mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-02-13 02:34:48 +08:00
commit
eb0b5116a2
10 changed files with 546 additions and 58 deletions
|
@ -54,7 +54,7 @@ SRC_FELICA = felica.c
|
|||
SRC_CRAPTO1 = crypto1.c des.c aes.c desfire_key.c desfire_crypto.c mifaredesfire.c
|
||||
SRC_CRC = crc.c crc16.c crc32.c
|
||||
SRC_ICLASS = iclass.c optimized_cipher.c
|
||||
SRC_LEGIC = legicrf.c legic_prng.c
|
||||
SRC_LEGIC = legicrf.c legicrfsim.c legic_prng.c
|
||||
SRC_BEE = bee.c
|
||||
|
||||
# RDV40 related hardware support
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include "printf.h"
|
||||
#include "string.h"
|
||||
#include "legicrf.h"
|
||||
#include "legicrfsim.h"
|
||||
#include "lfsampling.h"
|
||||
#include "BigBuf.h"
|
||||
#include "mifareutil.h"
|
||||
|
@ -796,10 +797,10 @@ void UsbPacketReceived(uint8_t *packet, int len) {
|
|||
|
||||
#ifdef WITH_LEGICRF
|
||||
case CMD_SIMULATE_TAG_LEGIC_RF:
|
||||
LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
|
||||
LegicRfSimulate(c->arg[0]);
|
||||
break;
|
||||
case CMD_WRITER_LEGIC_RF:
|
||||
LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||||
LegicRfWriter(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||||
break;
|
||||
case CMD_READER_LEGIC_RF:
|
||||
LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
|
||||
// 2016 Iceman
|
||||
// 2018 AntiCat (rwd rewritten)
|
||||
// 2018 AntiCat
|
||||
//
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
|
@ -16,7 +16,7 @@
|
|||
#include "legic_prng.h" /* legic PRNG impl */
|
||||
#include "legic.h" /* legic_card_select_t struct */
|
||||
|
||||
static uint8_t* legic_mem; /* card memory, used for read, write and sim */
|
||||
static uint8_t* legic_mem; /* card memory, used for read, write */
|
||||
static legic_card_select_t card;/* metadata of currently selected card */
|
||||
static crc_t legic_crc;
|
||||
|
||||
|
@ -179,7 +179,7 @@ static uint32_t rx_frame(uint8_t len) {
|
|||
uint32_t last_frame_start = last_frame_end;
|
||||
|
||||
uint32_t frame = 0;
|
||||
for(uint8_t i = 0; i < len; i++) {
|
||||
for(uint8_t i = 0; i < len; ++i) {
|
||||
frame |= (rx_bit() ^ legic_prng_get_bit()) << i;
|
||||
legic_prng_forward(1);
|
||||
|
||||
|
@ -235,7 +235,7 @@ static bool rx_ack() {
|
|||
// Legic Reader
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
|
||||
static int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
|
||||
p_card->tagtype = cardtype;
|
||||
|
||||
switch(p_card->tagtype) {
|
||||
|
@ -302,8 +302,8 @@ static void init_reader(bool clear_mem) {
|
|||
// The setup consists of a three way handshake:
|
||||
// - Transmit initialisation vector 7 bits
|
||||
// - Receive card type 6 bits
|
||||
// - Acknowledge frame 6 bits
|
||||
static uint32_t setup_phase_reader(uint8_t iv) {
|
||||
// - Transmit Acknowledge 6 bits
|
||||
static uint32_t setup_phase(uint8_t iv) {
|
||||
// init coordination timestamp
|
||||
last_frame_end = GET_TICKS;
|
||||
|
||||
|
@ -314,7 +314,7 @@ static uint32_t setup_phase_reader(uint8_t iv) {
|
|||
legic_prng_init(0);
|
||||
tx_frame(iv, 7);
|
||||
|
||||
// configure iv
|
||||
// configure prng
|
||||
legic_prng_init(iv);
|
||||
legic_prng_forward(2);
|
||||
|
||||
|
@ -398,7 +398,7 @@ void LegicRfInfo(void) {
|
|||
init_reader(false);
|
||||
|
||||
// establish shared secret and detect card type
