Conflicts:
	armsrc/iclass.c
	client/loclass/cipher.c
	client/loclass/fileutils.h
This commit is contained in:
iceman1001 2015-02-19 11:32:11 +01:00
commit f4a57e861d
21 changed files with 1344 additions and 315 deletions

View file

@ -10,7 +10,7 @@ APP_INCLUDES = apps.h
#remove one of the following defines and comment out the relevant line
#in the next section to remove that particular feature from compilation
APP_CFLAGS = -DWITH_LF -DWITH_ISO15693 -DWITH_ISO14443a -DWITH_ISO14443b -DWITH_ICLASS -DWITH_LEGICRF -DWITH_HITAG -DWITH_CRC -fno-strict-aliasing
APP_CFLAGS = -DWITH_LF -DWITH_ISO15693 -DWITH_ISO14443a -DWITH_ISO14443b -DWITH_ICLASS -DWITH_LEGICRF -DWITH_HITAG -DWITH_CRC -DON_DEVICE -fno-strict-aliasing
#-DWITH_LCD
#SRC_LCD = fonts.c LCD.c
@ -43,6 +43,8 @@ ARMSRC = fpgaloader.c \
legic_prng.c \
iclass.c \
BigBuf.c \
cipher.c \
cipherutils.c\
# stdint.h provided locally until GCC 4.5 becomes C99 compliant

272
armsrc/cipher.c Normal file
View file

@ -0,0 +1,272 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#include "cipher.h"
#include "cipherutils.h"
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#ifndef ON_DEVICE
#include "fileutils.h"
#endif
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
**/
typedef struct {
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
} State;
/**
* Definition 2. The feedback function for the top register T : F 16/2 F 2
* is defined as
* T (x 0 x 1 . . . . . . x 15 ) = x 0 x 1 x 5 x 7 x 10 x 11 x 14 x 15 .
**/
bool T(State state)
{
bool x0 = state.t & 0x8000;
bool x1 = state.t & 0x4000;
bool x5 = state.t & 0x0400;
bool x7 = state.t & 0x0100;
bool x10 = state.t & 0x0020;
bool x11 = state.t & 0x0010;
bool x14 = state.t & 0x0002;
bool x15 = state.t & 0x0001;
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
}
/**
* Similarly, the feedback function for the bottom register B : F 8/2 F 2 is defined as
* B(x 0 x 1 . . . x 7 ) = x 1 x 2 x 3 x 7 .
**/
bool B(State state)
{
bool x1 = state.b & 0x40;
bool x2 = state.b & 0x20;
bool x3 = state.b & 0x10;
bool x7 = state.b & 0x01;
return x1 ^ x2 ^ x3 ^ x7;
}
/**
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
* F 8/2 F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
* z 0 = (r 0 r 2 ) (r 1 r 3 ) (r 2 r 4 )
* z 1 = (r 0 r 2 ) (r 5 r 7 ) r 1 r 6 x y
* z 2 = (r 3 r 5 ) (r 4 r 6 ) r 7 x
**/
uint8_t _select(bool x, bool y, uint8_t r)
{
bool r0 = r >> 7 & 0x1;
bool r1 = r >> 6 & 0x1;
bool r2 = r >> 5 & 0x1;
bool r3 = r >> 4 & 0x1;
bool r4 = r >> 3 & 0x1;
bool r5 = r >> 2 & 0x1;
bool r6 = r >> 1 & 0x1;
bool r7 = r & 0x1;
bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
// The three bitz z0.. z1 are packed into a uint8_t:
// 00000ZZZ
//Return value is a uint8_t
uint8_t retval = 0;
retval |= (z0 << 2) & 4;
retval |= (z1 << 1) & 2;
retval |= z2 & 1;
// Return value 0 <= retval <= 7
return retval;
}
/**
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k (F 82 ) 8
* be a key and y F 2 be the input bit. Then, the successor cipher state s =
* l , r , t , b is defined as
* t := (T (t) r 0 r 4 )t 0 . . . t 14 l := (k [select(T (t),y,r)] b ) l r
* b := (B(b) r 7 )b 0 . . . b 6 r := (k [select(T (t),y,r)] b ) l
*
* @param s - state
* @param k - array containing 8 bytes
**/
State successor(uint8_t* k, State s, bool y)
{
bool r0 = s.r >> 7 & 0x1;
bool r4 = s.r >> 3 & 0x1;
bool r7 = s.r & 0x1;
State successor = {0,0,0,0};
successor.t = s.t >> 1;
successor.t |= (T(s) ^ r0 ^ r4) << 15;
successor.b = s.b >> 1;
successor.b |= (B(s) ^ r7) << 7;
bool Tt = T(s);
successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
return successor;
}
/**
* We define the successor function suc which takes a key k (F 82 ) 8 , a state s and
* an input y F 2 and outputs the successor state s . We overload the function suc
* to multiple bit input x F n 2 which we define as
* @param k - array containing 8 bytes
**/
State suc(uint8_t* k,State s, BitstreamIn *bitstream)
{
if(bitsLeft(bitstream) == 0)
{
return s;
}
bool lastbit = tailBit(bitstream);
return successor(k,suc(k,s,bitstream), lastbit);
}
/**
* Definition 5 (Output). Define the function output which takes an internal
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
* on multiple bits input which takes a key k, a state s and an input x F n 2 as
* output(k, s, ǫ) = ǫ
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s , x 1 . . . x n )
* where s = suc(k, s, x 0 ).
**/
void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
{
if(bitsLeft(in) == 0)
{
return;
}
pushBit(out,(s.r >> 2) & 1);
//Remove first bit
uint8_t x0 = headBit(in);
State ss = successor(k,s,x0);
output(k,ss,in, out);
}
/**
* Definition 6 (Initial state). Define the function init which takes as input a
* key k (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
**/
State init(uint8_t* k)
{
State s = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
return s;
}
void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
{
uint8_t zeroes_32[] = {0,0,0,0};
BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
State initState = suc(k,init(k),&input);
output(k,initState,&input_32_zeroes,&out);
}
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
{
uint8_t cc_nr[13] = { 0 };
uint8_t div_key[8];
//cc_nr=(uint8_t*)malloc(length+1);
memcpy(cc_nr,cc_nr_p,12);
memcpy(div_key,div_key_p,8);
reverse_arraybytes(cc_nr,12);
BitstreamIn bitstream = {cc_nr,12 * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac, dest, 4);
//free(cc_nr);
return;
}
#ifndef ON_DEVICE
int testMAC()
{
prnlog("[+] Testing MAC calculation...");
//From the "dismantling.IClass" paper:
uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
//From the paper
uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
uint8_t calculated_mac[4] = {0};
doMAC(cc_nr,div_key, calculated_mac);
if(memcmp(calculated_mac, correct_MAC,4) == 0)
{
prnlog("[+] MAC calculation OK!");
}else
{
prnlog("[+] FAILED: MAC calculation failed:");
printarr(" Calculated_MAC", calculated_mac, 4);
printarr(" Correct_MAC ", correct_MAC, 4);
return 1;
}
return 0;
}
#endif

