chg: hitag write - works

This commit is contained in:
iceman1001 2020-01-20 11:58:22 +01:00
parent e3ff3a8819
commit f04be0c044

View file

@ -1566,8 +1566,8 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
LogTrace(rx, nbytes(rxlen), response_start, response_start + response_duration, NULL, false); LogTrace(rx, nbytes(rxlen), response_start, response_start + response_duration, NULL, false);
// TODO when using cumulative time for command_start, pm3 doesn't reply anymore, e.g. on lf hitag read 23 4F4E4D494B52 // TODO when using cumulative time for command_start, pm3 doesn't reply anymore, e.g. on lf hitag read 23 4F4E4D494B52
// command_start = response_start + response_duration; command_start = response_start + response_duration;
command_start = 0; // command_start = 0;
// Dbhexdump(nbytes(rxlen), rx, false); // Dbhexdump(nbytes(rxlen), rx, false);
} }
} }
@ -1590,24 +1590,34 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
StopTicks(); StopTicks();
// int frame_count = 0; int frame_count = 0;
int response = 0; uint32_t command_start = 0;
uint32_t command_duration = 0;
uint32_t response_start = 0;
uint32_t response_duration = 0;
uint8_t rx[HITAG_FRAME_LEN]; uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0; size_t rxlen = 0;
uint8_t txbuf[HITAG_FRAME_LEN]; uint8_t txbuf[HITAG_FRAME_LEN];
uint8_t *tx = txbuf; uint8_t *tx = txbuf;
size_t txlen = 0; size_t txlen = 0;
int lastbit; int t_wait_1;
int reset_sof; int t_wait_1_guard = 8;
int t_wait = HITAG_T_WAIT_MAX; int t_wait_2;
bool bStop; size_t tag_size;
bool bStop = false;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); // Raw demodulation/decoding by sampling edge periods
set_tracing(true); size_t periods = 0;
clear_trace();
// Reset the return status // Reset the return status
bSuccessful = false; bSuccessful = false;
bCrypto = false;
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
DbpString("Starting Hitag writer family");
// Check configuration // Check configuration
switch (htf) { switch (htf) {
@ -1642,221 +1652,227 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
} }
LED_D_ON(); LED_D_ON();
hitag2_init(); hitag2_init();
// Configure output and enable pin that is connected to the FPGA (for modulating) // init as reader
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT; lf_init(true);
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK
| AT91C_TC_ETRGEDG_FALLING
| AT91C_TC_ABETRG
| AT91C_TC_LDRA_FALLING;
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV > 0) {};
// Reset the received frame, frame count and timing info
lastbit = 1;
bStop = false;
// Tag specific configuration settings (sof, timings, etc.) // Tag specific configuration settings (sof, timings, etc.)
if (htf < 10) { if (htf < 10) {
// hitagS settings // hitagS settings
reset_sof = 1; t_wait_1 = 204;
t_wait = 200; t_wait_2 = 128;
/*tag_size = 256;*/
flipped_bit = 0;
tag_size = 8;
DbpString("Configured for hitagS writer");
} else if (htf < 20) { } else if (htf < 20) {
// hitag1 settings // hitag1 settings
reset_sof = 1; t_wait_1 = 204;
t_wait = 200; t_wait_2 = 128;
tag_size = 256;
flipped_bit = 0;
DbpString("Configured for hitag1 writer");
} else if (htf < 30) { } else if (htf < 30) {
// hitag2 settings // hitag2 settings
reset_sof = 4; t_wait_1 = HITAG_T_WAIT_1_MIN;
t_wait = HITAG_T_WAIT_2_MIN; t_wait_2 = HITAG_T_WAIT_2_MIN;
tag_size = 48;
DbpString("Configured for hitag2 writer");
} else { } else {
Dbprintf("Error, unknown hitag reader type: %d", htf); Dbprintf("Error, unknown hitag writer type: %d", htf);
return; return;
} }
uint8_t tag_modulation;
size_t max_nrzs = (8 * HITAG_FRAME_LEN + 5) * 2; // up to 2 nrzs per bit
uint8_t nrz_samples[max_nrzs];
size_t nrzs = 0;
while (!bStop && !BUTTON_PRESS() && !data_available()) { while (!bStop && !BUTTON_PRESS() && !data_available()) {
WDT_HIT(); WDT_HIT();
// Check if frame was captured and store it
if (rxlen > 0) {
// frame_count++;
LogTrace(rx, nbytes(rxlen), response, response, NULL, false);
}
// By default reset the transmission buffer // By default reset the transmission buffer
tx = txbuf; tx = txbuf;
switch (htf) { switch (htf) {
case WHT2F_CRYPTO: { case WHT2F_CRYPTO: {
bStop = !hitag2_crypto(rx, rxlen, tx, &txlen, true); bStop = !hitag2_crypto(rx, rxlen, tx, &txlen, true);