|
||||
uint8_t card_type = setup_phase_reader(0x01);
|
||||
uint8_t card_type = setup_phase(0x01);
|
||||
if(init_card(card_type, &card) != 0) {
|
||||
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
|
||||
goto OUT;
|
||||
|
@ -435,7 +435,7 @@ void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
|
|||
init_reader(false);
|
||||
|
||||
// establish shared secret and detect card type
|
||||
uint8_t card_type = setup_phase_reader(iv);
|
||||
uint8_t card_type = setup_phase(iv);
|
||||
if(init_card(card_type, &card) != 0) {
|
||||
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
|
||||
goto OUT;
|
||||
|
@ -474,7 +474,7 @@ void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
|
|||
}
|
||||
|
||||
// establish shared secret and detect card type
|
||||
uint8_t card_type = setup_phase_reader(iv);
|
||||
uint8_t card_type = setup_phase(iv);
|
||||
if(init_card(card_type, &card) != 0) {
|
||||
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
|
||||
goto OUT;
|
||||
|
@ -501,7 +501,3 @@ OUT:
|
|||
switch_off();
|
||||
StopTicks();
|
||||
}
|
||||
|
||||
void LegicRfSimulate(int phase, int frame, int reqresp) {
|
||||
cmd_send(CMD_ACK, 0, 0, 0, 0, 0); //TODO Implement
|
||||
}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
|
||||
// 2018 AntiCat
|
||||
//
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
|
@ -16,6 +17,5 @@
|
|||
extern void LegicRfInfo(void);
|
||||
extern void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv);
|
||||
extern void LegicRfWriter(uint16_t offset, uint16_t byte, uint8_t iv, uint8_t *data);
|
||||
extern void LegicRfSimulate(int phase, int frame, int reqresp);
|
||||
|
||||
#endif /* __LEGICRF_H */
|
||||
|
|
486
armsrc/legicrfsim.c
Normal file
486
armsrc/legicrfsim.c
Normal file
|
@ -0,0 +1,486 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
|
||||
// 2016 Iceman
|
||||
// 2018 AntiCat
|
||||
//
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
// the license.
|
||||
//-----------------------------------------------------------------------------
|
||||
// LEGIC RF simulation code
|
||||
//-----------------------------------------------------------------------------
|
||||
#include "legicrf.h"
|
||||
|
||||
#include "ticks.h" /* timers */
|
||||
#include "crc.h" /* legic crc-4 */
|
||||
#include "legic_prng.h" /* legic PRNG impl */
|
||||
#include "legic.h" /* legic_card_select_t struct */
|
||||
|
||||
static uint8_t* legic_mem; /* card memory, used for sim */
|
||||
static legic_card_select_t card;/* metadata of currently selected card */
|
||||
static crc_t legic_crc;
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Frame timing and pseudorandom number generator
|
||||
//
|
||||
// The Prng is forwarded every 99.1us (TAG_BIT_PERIOD), except when the reader is
|
||||
// transmitting. In that case the prng has to be forwarded every bit transmitted:
|
||||
// - 31.3us for a 0 (RWD_TIME_0)
|
||||
// - 99.1us for a 1 (RWD_TIME_1)
|
||||
//
|
||||
// The data dependent timing makes writing comprehensible code significantly
|
||||
// harder. The current aproach forwards the prng data based if there is data on
|
||||
// air and time based, using GetCountSspClk(), during computational and wait
|
||||
// periodes. SSP Clock is clocked by the FPGA at 212 kHz (subcarrier frequency).