49
armsrc/cipher.h Normal file
View file

@ -0,0 +1,49 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#ifndef CIPHER_H
#define CIPHER_H
#include <stdint.h>
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
#ifndef ON_DEVICE
int testMAC();
#endif
#endif // CIPHER_H

292
armsrc/cipherutils.c Normal file
View file

@ -0,0 +1,292 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "cipherutils.h"
#ifndef ON_DEVICE
#include "fileutils.h"
#endif
/**
*
* @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
* @param stream
* @return
*/
bool headBit( BitstreamIn *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
* @param stream
* @return
*/
bool tailBit( BitstreamIn *stream)
{
int bitpos = stream->numbits -1 - (stream->position++);
int bytepos= bitpos >> 3;
bitpos &= 7;
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, bool bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
*(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
stream->position++;
stream->numbits++;
}
/**
* @brief Pushes the lower six bits onto the stream
* as b0 b1 b2 b3 b4 b5 b6
* @param stream
* @param bits
*/
void push6bits( BitstreamOut* stream, uint8_t bits)
{
pushBit(stream, bits & 0x20);
pushBit(stream, bits & 0x10);
pushBit(stream, bits & 0x08);
pushBit(stream, bits & 0x04);
pushBit(stream, bits & 0x02);
pushBit(stream, bits & 0x01);
}
/**
* @brief bitsLeft
* @param stream
* @return number of bits left in stream
*/
int bitsLeft( BitstreamIn *stream)
{
return stream->numbits - stream->position;
}
/**
* @brief numBits
* @param stream
* @return Number of bits stored in stream
*/
int numBits(BitstreamOut *stream)
{
return stream->numbits;
}
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t x_bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
uint8_t reversebytes(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
void reverse_arraybytes(uint8_t* arr, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
arr[i] = reversebytes(arr[i]);
}
}
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
dest[i] = reversebytes(arr[i]);
}
}
#ifndef ON_DEVICE
void printarr(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*5;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize, "uint8_t %s[] = {", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"0x%02x,",*(arr+i));//5 bytes per byte
}
cx += snprintf(output+cx,outsize-cx,"};");
prnlog(output);
}
void printvar(char * name, uint8_t* arr, int len)
{
int cx;
size_t outsize = 40+strlen(name)+len*2;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i ;
cx = snprintf(output,outsize,"%s = ", name);
for(i =0 ; i< len ; i++)
{
cx += snprintf(output+cx,outsize-cx,"%02x",*(arr+i));//2 bytes per byte
}
prnlog(output);
}
void printarr_human_readable(char * title, uint8_t* arr, int len)
{
int cx;
size_t outsize = 100+strlen(title)+len*4;
char* output = malloc(outsize);
memset(output, 0,outsize);
int i;
cx = snprintf(output,outsize, "\n\t%s\n", title);
for(i =0 ; i< len ; i++)
{
if(i % 16 == 0)
cx += snprintf(output+cx,outsize-cx,"\n%02x| ", i );
cx += snprintf(output+cx,outsize-cx, "%02x ",*(arr+i));
}
prnlog(output);
free(output);
}
#endif
//-----------------------------
// Code for testing below
//-----------------------------
#ifndef ON_DEVICE
int testBitStream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0}
;
while(bitsLeft(&in) > 0)
{
pushBit(&out, headBit(&in));
//printf("Bits left: %d\n", bitsLeft(&in));
//printf("Bits out: %d\n", numBits(&out));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 1 ok");
}else
{
prnlog(" Bitstream test 1 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, OUT %02x", input[i], output[i]);
}
return 1;
}
return 0;
}
int testReversedBitstream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t reverse [] = {0,0,0,0,0,0,0,0};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0};
BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
BitstreamOut reversed_out ={ reverse,0 ,0};
while(bitsLeft(&in) > 0)
{
pushBit(&reversed_out, tailBit(&in));
}
while(bitsLeft(&reversed_in) > 0)
{
pushBit(&out, tailBit(&reversed_in));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
prnlog(" Bitstream test 2 ok");
}else
{
prnlog(" Bitstream test 2 failed");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
prnlog(" IN %02x, MIDDLE: %02x, OUT %02x", input[i],reverse[i], output[i]);
}
return 1;
}
return 0;
}
int testCipherUtils(void)
{
prnlog("[+] Testing some internals...");
int retval = 0;
retval |= testBitStream();
retval |= testReversedBitstream();
return retval;
}
#endif

76
armsrc/cipherutils.h Normal file
View file

@ -0,0 +1,76 @@
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
*
****************************************************************************/
#ifndef CIPHERUTILS_H
#define CIPHERUTILS_H
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
} BitstreamIn;
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
}BitstreamOut;
bool headBit( BitstreamIn *stream);
bool tailBit( BitstreamIn *stream);
void pushBit( BitstreamOut *stream, bool bit);
int bitsLeft( BitstreamIn *stream);
#ifndef ON_DEVICE
int testCipherUtils(void);
int testMAC();
void printarr(char * name, uint8_t* arr, int len);
void printvar(char * name, uint8_t* arr, int len);
void printarr_human_readable(char * title, uint8_t* arr, int len);
#endif
void push6bits( BitstreamOut* stream, uint8_t bits);
void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
uint64_t x_bytes_to_num(uint8_t* src, size_t len);
uint8_t reversebytes(uint8_t b);
void reverse_arraybytes(uint8_t* arr, size_t len);
void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len);
#endif // CIPHERUTILS_H