break;
} }
break;
case WHT2F_PASSWORD: { case WHT2F_PASSWORD: {
bStop = !hitag2_password(rx, rxlen, tx, &txlen, true); bStop = !hitag2_password(rx, rxlen, tx, &txlen, true);
break;
} }
break;
default: { default: {
Dbprintf("Error, unknown function: %d", htf); Dbprintf("Error, unknown function: %d", htf);
return; goto out;
} }
break;
} }
// Send and store the reader command // Wait for t_wait_2 carrier periods after the last tag bit before transmitting,
// Disable timer 1 with external trigger to avoid triggers during our own modulation lf_wait_periods(t_wait_2);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; command_start += t_wait_2;
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
// Since the clock counts since the last falling edge, a 'one' means that the
// falling edge occurred halfway the period. with respect to this falling edge,
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
// All timer values are in terms of T0 units
while (AT91C_BASE_TC0->TC_CV < HITAG_T0 * (t_wait + (HITAG_T_TAG_HALF_PERIOD * lastbit))) {};
// Transmit the reader frame // Transmit the reader frame
hitag_reader_send_frame(tx, txlen); command_duration = hitag_reader_send_frame(tx, txlen);
// Enable and reset external trigger in timer for capturing future frames response_start = command_start + command_duration;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Add transmitted frame to total count // Let the antenna and ADC values settle
// And find the position where edge sampling should start
lf_wait_periods(t_wait_1 - t_wait_1_guard);
response_start += t_wait_1 - t_wait_1_guard;
// Keep administration of the first edge detection
bool waiting_for_first_edge = true;
// Did we detected any modulaiton at all
bool detected_tag_modulation = false;
// Use the current modulation state as starting point
tag_modulation = lf_get_tag_modulation();
// Reset the number of NRZ samples and use edge detection to detect them
nrzs = 0;
while (nrzs < max_nrzs) {
// Get the timing of the next edge in number of wave periods
periods = lf_count_edge_periods(128);
// Are we dealing with the first incoming edge
if (waiting_for_first_edge) {
// Just break out of loop after an initial time-out (tag is probably not available)
if (periods == 0) break;
if (tag_modulation == 0) {
// hitag replies always start with 11111 == 1010101010, if we see 0
// it means we missed the first period, e.g. if the signal never crossed 0 since reader signal
// so let's add it:
nrz_samples[nrzs++] = tag_modulation ^ 1;
// Register the number of periods that have passed
// we missed the begin of response but we know it happened one period of 16 earlier
response_start += periods - 16;
response_duration = response_start;
} else {
// Register the number of periods that have passed
response_start += periods;
response_duration = response_start;
}
// Indicate that we have dealt with the first edge
waiting_for_first_edge = false;
// The first edge is always a single NRZ bit, force periods on 16
periods = 16;
// We have received more than 0 periods, so we have detected a tag response
detected_tag_modulation = true;
} else {
// The function lf_count_edge_periods() returns 0 when a time-out occurs
if (periods == 0) {
//Dbprintf("Detected timeout after [%d] nrz samples", nrzs);
break;
}
}
// Evaluate the number of periods before the next edge
if (periods > 24 && periods <= 64) {
// Detected two sequential equal bits and a modulation switch
// NRZ modulation: (11 => --|) or (11 __|)
nrz_samples[nrzs++] = tag_modulation;
nrz_samples[nrzs++] = tag_modulation;
response_duration += periods;
// Invert tag modulation state
tag_modulation ^= 1;
} else if (periods > 0 && periods <= 24) {
// Detected one bit and a modulation switch
// NRZ modulation: (1 => -|) or (0 _|)
nrz_samples[nrzs++] = tag_modulation;
response_duration += periods;
tag_modulation ^= 1;
} else {
// The function lf_count_edge_periods() returns > 64 periods, this is not a valid number periods
//Dbprintf("Detected unexpected period count: %d", periods);
break;
}
}
// Wait some extra time for flash to be programmed
//
// Store the TX frame, we do this now at this point, to avoid delay in processing
// and to be able to overwrite the first samples with the trace (since they currently