|
||||
//
|
||||
// To not have the necessity to calculate/guess exection time dependend timeouts
|
||||
// tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
|
||||
|
||||
#define TAG_FRAME_WAIT 70 /* 330us from READER frame end to TAG frame start */
|
||||
#define TAG_ACK_WAIT 758 /* 3.57ms from READER frame end to TAG write ACK */
|
||||
#define TAG_BIT_PERIOD 21 /* 99.1us */
|
||||
|
||||
#define RWD_TIME_PAUSE 4 /* 18.9us */
|
||||
#define RWD_TIME_1 21 /* RWD_TIME_PAUSE 18.9us off + 80.2us on = 99.1us */
|
||||
#define RWD_TIME_0 13 /* RWD_TIME_PAUSE 18.9us off + 42.4us on = 61.3us */
|
||||
#define RWD_CMD_TIMEOUT 40 /* 40 * 99.1us (arbitrary value) */
|
||||
#define RWD_MIN_FRAME_LEN 6 /* Shortest frame is 6 bits */
|
||||
#define RWD_MAX_FRAME_LEN 23 /* Longest frame is 23 bits */
|
||||
|
||||
#define RWD_PULSE 1 /* Pulse is signaled with GPIO_SSC_DIN high */
|
||||
#define RWD_PAUSE 0 /* Pause is signaled with GPIO_SSC_DIN low */
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Demodulation
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
// Returns true if a pulse/pause is received within timeout
|
||||
static inline bool wait_for(bool value, const uint32_t timeout) {
|
||||
while((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) {
|
||||
if(GetCountSspClk() > timeout) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns a demedulated bit or -1 on code violation
|
||||
//
|
||||
// rx_bit decodes bits using a thresholds. rx_bit has to be called by as soon as
|
||||
// a frame starts (first pause is received). rx_bit checks for a pause up to
|
||||
// 18.9us followed by a pulse of 80.2us or 42.4us:
|
||||
// - A bit length <18.9us is a code violation
|
||||
// - A bit length >80.2us is a 1
|
||||
// - A bit length <80.2us is a 0
|
||||
// - A bit length >148.6us is a code violation
|
||||
static inline int8_t rx_bit() {
|
||||
// backup ts for threshold calculation
|
||||
uint32_t bit_start = last_frame_end;
|
||||
|
||||
// wait for pause to end
|
||||
if(!wait_for(RWD_PULSE, bit_start + RWD_TIME_1*3/2)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// wait for next pause
|
||||
if(!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1*3/2)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// update bit and frame end
|
||||
last_frame_end = GetCountSspClk();
|
||||
|
||||
// check for code violation (bit to short)
|
||||
if(last_frame_end - bit_start < RWD_TIME_PAUSE) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// apply threshold (average of RWD_TIME_0 and )
|
||||
return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Modulation
|
||||
//
|
||||
// LEGIC RF uses a very basic load modulation from card to reader:
|
||||
// - Subcarrier on for a 1
|
||||
// - Subcarrier off for for a 0
|
||||
//
|
||||
// The 212kHz subcarrier is generated by the FPGA as well as a mathcing ssp clk.
|
||||
// Each bit is transfered in a 99.1us slot and the first timeslot starts 330us
|
||||
// after the final 20us pause generated by the reader.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
// Transmits a bit
|
||||
//
|
||||
// Note: The Subcarrier is not disabled during bits to prevent glitches. This is
|
||||
// not mandatory but results in a cleaner signal. tx_frame will disable
|
||||
// the subcarrier when the frame is done.
|
||||
static inline void tx_bit(bool bit) {
|
||||
LED_C_ON();
|
||||
|
||||
if(bit) {
|
||||
// modulate subcarrier
|
||||
HIGH(GPIO_SSC_DOUT);
|
||||
} else {
|
||||
// do not modulate subcarrier
|
||||
LOW(GPIO_SSC_DOUT);
|
||||
}
|
||||
|
||||
// wait for tx timeslot to end
|
||||
last_frame_end += TAG_BIT_PERIOD;
|
||||
while(GetCountSspClk() < last_frame_end) { };
|
||||
LED_C_OFF();
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Frame Handling
|
||||
//
|
||||
// The LEGIC RF protocol from reader to card does not include explicit frame
|
||||
// start/stop information or length information. The tag detects end of frame
|
||||
// trough an extended pulse (>99.1us) without a pause.
|
||||
// In reverse direction (card to reader) the number of bites is well known
|
||||
// and depends only the command received (IV, ACK, READ or WRITE).