View file

@ -48,7 +48,8 @@
#include "../common/iso14443crc.h"
#include "../common/iso15693tools.h"
//#include "iso15693tools.h"
#include "cipher.h"
#include "protocols.h"
static int timeout = 4096;
@ -967,8 +968,11 @@ static void CodeIClassTagSOF()
// Convert from last byte pos to length
ToSendMax++;
}
#define MODE_SIM_CSN 0
#define MODE_EXIT_AFTER_MAC 1
#define MODE_FULLSIM 2
int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
/**
* @brief SimulateIClass simulates an iClass card.
* @param arg0 type of simulation
@ -990,15 +994,20 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
// Enable and clear the trace
set_tracing(TRUE);
clear_trace();
//Use the emulator memory for SIM
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
if(simType == 0) {
// Use the CSN from commandline
memcpy(csn_crc, datain, 8);
doIClassSimulation(csn_crc,0,NULL);
memcpy(emulator, datain, 8);
doIClassSimulation(MODE_SIM_CSN,NULL);
}else if(simType == 1)
{
doIClassSimulation(csn_crc,0,NULL);
//Default CSN
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
// Use the CSN from commandline
memcpy(emulator, csn_crc, 8);
doIClassSimulation(MODE_SIM_CSN,NULL);
}
else if(simType == 2)
{
@ -1013,8 +1022,8 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
{
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
memcpy(csn_crc, datain+(i*8), 8);
if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
memcpy(emulator, datain+(i*8), 8);
if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
{
cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
return; // Button pressed
@ -1022,6 +1031,9 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
}
cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
}else if(simType == 3){
//This is 'full sim' mode, where we use the emulator storage for data.
doIClassSimulation(MODE_FULLSIM, NULL);
}
else{
// We may want a mode here where we hardcode the csns to use (from proxclone).
@ -1031,29 +1043,40 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
Dbprintf("Done...");
}
/**
* @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
{
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
// CSN followed by two CRC bytes
uint8_t response1[] = { 0x0F} ;
uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
memcpy(response3,csn,sizeof(response3));
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
memcpy(csn_data,csn,sizeof(csn_data));
Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
// e-Purse
uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// Construct anticollision-CSN
rotateCSN(response3,response2);
rotateCSN(csn_data,anticoll_data);
// Compute CRC on both CSNs
ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
// e-Purse
uint8_t card_challenge_data[8] = { 0x00 };
if(simulationMode == MODE_FULLSIM)
{
//Card challenge, a.k.a e-purse is on block 2
memcpy(card_challenge_data,emulator + (8 * 2) , 8);
}
int exitLoop = 0;
// Reader 0a
@ -1067,28 +1090,26 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
int modulated_response_size;
uint8_t* trace_data = NULL;
int trace_data_size = 0;
//uint8_t sof = 0x0f;
// free eventually allocated BigBuf memory
BigBuf_free();
// Respond SOF -- takes 1 bytes
uint8_t *resp1 = BigBuf_malloc(2);
int resp1Len;
uint8_t *resp_sof = BigBuf_malloc(2);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp2 = BigBuf_malloc(28);
int resp2Len;
uint8_t *resp_anticoll = BigBuf_malloc(28);
int resp_anticoll_len;
// CSN
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp3 = BigBuf_malloc(30);
int resp3Len;
uint8_t *resp_csn = BigBuf_malloc(30);
int resp_csn_len;
// e-Purse
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
uint8_t *resp4 = BigBuf_malloc(20);
int resp4Len;
uint8_t *resp_cc = BigBuf_malloc(20);
int resp_cc_len;
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
@ -1099,20 +1120,22 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
// First card answer: SOF
CodeIClassTagSOF();
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
// Anticollision CSN
CodeIClassTagAnswer(response2, sizeof(response2));
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
// CSN
CodeIClassTagAnswer(response3, sizeof(response3));
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
CodeIClassTagAnswer(csn_data, sizeof(csn_data));
memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
// e-Purse
CodeIClassTagAnswer(response4, sizeof(response4));
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
//This is used for responding to READ-block commands
uint8_t *data_response = BigBuf_malloc(8 * 2 + 2);
// Start from off (no field generated)
//FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@ -1149,38 +1172,59 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
LED_C_ON();
// Okay, look at the command now.
if(receivedCmd[0] == 0x0a ) {
if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
// Reader in anticollission phase
modulated_response = resp1; modulated_response_size = resp1Len; //order = 1;
trace_data = response1;
trace_data_size = sizeof(response1);
} else if(receivedCmd[0] == 0x0c) {
modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
trace_data = sof_data;
trace_data_size = sizeof(sof_data);
} else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
// Reader asks for anticollission CSN
modulated_response = resp2; modulated_response_size = resp2Len; //order = 2;
trace_data = response2;
trace_data_size = sizeof(response2);
modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
//DbpString("Reader requests anticollission CSN:");
} else if(receivedCmd[0] == 0x81) {
} else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
// Reader selects anticollission CSN.
// Tag sends the corresponding real CSN
modulated_response = resp3; modulated_response_size = resp3Len; //order = 3;
trace_data = response3;
trace_data_size = sizeof(response3);
modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
//DbpString("Reader selects anticollission CSN:");
} else if(receivedCmd[0] == 0x88) {
} else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
// Read e-purse (88 02)
modulated_response = resp4; modulated_response_size = resp4Len; //order = 4;
trace_data = response4;
trace_data_size = sizeof(response4);
modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
} else if(receivedCmd[0] == 0x05) {
} else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
// Do not respond
if(simulationMode == MODE_FULLSIM)
{ //This is what we must do..
//Reader just sent us NR and MAC(k,cc * nr)
//The diversified key should be stored on block 3
//However, from a typical dump, the key will not be there
uint8_t *diversified_key = { 0 };
//Get the diversified key from emulator memory
memcpy(diversified_key, emulator+(8*3),8);
uint8_t ccnr[12] = { 0 };
//Put our cc there (block 2)
memcpy(ccnr, emulator + (8 * 2), 8);
//Put nr there
memcpy(ccnr+8, receivedCmd+1,4);
//Now, calc MAC
doMAC(ccnr,diversified_key, trace_data);
trace_data_size = 4;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}else
{ //Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
modulated_response = resp1; modulated_response_size = 0; //order = 5;
modulated_response = resp_sof; modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
if (breakAfterMacReceived){
if (simulationMode == MODE_EXIT_AFTER_MAC){
// dbprintf:ing ...
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
@ -1194,12 +1238,24 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
}
exitLoop = true;
}
} else if(receivedCmd[0] == 0x00 && len == 1) {
}
} else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
// Reader ends the session
modulated_response = resp1; modulated_response_size = 0; //order = 0;
modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
} else {
} else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
//Read block
uint16_t blk = receivedCmd[1];
trace_data = emulator+(blk << 3);
trace_data_size = 8;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
@ -1208,7 +1264,7 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
// Do not respond
modulated_response = resp1; modulated_response_size = 0; //order = 0;
modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
}
@ -1605,6 +1661,17 @@ void ReaderIClass(uint8_t arg0) {
if(read_status == 1) datasize = 8;
if(read_status == 2) datasize = 16;
//Todo, read the public blocks 1,5 aswell:
//
// 0 : CSN (we already have)
// 1 : Configuration
// 2 : e-purse (we already have)
// (3,4 write-only)
// 5 Application issuer area
//
//Then we can 'ship' back the 8 * 5 bytes of data,
// with 0xFF:s in block 3 and 4.
LED_B_ON();
//Send back to client, but don't bother if we already sent this
if(memcmp(last_csn, card_data, 8) != 0)

View file

@ -12,7 +12,7 @@
#include "string.h"
#include "lfsampling.h"
#include "cipherutils.h"
sample_config config = { 1, 8, 1, 95, 0 } ;
void printConfig()
@ -55,20 +55,20 @@ sample_config* getSamplingConfig()
{
return &config;
}
/*
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
} BitstreamOut;
*/
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, uint8_t bit)
/*void pushBit( BitstreamOut* stream, uint8_t bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
@ -76,7 +76,7 @@ void pushBit( BitstreamOut* stream, uint8_t bit)
stream->position++;
stream->numbits++;
}
*/
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.