// still use the same memory space)
if (txlen > 0) { if (txlen > 0) {
// frame_count++; frame_count++;
LogTrace(tx, nbytes(txlen), HITAG_T_WAIT_2_MIN, HITAG_T_WAIT_2_MIN, NULL, true); LogTrace(tx, nbytes(txlen), command_start, command_start + command_duration, NULL, true);
} }
// Reset values for receiving frames // Reset values for receiving frames
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
rxlen = 0; rxlen = 0;
lastbit = 1;
bool bSkip = true;
int tag_sof = reset_sof;
response = 0;
uint32_t errorCount = 0;
// Receive frame, watch for at most T0*EOF periods // If there is no response, just repeat the loop
while (AT91C_BASE_TC1->TC_CV < HITAG_T0 * HITAG_T_WAIT_MAX) { if (!detected_tag_modulation) continue;
// Check if falling edge in tag modulation is detected
if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA / HITAG_T0);
// Reset timer every frame, we have to capture the last edge for timing // Make sure we always have an even number of samples. This fixes the problem
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; // of ending the manchester decoding with a zero. See the example below where
// the '|' character is end of modulation
LED_B_ON(); // One at the end: ..._-|_____...
// Zero at the end: ...-_|_____...
// Capture tag frame (manchester decoding using only falling edges) // The last modulation change of a zero is not detected, but we should take
if (ra >= HITAG_T_EOF) { // the half period in account, otherwise the demodulator will fail.
if (rxlen != 0) { if ((nrzs % 2) != 0) {
//Dbprintf("DEBUG: Wierd1"); nrz_samples[nrzs++] = tag_modulation;
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra - HITAG_T_TAG_HALF_PERIOD;
} else if (ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
// need to test to verify we don't exceed memory...
// if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
// }
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if (ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
// need to test to verify we don't exceed memory...
// if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
// }
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if (ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
// need to test to verify we don't exceed memory...
// if ( ((rxlen+2) / 8) > HITAG_FRAME_LEN) {
// break;
// }
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++;
}
} else {
// Dbprintf("DEBUG: Wierd2");
errorCount++;
// Ignore wierd value, is to small to mean anything
}
}
// if we saw over 100 wierd values break it probably isn't hitag...
if (errorCount > 100) break;
// We can break this loop if we received the last bit from a frame
if (AT91C_BASE_TC1->TC_CV > HITAG_T0 * HITAG_T_EOF) {
if (rxlen > 0) break;
}
} }
// Wait some extra time for flash to be programmed LED_B_ON();
if ((rxlen == 0) && (writestate == WRITE_STATE_PROG)) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; // decode bitstream
while (AT91C_BASE_TC0->TC_CV < HITAG_T0 * (HITAG_T_PROG - HITAG_T_WAIT_MAX)); manrawdecode((uint8_t *)nrz_samples, &nrzs, true, 0);
// decode frame
// Verify if the header consists of five consecutive ones
if (nrzs < 5) {
break;
} else {
size_t i;
for (i = 0; i < 5; i++) {
if (nrz_samples[i] != 1) {
Dbprintf("Detected incorrect header, the bit [%d] is zero instead of one, abort", i);
break;
}
}
if (i < 5) break;
}
// Pack the response into a byte array
for (size_t i = 5; i < nrzs; i++) {
uint8_t bit = nrz_samples[i];
if (bit > 1) { // When Manchester detects impossible symbol it writes "7"
break;
}
rx[rxlen / 8] |= bit << (7 - (rxlen % 8));
rxlen++;
}
if (rxlen % 8 == 1) // skip spurious bit
rxlen--;
// Check if frame was captured and store it
if (rxlen > 0) {
frame_count++;
LogTrace(rx, nbytes(rxlen), response_start, response_start + response_duration, NULL, false);
command_start = 0;
} }
} }
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; out:
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; lf_finalize();
Dbprintf("TX/RX frames recorded: %u", frame_count);
// release allocated memory from BigBuff.
BigBuf_free();
StartTicks(); StartTicks();
reply_mix(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, 48); reply_mix(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, tag_size);
} }