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
static void tx_frame(uint32_t frame, uint8_t len) {
|
||||
// wait for next tx timeslot
|
||||
last_frame_end += TAG_FRAME_WAIT;
|
||||
legic_prng_forward(TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1);
|
||||
while(GetCountSspClk() < last_frame_end) { };
|
||||
|
||||
// backup ts for trace log
|
||||
uint32_t last_frame_start = last_frame_end;
|
||||
|
||||
// transmit frame, MSB first
|
||||
for(uint8_t i = 0; i < len; ++i) {
|
||||
bool bit = (frame >> i) & 0x01;
|
||||
tx_bit(bit ^ legic_prng_get_bit());
|
||||
legic_prng_forward(1);
|
||||
};
|
||||
|
||||
// disable subcarrier
|
||||
LOW(GPIO_SSC_DOUT);
|
||||
|
||||
// log
|
||||
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)};
|
||||
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
|
||||
}
|
||||
|
||||
static void tx_ack() {
|
||||
// wait for ack timeslot
|
||||
last_frame_end += TAG_ACK_WAIT;
|
||||
legic_prng_forward(TAG_ACK_WAIT/TAG_BIT_PERIOD - 1);
|
||||
while(GetCountSspClk() < last_frame_end) { };
|
||||
|
||||
// backup ts for trace log
|
||||
uint32_t last_frame_start = last_frame_end;
|
||||
|
||||
// transmit ack (ack is not encrypted)
|
||||
tx_bit(true);
|
||||
legic_prng_forward(1);
|
||||
|
||||
// disable subcarrier
|
||||
LOW(GPIO_SSC_DOUT);
|
||||
|
||||
// log
|
||||
uint8_t cmdbytes[] = {1, 1};
|
||||
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
|
||||
}
|
||||
|
||||
// Returns a demedulated frame or -1 on code violation
|
||||
//
|
||||
// Since TX to RX delay is arbitrary rx_frame has to:
|
||||
// - detect start of frame (first pause)
|
||||
// - forward prng based on ts/TAG_BIT_PERIOD
|
||||
// - receive the frame
|
||||
// - detect end of frame (last pause)
|
||||
static int32_t rx_frame(uint8_t *len) {
|
||||
int32_t frame = 0;
|
||||
|
||||
// add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay)
|
||||
// those will be substracted at the end of the rx phase
|
||||
last_frame_end -= 2;
|
||||
|
||||
// wait for first pause (start of frame)
|
||||
for(uint8_t i = 0; true; ++i) {
|
||||
// increment prng every TAG_BIT_PERIOD
|
||||
last_frame_end += TAG_BIT_PERIOD;
|
||||
legic_prng_forward(1);
|
||||
|
||||
// if start of frame was received exit delay loop
|
||||
if(wait_for(RWD_PAUSE, last_frame_end)) {
|
||||
last_frame_end = GetCountSspClk();
|
||||
break;
|
||||
}
|
||||
|
||||
// check for code violation
|
||||
if(i > RWD_CMD_TIMEOUT) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// backup ts for trace log
|
||||
uint32_t last_frame_start = last_frame_end;
|
||||
|
||||
// receive frame
|
||||
for(*len = 0; true; ++(*len)) {
|
||||
// receive next bit
|
||||
LED_B_ON();
|
||||
int8_t bit = rx_bit();
|
||||
LED_B_OFF();
|
||||
|
||||
// check for code violation and to short / long frame
|
||||
if((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// check for code violation caused by end of frame
|
||||
if(bit < 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// append bit
|
||||
frame |= (bit ^ legic_prng_get_bit()) << (*len);
|
||||
legic_prng_forward(1);
|
||||
}
|
||||
|
||||
// rx_bit sets coordination timestamp to start of pause, append pause duration
|
||||
// and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to
|
||||
// obtain exact end of frame.
|
||||
last_frame_end += RWD_TIME_PAUSE - 2;
|
||||
|
||||
// log
|
||||
uint8_t cmdbytes[] = {*len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
|
||||
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true);
|
||||
|
||||
return frame;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Legic Simulator
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card) {
|
||||
p_card->tagtype = cardtype;
|
||||
|
||||
switch(p_card->tagtype) {
|
||||
case 0:
|
||||
p_card->cmdsize = 6;
|
||||
p_card->addrsize = 5;
|
||||
p_card->cardsize = 22;
|
||||
break;
|
||||
case 1:
|
||||
p_card->cmdsize = 9;
|
||||
p_card->addrsize = 8;
|
||||
p_card->cardsize = 256;
|
||||
break;
|
||||
case 2:
|
||||
p_card->cmdsize = 11;
|
||||
p_card->addrsize = 10;
|
||||
p_card->cardsize = 1024;
|
||||
break;
|
||||
default:
|
||||
p_card->cmdsize = 0;
|
||||
p_card->addrsize = 0;
|
||||
p_card->cardsize = 0;
|
||||
return 2;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void init_tag() {
|
||||
// configure FPGA
|
||||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||||
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|
||||
| FPGA_HF_SIMULATOR_MODULATE_212K);
|
||||
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
||||
|
||||
// configure SSC with defaults
|
||||
FpgaSetupSsc();
|
||||
|
||||
// first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT
|
||||
LOW(GPIO_SSC_DOUT);
|
||||
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
||||
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