View file

@ -103,6 +103,7 @@ CMDSRCS = nonce2key/crapto1.c\
cmdscript.c\
pm3_bitlib.c\
aes.c\
protocols.c\
COREOBJS = $(CORESRCS:%.c=$(OBJDIR)/%.o)

View file

@ -339,11 +339,11 @@ int Cmdaskmandemod(const char *Cmd)
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data askmandemod = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data askmandemod 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data askmandemod 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data askmandemod 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data askmandemod 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
@ -520,13 +520,13 @@ int Cmdaskrawdemod(const char *Cmd)
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog("");
PrintAndLog(" sample: data askrawdemod = demod an ask tag from GraphBuffer");
PrintAndLog(" : data askrawdemod a = demod an ask tag from GraphBuffer, amplified");
PrintAndLog(" : data askrawdemod 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data askrawdemod 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data askrawdemod 1 = demod an ask tag from GraphBuffer while inverting data");
PrintAndLog(" : data askrawdemod 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data askrawdemod 64 1 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
PrintAndLog(" sample: data rawdemod ar = demod an ask tag from GraphBuffer");
PrintAndLog(" : data rawdemod ar a = demod an ask tag from GraphBuffer, amplified");
PrintAndLog(" : data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data rawdemod ar 64 1 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
@ -836,13 +836,13 @@ int CmdFSKrawdemod(const char *Cmd)
PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
PrintAndLog(" [fclow], small field clock length, omit for autodetect");
PrintAndLog("");
PrintAndLog(" sample: data fskrawdemod = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data fskrawdemod 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data fskrawdemod 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data fskrawdemod 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data fskrawdemod 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data fskrawdemod 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data fskrawdemod 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return 0;
}
//set options from parameters entered with the command
@ -1943,6 +1943,7 @@ int CmdTuneSamples(const char *Cmd)
PrintAndLog("\n");
GraphTraceLen = 256;
ShowGraphWindow();
RepaintGraphWindow();
}
return 0;
@ -2385,24 +2386,24 @@ static command_t CommandTable[] =
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
//{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
{"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ask demod using length of sample differences to detect the edge of a wave - default = 25"},
{"askem410xdemod",CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
{"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ask demod using length of sample differences to detect the edge of a wave (default = 25)"},
{"askem410xdemod",CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
//{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
//{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in demod buffer (offset = 0|1 bits to shift the decode start)"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in DemodBuffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
//{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
{"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate of wave in GraphBuffer (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
//{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate graph window as an AWID FSK tag using raw"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate an AWID FSK tag from GraphBuffer"},
//{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK tag using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox tag FSK using raw"},
{"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate graph window as a Pyramid FSK tag using raw"},
{"fskparadoxdemod",CmdFSKdemodParadox,1, "Demodulate graph window as a Paradox FSK tag using raw"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate a HID FSK tag from GraphBuffer"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate an IO Prox FSK tag from GraphBuffer"},
{"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate a Pyramid FSK tag from GraphBuffer"},
{"fskparadoxdemod",CmdFSKdemodParadox,1, "Demodulate a Paradox FSK tag from GraphBuffer"},
//{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to bin (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
@ -2412,18 +2413,18 @@ static command_t CommandTable[] =
{"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
{"rtrim", CmdRtrim, 1, "<location to end trace> -- Trim samples from right of trace"},
//{"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
{"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"},
{"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream in DemodBuffer"},
{"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
{"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
//{"nrzdetectclock",CmdDetectNRZClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
//{"nrzrawdemod", CmdNRZrawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate nrz tags and output binary (args optional)"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
//{"pskdetectclock",CmdDetectPSKClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 indala tags and output ID binary & hex (args optional)"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Demodulate an indala tag (PSK1) from GraphBuffer (args optional)"},
//{"psk1rawdemod", CmdPSK1rawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate psk1 tags and output binary (args optional)"},
//{"psk2rawdemod", CmdPSK2rawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate psk2 tags and output binary (args optional)"},
{"rawdemod", CmdRawDemod, 1, "[modulation] ... <options> -see help (h option) - Attempt to demodulate the data in the GraphBuffer and output binary"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
{"rawdemod", CmdRawDemod, 1, "[modulation] ... <options> -see help (h option) -- Demodulate the data in the GraphBuffer and output binary"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},

