broken
if (e_sector[i].foundKey[j])
continue;
// Check if the key works
if (mfCheckKeys(FirstBlockOfSector(i), j, true, 1, tmp_key, &key64) == PM3_SUCCESS) {
e_sector[i].Key[j] = bytes_to_num(tmp_key, 6);
e_sector[i].foundKey[j] = 4;
PrintAndLogEx(SUCCESS, "Found valid key: sector: %3d key type: %c key: " _YELLOW_("%s"),
i,
j ? 'B' : 'A',
sprint_hex(tmp_key, sizeof(tmp_key))
);
continue;
// Check if the key works
if (mfCheckKeys(FirstBlockOfSector(i), j, true, 1, tmp_key, &key64) == PM3_SUCCESS) {
e_sector[i].Key[j] = bytes_to_num(tmp_key, 6);
e_sector[i].foundKey[j] = 4;
PrintAndLogEx(SUCCESS, "Found valid key: sector: %3d key type: %c key: " _YELLOW_("%s"),
i,
j ? 'B' : 'A',
sprint_hex(tmp_key, sizeof(tmp_key))
);
}
}
}
@ -2063,7 +2063,7 @@ tryHardnested: // If the nested attack fails then we try the hardnested attack
current_sector_i,
current_key_type_i ? 'B' : 'A',
sprint_hex(tmp_key, sizeof(tmp_key))
);
);
}
}
}
@ -2089,7 +2089,7 @@ tryHardnested: // If the nested attack fails then we try the hardnested attack
createMfcKeyDump(sectors_cnt, e_sector, GenerateFilename("hf-mf-", "-key.bin"));
PrintAndLogEx(SUCCESS, "Transferring keys to simulator memory (Cmd Error: 04 can occur)");
for (current_sector_i = 0; current_sector_i < sectors_cnt; current_sector_i++) {
mfEmlGetMem(block, current_sector_i, 1);
if (e_sector[current_sector_i].foundKey[0])
@ -2100,11 +2100,11 @@ tryHardnested: // If the nested attack fails then we try the hardnested attack
mfEmlSetMem(block, FirstBlockOfSector(current_sector_i) + NumBlocksPerSector(current_sector_i) - 1, 1);
}
// using ecfill trick, keys already in emulator mem, load data using Key A
// using ecfill trick, keys already in emulator mem, load data using Key A
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 0, 0, NULL, 0);
// using ecfill trick, keys already in emulator mem, load data using Key B
// using ecfill trick, keys already in emulator mem, load data using Key B
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 1, 0, NULL, 0);
@ -2126,13 +2126,13 @@ tryHardnested: // If the nested attack fails then we try the hardnested attack
}
fnameptr = GenerateFilename("hf-mf-", "-data");
if (fnameptr == NULL) {
free(dump);
free(e_sector);
return PM3_ESOFT;
if (fnameptr == NULL) {
free(dump);
free(e_sector);
return PM3_ESOFT;
}
strcpy(filename, fnameptr);
strcpy(filename, fnameptr);
saveFile(filename, ".bin", dump, bytes);
saveFileEML(filename, dump, bytes, MFBLOCK_SIZE);
saveFileJSON(filename, jsfCardMemory, dump, bytes);