||||
|
||||
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
|
||||
legic_mem = BigBuf_get_EM_addr();
|
||||
|
||||
// start trace
|
||||
clear_trace();
|
||||
set_tracing(true);
|
||||
|
||||
// init crc calculator
|
||||
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
|
||||
|
||||
// start 212kHz timer (running from SSP Clock)
|
||||
StartCountSspClk();
|
||||
}
|
||||
|
||||
// Setup reader to card connection
|
||||
//
|
||||
// The setup consists of a three way handshake:
|
||||
// - Receive initialisation vector 7 bits
|
||||
// - Transmit card type 6 bits
|
||||
// - Receive Acknowledge 6 bits
|
||||
static int32_t setup_phase(legic_card_select_t *p_card) {
|
||||
uint8_t len = 0;
|
||||
|
||||
// init coordination timestamp
|
||||
last_frame_end = GetCountSspClk();
|
||||
|
||||
// reset prng
|
||||
legic_prng_init(0);
|
||||
|
||||
// wait for iv
|
||||
int32_t iv = rx_frame(&len);
|
||||
if((len != 7) || (iv < 0)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// configure prng
|
||||
legic_prng_init(iv);
|
||||
|
||||
// reply with card type
|
||||
switch(p_card->tagtype) {
|
||||
case 0:
|
||||
tx_frame(0x0D, 6);
|
||||
break;
|
||||
case 1:
|
||||
tx_frame(0x1D, 6);
|
||||
break;
|
||||
case 2:
|
||||
tx_frame(0x3D, 6);
|
||||
break;
|
||||
}
|
||||
|
||||
// wait for ack
|
||||
int32_t ack = rx_frame(&len);
|
||||
if((len != 6) || (ack < 0)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// validate data
|
||||
switch(p_card->tagtype) {
|
||||
case 0:
|
||||
if(ack != 0x19) return -1;
|
||||
break;
|
||||
case 1:
|
||||
if(ack != 0x39) return -1;
|
||||
break;
|
||||
case 2:
|
||||
if(ack != 0x39) return -1;
|
||||
break;
|
||||
}
|
||||
|
||||
// During rx the prng is clocked using the variable reader period.
|
||||
// Since rx_frame detects end of frame by detecting a code violation,
|
||||
// the prng is off by one bit period after each rx phase. Hence, tx
|
||||
// code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1).
|
||||
// This is not possible for back to back rx, so this quirk reduces
|
||||
// the gap by one period.
|
||||
last_frame_end += TAG_BIT_PERIOD;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
|
||||
crc_clear(&legic_crc);
|
||||
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
|
||||
return crc_finish(&legic_crc);
|
||||
}
|
||||
|
||||
static int32_t connected_phase(legic_card_select_t *p_card) {
|
||||
uint8_t len = 0;
|
||||
|
||||
// wait for command
|
||||
int32_t cmd = rx_frame(&len);
|
||||
if(cmd < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// check if command is LEGIC_READ
|
||||
if(len == p_card->cmdsize) {
|
||||
// prepare data
|
||||
uint8_t byte = legic_mem[cmd >> 1];
|
||||
uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte);
|
||||
|
||||
// transmit data
|
||||
tx_frame((crc << 8) | byte, 12);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// check if command is LEGIC_WRITE
|
||||
if(len == p_card->cmdsize + 8 + 4) {
|
||||
// decode data
|
||||
uint16_t mask = (1 << p_card->addrsize) - 1;
|
||||
uint16_t addr = (cmd >> 1) & mask;
|
||||
uint8_t byte = (cmd >> p_card->cmdsize) & 0xff;
|
||||
uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf;
|
||||
|
||||
// check received against calculated crc
|
||||
uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte);
|
||||
if(calc_crc != crc) {
|
||||
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// store data
|
||||
legic_mem[addr] = byte;
|
||||
|
||||
// transmit ack
|
||||
tx_ack();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Command Line Interface
|
||||
//
|
||||
// Only this function is public / called from appmain.c
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void LegicRfSimulate(uint8_t cardtype) {
|
||||
// configure ARM and FPGA
|
||||
init_tag();
|
||||
|
||||
// verify command line input
|
||||
if(init_card(cardtype, &card) != 0) {
|
||||
DbpString("Unknown tagtype.");
|
||||
goto OUT;
|
||||
}
|
||||
|
||||
LED_A_ON();
|
||||
DbpString("Starting Legic emulator, press button to end");
|
||||
while(!BUTTON_PRESS()) {
|
||||
WDT_HIT();
|
||||
|
||||
// wait for carrier, restart after timeout
|
||||
if(!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// wait for connection, restart on error
|
||||
if(setup_phase(&card)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// conection is established, process commands until one fails
|
||||
while(!connected_phase(&card)) {
|
||||
WDT_HIT();
|
||||
}
|
||||
}
|
||||
|
||||
OUT:
|
||||
DbpString("Stopped");
|
||||
switch_off();
|
||||
StopTicks();
|
||||
}
|
19
armsrc/legicrfsim.h
Normal file
19
armsrc/legicrfsim.h
Normal file
|
@ -0,0 +1,19 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
|
||||
// 2018 AntiCat
|
||||
//
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
// the license.