View file

@ -23,6 +23,7 @@
#include "cmdhficlass.h"
#include "cmdhfmf.h"
#include "cmdhfmfu.h"
#include "protocols.h"
static int CmdHelp(const char *Cmd);
@ -33,175 +34,6 @@ int CmdHFTune(const char *Cmd)
return 0;
}
//The following data is taken from http://www.proxmark.org/forum/viewtopic.php?pid=13501#p13501
/*
ISO14443A (usually NFC tags)
26 (7bits) = REQA
30 = Read (usage: 30+1byte block number+2bytes ISO14443A-CRC - answer: 16bytes)
A2 = Write (usage: A2+1byte block number+4bytes data+2bytes ISO14443A-CRC - answer: 0A [ACK] or 00 [NAK])
52 (7bits) = WUPA (usage: 52(7bits) - answer: 2bytes ATQA)
93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
95 20 = Anticollision of cascade level2
95 70 = Select of cascade level2
50 00 = Halt (usage: 5000+2bytes ISO14443A-CRC - no answer from card)
Mifare
60 = Authenticate with KeyA
61 = Authenticate with KeyB
40 (7bits) = Used to put Chinese Changeable UID cards in special mode (must be followed by 43 (8bits) - answer: 0A)
C0 = Decrement
C1 = Increment
C2 = Restore
B0 = Transfer
Ultralight C
A0 = Compatibility Write (to accomodate MIFARE commands)
1A = Step1 Authenticate
AF = Step2 Authenticate
ISO14443B
05 = REQB
1D = ATTRIB
50 = HALT
SRIX4K (tag does not respond to 05)
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
ISO15693
MANDATORY COMMANDS (all ISO15693 tags must support those)
01 = Inventory (usage: 260100+2bytes ISO15693-CRC - answer: 12bytes)
02 = Stay Quiet
OPTIONAL COMMANDS (not all tags support them)
20 = Read Block (usage: 0220+1byte block number+2bytes ISO15693-CRC - answer: 4bytes)
21 = Write Block (usage: 0221+1byte block number+4bytes data+2bytes ISO15693-CRC - answer: 4bytes)
22 = Lock Block
23 = Read Multiple Blocks (usage: 0223+1byte 1st block to read+1byte last block to read+2bytes ISO15693-CRC)
25 = Select
26 = Reset to Ready
27 = Write AFI
28 = Lock AFI
29 = Write DSFID
2A = Lock DSFID
2B = Get_System_Info (usage: 022B+2bytes ISO15693-CRC - answer: 14 or more bytes)
2C = Read Multiple Block Security Status (usage: 022C+1byte 1st block security to read+1byte last block security to read+2bytes ISO15693-CRC)
EM Microelectronic CUSTOM COMMANDS
A5 = Active EAS (followed by 1byte IC Manufacturer code+1byte EAS type)
A7 = Write EAS ID (followed by 1byte IC Manufacturer code+2bytes EAS value)
B8 = Get Protection Status for a specific block (followed by 1byte IC Manufacturer code+1byte block number+1byte of how many blocks after the previous is needed the info)
E4 = Login (followed by 1byte IC Manufacturer code+4bytes password)
NXP/Philips CUSTOM COMMANDS
A0 = Inventory Read
A1 = Fast Inventory Read
A2 = Set EAS
A3 = Reset EAS
A4 = Lock EAS
A5 = EAS Alarm
A6 = Password Protect EAS
A7 = Write EAS ID
A8 = Read EPC
B0 = Inventory Page Read
B1 = Fast Inventory Page Read
B2 = Get Random Number
B3 = Set Password
B4 = Write Password
B5 = Lock Password
B6 = Bit Password Protection
B7 = Lock Page Protection Condition
B8 = Get Multiple Block Protection Status
B9 = Destroy SLI
BA = Enable Privacy
BB = 64bit Password Protection
40 = Long Range CMD (Standard ISO/TR7003:1990)
*/
#define ICLASS_CMD_ACTALL 0x0A
#define ICLASS_CMD_READ_OR_IDENTIFY 0x0C
#define ICLASS_CMD_SELECT 0x81
#define ICLASS_CMD_PAGESEL 0x84
#define ICLASS_CMD_READCHECK_KD 0x88
#define ICLASS_CMD_READCHECK_KC 0x18
#define ICLASS_CMD_CHECK 0x05
#define ICLASS_CMD_DETECT 0x0F
#define ICLASS_CMD_HALT 0x00
#define ICLASS_CMD_UPDATE 0x87
#define ICLASS_CMD_ACT 0x8E
#define ICLASS_CMD_READ4 0x06
#define ISO14443A_CMD_REQA 0x26
#define ISO14443A_CMD_READBLOCK 0x30
#define ISO14443A_CMD_WUPA 0x52
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
#define ISO14443A_CMD_HALT 0x50
#define ISO14443A_CMD_RATS 0xE0
#define MIFARE_AUTH_KEYA 0x60
#define MIFARE_AUTH_KEYB 0x61
#define MIFARE_MAGICMODE 0x40
#define MIFARE_CMD_INC 0xC0
#define MIFARE_CMD_DEC 0xC1
#define MIFARE_CMD_RESTORE 0xC2
#define MIFARE_CMD_TRANSFER 0xB0
#define MIFARE_ULC_WRITE 0xA0
#define MIFARE_ULC_AUTH_1 0x1A
#define MIFARE_ULC_AUTH_2 0xAF
/**
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
**/
#define ISO14443B_REQB 0x05
#define ISO14443B_ATTRIB 0x1D
#define ISO14443B_HALT 0x50
#define ISO14443B_INITIATE 0x06
#define ISO14443B_SELECT 0x0E
#define ISO14443B_GET_UID 0x0B
#define ISO14443B_READ_BLK 0x08
#define ISO14443B_WRITE_BLK 0x09
#define ISO14443B_RESET 0x0C
#define ISO14443B_COMPLETION 0x0F
#define ISO14443B_AUTHENTICATE 0x0A
//First byte is 26
#define ISO15693_INVENTORY 0x01
#define ISO15693_STAYQUIET 0x02
//First byte is 02
#define ISO15693_READBLOCK 0x20
#define ISO15693_WRITEBLOCK 0x21
#define ISO15693_LOCKBLOCK 0x22
#define ISO15693_READ_MULTI_BLOCK 0x23
#define ISO15693_SELECT 0x25
#define ISO15693_RESET_TO_READY 0x26
#define ISO15693_WRITE_AFI 0x27
#define ISO15693_LOCK_AFI 0x28
#define ISO15693_WRITE_DSFID 0x29
#define ISO15693_LOCK_DSFID 0x2A
#define ISO15693_GET_SYSTEM_INFO 0x2B
#define ISO15693_READ_MULTI_SECSTATUS 0x2C
#define ISO_14443A 0
#define ICLASS 1
#define ISO_14443B 2
void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{