|
||||
//-----------------------------------------------------------------------------
|
||||
// LEGIC RF emulation public interface
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#ifndef __LEGICRFSIM_H
|
||||
#define __LEGICRFSIM_H
|
||||
|
||||
#include "proxmark3.h"
|
||||
|
||||
extern void LegicRfSimulate(uint8_t tagtype);
|
||||
|
||||
#endif /* __LEGICRFSIM_H */
|
|
@ -46,19 +46,15 @@ int usage_legic_rdmem(void){
|
|||
int usage_legic_sim(void){
|
||||
PrintAndLogEx(NORMAL, "Simulates a LEGIC Prime tag. MIM22, MIM256, MIM1024 types can be emulated");
|
||||
PrintAndLogEx(NORMAL, "Use eload/esave to upload a dump into emulator memory");
|
||||
PrintAndLogEx(NORMAL, "Usage: hf legic sim [h] <tagtype> <phase> <frame> <reqresp>");
|
||||
PrintAndLogEx(NORMAL, "Usage: hf legic sim [h] <tagtype>");
|
||||
PrintAndLogEx(NORMAL, "Options:");
|
||||
PrintAndLogEx(NORMAL, " h : this help");
|
||||
PrintAndLogEx(NORMAL, " <tagtype> : 0 = MIM22");
|
||||
PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)");
|
||||
PrintAndLogEx(NORMAL, " : 2 = MIM1024");
|
||||
PrintAndLogEx(NORMAL, " <phase> : phase drift");
|
||||
PrintAndLogEx(NORMAL, " <frame> : frame drift");
|
||||
PrintAndLogEx(NORMAL, " <reqresp> : reqresp drift");
|
||||
PrintAndLogEx(NORMAL, " : 2 = MIM1024");
|
||||
PrintAndLogEx(NORMAL, "");
|
||||
PrintAndLogEx(NORMAL, "Examples:");
|
||||
PrintAndLogEx(NORMAL, " hf legic sim");
|
||||
PrintAndLogEx(NORMAL, " hf legic sim ");
|
||||
return 0;
|
||||
}
|
||||
int usage_legic_write(void){
|
||||
|
@ -504,12 +500,13 @@ int CmdLegicRdmem(const char *Cmd) {
|
|||
return status;
|
||||
}
|
||||
|
||||
// should say which tagtype
|
||||
// should load a tag to device mem.
|
||||
// int phase, int frame, int reqresp
|
||||
int CmdLegicRfSim(const char *Cmd) {
|
||||
UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {6,3,0}};
|
||||
sscanf(Cmd, " %" SCNi64 " %" SCNi64 " %" SCNi64 , &c.arg[0], &c.arg[1], &c.arg[2]);
|
||||
|
||||
char cmdp = param_getchar(Cmd, 0);
|
||||
if ( cmdp == 'H' || cmdp == 'h' ) return usage_legic_sim();
|
||||
|
||||
UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {1}};
|
||||
sscanf(Cmd, " %" SCNi64, &c.arg[0]);
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
return 0;
|
||||
|
|
|
@ -521,7 +521,8 @@ int CmdTraceList(const char *Cmd) {
|
|||
if ( protocol == ICLASS )
|
||||
PrintAndLogEx(NORMAL, "iClass - Timings are not as accurate");
|
||||
if ( protocol == LEGIC )
|
||||
PrintAndLogEx(NORMAL, "LEGIC - Timings are in ticks (1us == 1.5ticks)");
|
||||
PrintAndLogEx(NORMAL, "LEGIC - Reader Mode: Timings are in ticks (1us == 1.5ticks)\n"
|
||||
" Tag Mode: Timings are in sub carrier periods (1/212 kHz == 4.7us)");
|
||||
if ( protocol == ISO_15693 )
|
||||
PrintAndLogEx(NORMAL, "ISO15693 - Timings are not as accurate");
|
||||
if ( protocol == FELICA )
|
||||
|
|
BIN
fpga/fpga_hf.bit
BIN
fpga/fpga_hf.bit
Binary file not shown.
|
@ -51,38 +51,29 @@ begin
|
|||
end
|
||||
|
||||
|
||||
// Divide 13.56 MHz by 32 to produce the SSP_CLK
|
||||
// The register is bigger to allow higher division factors of up to /128
|
||||
// Divide 13.56 MHz to produce various frequencies for SSP_CLK
|
||||
// and modulation. 11 bits allow for factors of up to /128.
|
||||
reg [10:0] ssp_clk_divider;
|
||||
|
||||
always @(posedge adc_clk)
|
||||
ssp_clk_divider <= (ssp_clk_divider + 1);
|
||||
|
||||
reg ssp_clk;
|
||||
reg ssp_frame;
|
||||
|
||||
always @(negedge adc_clk)
|
||||
begin
|
||||
//If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
|
||||
if(mod_type == 3'b101)
|
||||
begin
|
||||
if(ssp_clk_divider[7:0] == 8'b00000000)
|
||||
ssp_clk <= 1'b0;
|
||||
if(ssp_clk_divider[7:0] == 8'b10000000)
|
||||
ssp_clk <= 1'b1;
|
||||
|
||||
end
|
||||
// Get bit every at 53KHz (every 8th carrier bit of 424kHz)
|
||||
ssp_clk <= ssp_clk_divider[7];
|
||||
else if(mod_type == 3'b010)
|
||||
// Get next bit at 212kHz
|
||||
ssp_clk <= ssp_clk_divider[5];
|
||||
else
|
||||
begin
|
||||
if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
|
||||
ssp_clk <= 1'b1;
|
||||
if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
|
||||
ssp_clk <= 1'b0;
|
||||
end
|
||||
// Get next bit at 424Khz
|
||||
ssp_clk <= ssp_clk_divider[4];
|
||||
end
|
||||
|
||||
|
||||
//assign ssp_clk = ssp_clk_divider[4];
|
||||
|
||||
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
|
||||
// this is arbitrary, because it's just a bitstream.
|
||||
// One nasty issue, though: I can't make it work with both rx and tx at
|
||||
|
@ -96,19 +87,19 @@ always @(negedge ssp_clk)
|
|||
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
|
||||
|
||||
|
||||
|
||||
reg ssp_frame;
|
||||
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
|
||||
if(mod_type == 3'b000) // not modulating, so listening, to ARM
|
||||
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
|
||||
else
|
||||
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
|
||||
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
|
||||
|
||||
// Synchronize up the after-hysteresis signal, to produce DIN.
|
||||
reg ssp_din;
|
||||
always @(posedge ssp_clk)
|
||||
ssp_din = after_hysteresis;
|
||||
|
||||
// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
|
||||
// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
|
||||
reg modulating_carrier;
|
||||
always @(mod_type or ssp_clk or ssp_dout)
|
||||
if(mod_type == 3'b000)
|
||||
|
@ -116,9 +107,9 @@ always @(mod_type or ssp_clk or ssp_dout)
|
|||
else if(mod_type == 3'b001)
|
||||
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
|
||||
else if(mod_type == 3'b010)
|
||||
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
|
||||
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
|
||||
else if(mod_type == 3'b100 || mod_type == 3'b101)
|
||||
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
|
||||
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
|
||||
else
|
||||
modulating_carrier <= 1'b0; // yet unused
|
||||
|
||||
|
@ -133,9 +124,6 @@ assign pwr_oe4 = modulating_carrier;
|
|||
// This one is always on, so that we can watch the carrier.
|
||||
assign pwr_oe3 = 1'b0;
|
||||
|
||||
assign dbg = modulating_carrier;
|
||||
//reg dbg;
|
||||
//always @(ssp_dout)
|
||||
// dbg <= ssp_dout;
|
||||
assign dbg = ssp_din;
|
||||
|
||||
endmodule
|
||||
|
|
Loading…
Reference in a new issue