View file

@ -29,6 +29,7 @@
#include "loclass/ikeys.h"
#include "loclass/elite_crack.h"
#include "loclass/fileutils.h"
#include "protocols.h"
static int CmdHelp(const char *Cmd);
@ -53,6 +54,21 @@ int CmdHFiClassSnoop(const char *Cmd)
SendCommand(&c);
return 0;
}
int usage_hf_iclass_sim()
{
PrintAndLog("Usage: hf iclass sim <option> [CSN]");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 Reader-attack, gather reader responses to extract elite key");
PrintAndLog(" 3 Full simulation using emulator memory (see 'hf iclass eload')");
PrintAndLog(" example: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" example: hf iclass sim 2");
PrintAndLog(" example: hf iclass eload 'tagdump.bin'");
PrintAndLog(" hf iclass sim 3");
return 0;
}
#define NUM_CSNS 15
int CmdHFiClassSim(const char *Cmd)
{
@ -60,50 +76,31 @@ int CmdHFiClassSim(const char *Cmd)
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass sim [0 <CSN>] | x");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 iterate CSNs, gather MACs");
PrintAndLog(" sample: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" sample: hf iclass sim 2");
return 0;
return usage_hf_iclass_sim();
}
simType = param_get8(Cmd, 0);
simType = param_get8ex(Cmd, 0, 0, 10);
if(simType == 0)
{
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
return 1;
return usage_hf_iclass_sim();
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
if(simType > 2)
if(simType > 3)
{
PrintAndLog("Undefined simptype %d", simType);
return 1;
return usage_hf_iclass_sim();
}
uint8_t numberOfCSNs=0;
uint8_t numberOfCSNs=0;
if(simType == 2)
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,NUM_CSNS}};
UsbCommand resp = {0};
/*uint8_t csns[8 * NUM_CSNS] = {
0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 ,
0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 ,
0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 ,
0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0 ,
0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0 ,
0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 ,
0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 ,
0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 };
*/
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
@ -325,7 +322,7 @@ int CmdHFiClassReader_Dump(const char *Cmd)
PrintAndLog("Hash0, a.k.a diversified key, that is computed using Ksel and stored in the card (Block 3):");
printvar("Div key", div_key, 8);
printvar("CC_NR:",CCNR,12);
doMAC(CCNR,12,div_key, MAC);
doMAC(CCNR,div_key, MAC);
printvar("MAC", MAC, 4);
uint8_t iclass_data[32000] = {0};
@ -367,6 +364,8 @@ int CmdHFiClassReader_Dump(const char *Cmd)
snprintf(filename, 100,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x",
CSN[0],CSN[1],CSN[2],CSN[3],
CSN[4],CSN[5],CSN[6],CSN[7]);
//Place the div_key in block 3
memcpy(iclass_data+(3*8), div_key, 8);
saveFile(filename,"bin",iclass_data, iclass_datalen );
}
//Aaaand we're finished
@ -422,9 +421,12 @@ int CmdHFiClassELoad(const char *Cmd)
fseek(f, 0, SEEK_SET);
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
printIclassDumpInfo(dump);
//Validate
if (bytes_read < fsize)
@ -450,6 +452,103 @@ int CmdHFiClassELoad(const char *Cmd)
return 0;
}
int usage_hf_iclass_decrypt()
{
PrintAndLog("Usage: hf iclass decrypt f <tagdump> o ");
PrintAndLog("");
PrintAndLog("OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLog("in the working directory. The file should be 16 bytes binary data");
PrintAndLog("");
PrintAndLog("example: hf iclass decrypt f tagdump_12312342343.bin");
PrintAndLog("");
PrintAndLog("OBS! This is pretty stupid implementation, it tries to decrypt every block after block 6. ");
PrintAndLog("Correct behaviour would be to decrypt only the application areas where the key is valid,");
PrintAndLog("which is defined by the configuration block.");
return 1;
}
int readKeyfile(const char *filename, size_t len, uint8_t* buffer)
{
FILE *f = fopen(filename, "rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
size_t bytes_read = fread(buffer, 1, len, f);
fclose(f);
if(fsize != len)
{
PrintAndLog("Warning, file size is %d, expected %d", fsize, len);
return 1;
}
if(bytes_read != len)
{
PrintAndLog("Warning, could only read %d bytes, expected %d" ,bytes_read, len);
return 1;
}
return 0;
}
int CmdHFiClassDecrypt(const char *Cmd)
{
uint8_t key[16] = { 0 };
if(readKeyfile("iclass_decryptionkey.bin", 16, key))
{
usage_hf_iclass_decrypt();
return 1;
}
PrintAndLog("Decryption file found... ");
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h')
return usage_hf_iclass_decrypt();
//Open the tagdump-file
FILE *f;
char filename[FILE_PATH_SIZE];
if(opt == 'f' && param_getstr(Cmd, 1, filename) > 0)
{
f = fopen(filename, "rb");
}else{
return usage_hf_iclass_decrypt();
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
uint8_t enc_dump[8] = {0};
uint8_t *decrypted = malloc(fsize);
des3_context ctx = { DES_DECRYPT ,{ 0 } };
des3_set2key_dec( &ctx, key);
size_t bytes_read = fread(enc_dump, 1, 8, f);
//Use the first block (CSN) for filename
char outfilename[FILE_PATH_SIZE] = { 0 };
snprintf(outfilename,FILE_PATH_SIZE,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x-decrypted",
enc_dump[0],enc_dump[1],enc_dump[2],enc_dump[3],
enc_dump[4],enc_dump[5],enc_dump[6],enc_dump[7]);
size_t blocknum =0;
while(bytes_read == 8)
{
if(blocknum < 7)
{
memcpy(decrypted+(blocknum*8), enc_dump, 8);
}else{
des3_crypt_ecb(&ctx, enc_dump,decrypted +(blocknum*8) );
}
printvar("decrypted block", decrypted +(blocknum*8), 8);
bytes_read = fread(enc_dump, 1, 8, f);
blocknum++;
}
fclose(f);
saveFile(outfilename,"bin", decrypted, blocknum*8);
return 0;
}
int CmdHFiClass_iso14443A_write(const char *Cmd)
{
@ -508,7 +607,7 @@ int CmdHFiClass_iso14443A_write(const char *Cmd)
diversifyKey(CSN,KEY, div_key);
PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
doMAC(CCNR, 12,div_key, MAC);
doMAC(CCNR, div_key, MAC);
UsbCommand c2 = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}};
memcpy(c2.d.asBytes, bldata, 8);
@ -586,6 +685,7 @@ static command_t CommandTable[] =
// {"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"},
{"loclass", CmdHFiClass_loclass, 1, "Use loclass to perform bruteforce of reader attack dump"},
{"eload", CmdHFiClassELoad, 0, "[experimental] Load data into iclass emulator memory"},
{"decrypt", CmdHFiClassDecrypt, 1, "Decrypt tagdump" },
{NULL, NULL, 0, NULL}
};

View file

@ -39,14 +39,14 @@
#include "cipher.h"
#include "cipherutils.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#ifndef ON_DEVICE
#include "fileutils.h"
uint8_t keytable[] = { 0,0,0,0,0,0,0,0};
#endif
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
@ -221,27 +221,27 @@ void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
output(k,initState,&input_32_zeroes,&out);
}
void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4])
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
{
uint8_t *cc_nr;
uint8_t cc_nr[13] = { 0 };
uint8_t div_key[8];
cc_nr=(uint8_t*)malloc(length+1);
memcpy(cc_nr,cc_nr_p,length);
//cc_nr=(uint8_t*)malloc(length+1);
memcpy(cc_nr,cc_nr_p,12);
memcpy(div_key,div_key_p,8);
reverse_arraybytes(cc_nr,length);
BitstreamIn bitstream = {cc_nr,length * 8,0};
reverse_arraybytes(cc_nr,12);
BitstreamIn bitstream = {cc_nr,12 * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac,dest,4);
//printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]);
free(cc_nr);
//free(cc_nr);
return;
}
#ifndef ON_DEVICE
int testMAC()
{
prnlog("[+] Testing MAC calculation...");
@ -253,7 +253,7 @@ int testMAC()
uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
uint8_t calculated_mac[4] = {0};
doMAC(cc_nr, 12,div_key, calculated_mac);
doMAC(cc_nr,div_key, calculated_mac);
if(memcmp(calculated_mac, correct_MAC,4) == 0)
{
@ -269,3 +269,4 @@ int testMAC()
return 0;
}
#endif

View file

@ -41,7 +41,9 @@
#define CIPHER_H
#include <stdint.h>
void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4]);
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
#ifndef ON_DEVICE
int testMAC();
#endif
#endif // CIPHER_H

View file

@ -214,7 +214,7 @@ void printarr_human_readable(char * title, uint8_t* arr, int len)
// Code for testing below
//-----------------------------
#ifndef ON_DEVICE
int testBitStream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
@ -287,3 +287,4 @@ int testCipherUtils(void)
retval |= testReversedBitstream();
return retval;
}
#endif

View file

@ -59,9 +59,10 @@ bool headBit( BitstreamIn *stream);
bool tailBit( BitstreamIn *stream);
void pushBit( BitstreamOut *stream, bool bit);
int bitsLeft( BitstreamIn *stream);
#ifndef ON_DEVICE
int testCipherUtils(void);
int testMAC();
#endif
void push6bits( BitstreamOut* stream, uint8_t bits);
void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);

View file

@ -78,6 +78,25 @@ typedef struct
uint32_t sk[96]; /*!< 3DES subkeys */
}
des3_context;
/*
* Triple-DES key schedule (112-bit, encryption)
*/
int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/*
* Triple-DES key schedule (112-bit, decryption)
*/
int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/*
* Triple-DES key schedule (168-bit, encryption)
*/
int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/*
* Triple-DES key schedule (168-bit, decryption)
*/
int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/**
* \brief Set key parity on the given key to odd.

View file

@ -394,7 +394,7 @@ int bruteforceItem(dumpdata item, uint16_t keytable[])
//Diversify
diversifyKey(item.csn, key_sel_p, div_key);
//Calc mac
doMAC(item.cc_nr,12, div_key,calculated_MAC);
doMAC(item.cc_nr, div_key,calculated_MAC);
if(memcmp(calculated_MAC, item.mac, 4) == 0)
{

View file

@ -35,6 +35,7 @@
*
*
****************************************************************************/
#ifndef ON_DEVICE
#include <stdio.h>
#include <string.h>
@ -108,3 +109,10 @@ void prnlog(char *fmt, ...)
PrintAndLog(buffer);
}
#else //if we're on ARM
void prnlog(char *fmt,...)
{
return;
}
#endif

View file

@ -38,6 +38,9 @@
#ifndef FILEUTILS_H
#define FILEUTILS_H
#ifndef ON_DEVICE
/**
* @brief Utility function to save data to a file. This method takes a preferred name, but if that
* file already exists, it tries with another name until it finds something suitable.
@ -58,7 +61,8 @@ int saveFile(const char *preferredName, const char *suffix, const void* data, si
* @return
*/
int loadFile(const char *fileName, void* data, size_t datalen);
int fileExists(const char *filename);
#endif //ON_DEVICE
/**
* Utility function to print to console. This is used consistently within the library instead
@ -68,5 +72,4 @@ int loadFile(const char *fileName, void* data, size_t datalen);
* @param fmt
*/
void prnlog(char *fmt, ...);
int fileExists(const char *filename);
#endif // FILEUTILS_H

116
common/protocols.c Normal file
View file

@ -0,0 +1,116 @@
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include "protocols.h"
#ifndef ON_DEVICE
#include "ui.h"
#define prnt PrintAndLog
#endif
typedef struct {
uint8_t app_limit;
uint8_t otp[2];
uint8_t block_writelock;
uint8_t chip_config;
uint8_t mem_config;
uint8_t eas;
uint8_t fuses;
}picopass_conf_block;
typedef struct {
uint8_t csn[8];
picopass_conf_block conf;
uint8_t epurse[8];
uint8_t key_d[8];
uint8_t key_c[8];
uint8_t app_issuer_area[8];
}picopass_hdr;
//#define prnt printf
/*void prnt(char *fmt,...)
{
va_list argptr;
va_start(argptr, fmt);
vprintf(fmt, argptr);
printf(" "); // cleaning prompt
va_end(argptr);
printf("\n");
}
*/
uint8_t isset(uint8_t val, uint8_t mask)
{
return (val & mask);
}
uint8_t notset(uint8_t val, uint8_t mask){
return !(val & mask);
}
void fuse_config(const picopass_hdr *hdr)
{
uint8_t fuses = hdr->conf.fuses;
if (isset(fuses,FUSE_FPERS))prnt(" Mode: Personalization [Programmable]");
else prnt(" Mode: Application [Locked]");
if (isset(fuses, FUSE_CODING1))
prnt(" Coding: RFU");
else
{
if( isset( fuses , FUSE_CODING0)) prnt(" Coding: ISO 14443-2 B/ISO 15693");
else prnt(" Coding: ISO 14443B only");
}
if( isset (fuses,FUSE_CRYPT1 | FUSE_CRYPT0 )) prnt(" Crypt: Secured page, keys not locked");
if( isset (fuses,FUSE_CRYPT1) && notset( fuses, FUSE_CRYPT0 )) prnt(" Crypt: Secured page, keys not locked");
if( notset (fuses,FUSE_CRYPT1) && isset( fuses, FUSE_CRYPT0 )) prnt(" Crypt: Non secured page");
if( notset (fuses,FUSE_CRYPT1) && notset( fuses, FUSE_CRYPT0 )) prnt(" Crypt: No auth possible. Read only if RA is enabled");
if( isset( fuses, FUSE_RA)) prnt(" RA: Read access enabled");
else prnt(" RA: Read access not enabled");
}
void mem_config(const picopass_hdr *hdr)
{
uint8_t mem = hdr->conf.mem_config;
if( isset (mem, 0x80)) prnt(" Mem: 16KBits (255 * 8 bytes)");
else prnt(" Mem: 2 KBits ( 32 * 8 bytes)");
}
void applimit_config(const picopass_hdr *hdr)
{
uint8_t applimit = hdr->conf.app_limit;
prnt(" AA1: blocks 6-%d", applimit);
prnt(" AA2: blocks %d-", (applimit+1));
}
void print_picopass_info(const picopass_hdr *hdr)
{
fuse_config(hdr);
mem_config(hdr);
applimit_config(hdr);
}
void printIclassDumpInfo(uint8_t* iclass_dump)
{
// picopass_hdr hdr;
// memcpy(&hdr, iclass_dump, sizeof(picopass_hdr));
print_picopass_info((picopass_hdr *) iclass_dump);
}
/*
void test()
{
picopass_hdr hdr = {0x27,0xaf,0x48,0x01,0xf9,0xff,0x12,0xe0,0x12,0xff,0xff,0xff,0x7f,0x1f,0xff,0x3c};
prnt("Picopass configuration:");
print_picopass_info(&hdr);
}
int main(int argc, char *argv[])
{
test();
return 0;
}
*/

186
common/protocols.h Normal file
View file

@ -0,0 +1,186 @@
#ifndef PROTOCOLS_H
#define PROTOCOLS_H
//The following data is taken from http://www.proxmark.org/forum/viewtopic.php?pid=13501#p13501
/*
ISO14443A (usually NFC tags)
26 (7bits) = REQA
30 = Read (usage: 30+1byte block number+2bytes ISO14443A-CRC - answer: 16bytes)
A2 = Write (usage: A2+1byte block number+4bytes data+2bytes ISO14443A-CRC - answer: 0A [ACK] or 00 [NAK])
52 (7bits) = WUPA (usage: 52(7bits) - answer: 2bytes ATQA)
93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
95 20 = Anticollision of cascade level2
95 70 = Select of cascade level2
50 00 = Halt (usage: 5000+2bytes ISO14443A-CRC - no answer from card)
Mifare
60 = Authenticate with KeyA
61 = Authenticate with KeyB
40 (7bits) = Used to put Chinese Changeable UID cards in special mode (must be followed by 43 (8bits) - answer: 0A)
C0 = Decrement
C1 = Increment
C2 = Restore
B0 = Transfer
Ultralight C
A0 = Compatibility Write (to accomodate MIFARE commands)
1A = Step1 Authenticate
AF = Step2 Authenticate
ISO14443B
05 = REQB
1D = ATTRIB
50 = HALT
SRIX4K (tag does not respond to 05)
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
ISO15693
MANDATORY COMMANDS (all ISO15693 tags must support those)
01 = Inventory (usage: 260100+2bytes ISO15693-CRC - answer: 12bytes)
02 = Stay Quiet
OPTIONAL COMMANDS (not all tags support them)
20 = Read Block (usage: 0220+1byte block number+2bytes ISO15693-CRC - answer: 4bytes)
21 = Write Block (usage: 0221+1byte block number+4bytes data+2bytes ISO15693-CRC - answer: 4bytes)
22 = Lock Block
23 = Read Multiple Blocks (usage: 0223+1byte 1st block to read+1byte last block to read+2bytes ISO15693-CRC)
25 = Select
26 = Reset to Ready
27 = Write AFI
28 = Lock AFI
29 = Write DSFID
2A = Lock DSFID
2B = Get_System_Info (usage: 022B+2bytes ISO15693-CRC - answer: 14 or more bytes)
2C = Read Multiple Block Security Status (usage: 022C+1byte 1st block security to read+1byte last block security to read+2bytes ISO15693-CRC)
EM Microelectronic CUSTOM COMMANDS
A5 = Active EAS (followed by 1byte IC Manufacturer code+1byte EAS type)
A7 = Write EAS ID (followed by 1byte IC Manufacturer code+2bytes EAS value)
B8 = Get Protection Status for a specific block (followed by 1byte IC Manufacturer code+1byte block number+1byte of how many blocks after the previous is needed the info)
E4 = Login (followed by 1byte IC Manufacturer code+4bytes password)
NXP/Philips CUSTOM COMMANDS
A0 = Inventory Read
A1 = Fast Inventory Read
A2 = Set EAS
A3 = Reset EAS
A4 = Lock EAS
A5 = EAS Alarm
A6 = Password Protect EAS
A7 = Write EAS ID
A8 = Read EPC
B0 = Inventory Page Read
B1 = Fast Inventory Page Read
B2 = Get Random Number
B3 = Set Password
B4 = Write Password
B5 = Lock Password
B6 = Bit Password Protection
B7 = Lock Page Protection Condition
B8 = Get Multiple Block Protection Status
B9 = Destroy SLI
BA = Enable Privacy
BB = 64bit Password Protection
40 = Long Range CMD (Standard ISO/TR7003:1990)
*/
#define ICLASS_CMD_ACTALL 0x0A
#define ICLASS_CMD_READ_OR_IDENTIFY 0x0C
#define ICLASS_CMD_SELECT 0x81
#define ICLASS_CMD_PAGESEL 0x84
#define ICLASS_CMD_READCHECK_KD 0x88
#define ICLASS_CMD_READCHECK_KC 0x18
#define ICLASS_CMD_CHECK 0x05
#define ICLASS_CMD_DETECT 0x0F
#define ICLASS_CMD_HALT 0x00
#define ICLASS_CMD_UPDATE 0x87
#define ICLASS_CMD_ACT 0x8E
#define ICLASS_CMD_READ4 0x06
#define ISO14443A_CMD_REQA 0x26
#define ISO14443A_CMD_READBLOCK 0x30
#define ISO14443A_CMD_WUPA 0x52
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
#define ISO14443A_CMD_HALT 0x50
#define ISO14443A_CMD_RATS 0xE0
#define MIFARE_AUTH_KEYA 0x60
#define MIFARE_AUTH_KEYB 0x61
#define MIFARE_MAGICMODE 0x40
#define MIFARE_CMD_INC 0xC0
#define MIFARE_CMD_DEC 0xC1
#define MIFARE_CMD_RESTORE 0xC2
#define MIFARE_CMD_TRANSFER 0xB0
#define MIFARE_ULC_WRITE 0xA0
#define MIFARE_ULC_AUTH_1 0x1A
#define MIFARE_ULC_AUTH_2 0xAF
/**
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
**/
#define ISO14443B_REQB 0x05
#define ISO14443B_ATTRIB 0x1D
#define ISO14443B_HALT 0x50
#define ISO14443B_INITIATE 0x06
#define ISO14443B_SELECT 0x0E
#define ISO14443B_GET_UID 0x0B
#define ISO14443B_READ_BLK 0x08
#define ISO14443B_WRITE_BLK 0x09
#define ISO14443B_RESET 0x0C
#define ISO14443B_COMPLETION 0x0F
#define ISO14443B_AUTHENTICATE 0x0A
//First byte is 26
#define ISO15693_INVENTORY 0x01
#define ISO15693_STAYQUIET 0x02
//First byte is 02
#define ISO15693_READBLOCK 0x20
#define ISO15693_WRITEBLOCK 0x21
#define ISO15693_LOCKBLOCK 0x22
#define ISO15693_READ_MULTI_BLOCK 0x23
#define ISO15693_SELECT 0x25
#define ISO15693_RESET_TO_READY 0x26
#define ISO15693_WRITE_AFI 0x27
#define ISO15693_LOCK_AFI 0x28
#define ISO15693_WRITE_DSFID 0x29
#define ISO15693_LOCK_DSFID 0x2A
#define ISO15693_GET_SYSTEM_INFO 0x2B
#define ISO15693_READ_MULTI_SECSTATUS 0x2C
#define ISO_14443A 0
#define ICLASS 1
#define ISO_14443B 2
//-- Picopass fuses
#define FUSE_FPERS 0x80
#define FUSE_CODING1 0x40
#define FUSE_CODING0 0x20
#define FUSE_CRYPT1 0x10
#define FUSE_CRYPT0 0x08
#define FUSE_FPROD1 0x04
#define FUSE_FPROD0 0x02
#define FUSE_RA 0x01
void printIclassDumpInfo(uint8_t* iclass_dump);
#endif // PROTOCOLS_H