ADD: flashmemory functionality for RDV40 Huge thanks to @willok !

This commit is contained in:
iceman1001 2018-03-19 15:58:50 +01:00
parent e182d12ba8
commit fd1b86d607
3 changed files with 281 additions and 316 deletions

View file

@ -3,6 +3,7 @@ All notable changes to this project will be documented in this file.
This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log... This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log...
## [unreleased][unreleased] ## [unreleased][unreleased]
- Add FlashMemory functionality (RDV40) (Thanks @willok)
- Fix 'hf mfu dump' - partial reads lead to corrupt data (Thanks @elafargue for pointing it out) - Fix 'hf mfu dump' - partial reads lead to corrupt data (Thanks @elafargue for pointing it out)
- 'hf mfu dumop / read' - now retries five times. (@jamchamb) - 'hf mfu dumop / read' - now retries five times. (@jamchamb)
- Added `hf list mf` - deciphers crypto1 stream and works with first authentication and weak nested authentications (@Merlok) - Added `hf list mf` - deciphers crypto1 stream and works with first authentication and weak nested authentications (@Merlok)

View file

@ -3,9 +3,6 @@
#define address_length 3 #define address_length 3
/* here: use NCPS2 @ PA10: */ /* here: use NCPS2 @ PA10: */
#define NCPS_PDR_BIT AT91C_PA10_NPCS2 // GPIO
#define NCPS_ASR_BIT 0 // SPI peripheral A
#define NCPS_BSR_BIT AT91C_PA10_NPCS2 // SPI peripheral B
#define SPI_CSR_NUM 2 // Chip Select register[] 0,1,2,3 (at91samv512 has 4) #define SPI_CSR_NUM 2 // Chip Select register[] 0,1,2,3 (at91samv512 has 4)
/* PCS_0 for NPCS0, PCS_1 for NPCS1 ... */ /* PCS_0 for NPCS0, PCS_1 for NPCS1 ... */
@ -28,97 +25,72 @@
// not realy - when using an external address decoder... // not realy - when using an external address decoder...
// but this code takes over the complete SPI-interace anyway // but this code takes over the complete SPI-interace anyway
#endif #endif
/*
1. variable chip select (PS=1) ChipSelect number is written to TDR in EVERY transfer
2. fixed chip select (PS=0),
FIXED = you manage the CS lines
VARIABLE = SPI module manages the CS lines /*
1-256256
CS拉高
*/ */
void FlashSetup(void) {
// 初始化Flash
void FlashSetup()
{
// PA1 -> SPI_NCS3 chip select (MEM) // PA1 -> SPI_NCS3 chip select (MEM)
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out // PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In // PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock // PA14 -> SPI_SPCK Serial Clock
// Kill all the pullups, // Disable PIO control of the following pins, allows use by the SPI peripheral
//AT91C_BASE_PIOA->PIO_PPUDR = GPIO_NCS1 | GPIO_MOSI | GPIO_SPCK | GPIO_MISO; AT91C_BASE_PIOA->PIO_PDR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK | GPIO_NCS2;
// These pins are outputs // Pull-up Enable
//AT91C_BASE_PIOA->PIO_OER = GPIO_NCS1 | GPIO_MOSI | GPIO_SPCK; AT91C_BASE_PIOA->PIO_PPUER = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK | GPIO_NCS2;
// PIO controls the following pins
//AT91C_BASE_PIOA->PIO_PER = GPIO_NCS1 | GPIO_MOSI | GPIO_SPCK | GPIO_MISO;
// Disable PIO control of the following pins, hand over to SPI control
AT91C_BASE_PIOA->PIO_PDR = GPIO_MISO | GPIO_MOSI | GPIO_SPCK | NCPS_PDR_BIT;
// Peripheral A // Peripheral A
AT91C_BASE_PIOA->PIO_ASR = GPIO_MISO | GPIO_MOSI | GPIO_SPCK | NCPS_ASR_BIT; AT91C_BASE_PIOA->PIO_ASR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral B
AT91C_BASE_PIOA->PIO_BSR = GPIO_MISO | GPIO_MOSI | GPIO_SPCK | NCPS_BSR_BIT ;
// set chip-select as output high (unselect card) // Peripheral B
AT91C_BASE_PIOA->PIO_PER = NCPS_PDR_BIT; // enable GPIO of CS-pin AT91C_BASE_PIOA->PIO_BSR |= GPIO_NCS2;
AT91C_BASE_PIOA->PIO_SODR = NCPS_PDR_BIT; // set high
AT91C_BASE_PIOA->PIO_OER = NCPS_PDR_BIT; // output enable
//enable the SPI Peripheral clock //enable the SPI Peripheral clock
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SPI); AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SPI);
// SPI Mode register
/*
AT91C_BASE_SPI->SPI_MR =
(0 << 24) | // DLYBCS, Delay between chip selects (take default: 6 MCK periods)
(0 << 7) | // LLB, Local Loopback Disabled
AT91C_SPI_MODFDIS | // Mode Fault Detection disabled
(0 << 2) | // PCSDEC, Chip selects connected directly to peripheral
AT91C_SPI_PS_FIXED | // PS, Fixed Peripheral Select
AT91C_SPI_MSTR; // MSTR, Master Mode
*/
AT91C_BASE_SPI->SPI_MR = AT91C_SPI_MSTR | AT91C_SPI_PS_FIXED | AT91C_SPI_MODFDIS;
// PCS, Peripheral Chip Select
AT91C_BASE_SPI->SPI_MR |= ( (SPI_MR_PCS << 16) & AT91C_SPI_PCS );
// SPI Chip select register
/*
AT91C_BASE_SPI->SPI_CSR[SPI_CSR_NUM] =
(1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
(1 << 16) | // Delay Before SPCK (1 MCK period)
(6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
AT91C_SPI_BITS_8 | // Bits per Transfer (8 bits)
(0 << 3) | // CSAAT, Chip Select inactive after transfer
AT91C_SPI_NCPHA | // NCPHA, Clock Phase data captured on leading edge, changes on following edge
(0 << 0); // CPOL, Clock Polarity inactive state is logic 0
*/
AT91C_BASE_SPI->SPI_CSR[SPI_CSR_NUM] = AT91C_SPI_NCPHA | AT91C_SPI_BITS_8 | (6 << 8);
// Enable SPI // Enable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN; AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
/* Send 20 spi commands with card not selected */ // NPCS2 Mode 0
for (int i=0; i<21; i++) AT91C_BASE_SPI->SPI_MR =
FlashSend(0xFF); ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(0xB << 16) | // Peripheral Chip Select (selects SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
// 8 bit
AT91C_BASE_SPI->SPI_CSR[2] =
( 0 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 0 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 0 << 4) | // Bits per Transfer (8 bits)
( 1 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
// read first, empty buffer
if (AT91C_BASE_SPI->SPI_RDR == 0)
;
/* enable automatic chip-select */
// reset PIO-registers of CS-pin to default
AT91C_BASE_PIOA->PIO_ODR |= NCPS_PDR_BIT; // input
AT91C_BASE_PIOA->PIO_CODR |= NCPS_PDR_BIT; // clear
// disable PIO from controlling the CS pin (=hand over to SPI)
AT91C_BASE_PIOA->PIO_PDR |= NCPS_PDR_BIT;
// set pin-functions in PIO Controller (function NCPS for CS-pin)
AT91C_BASE_PIOA->PIO_ASR |= NCPS_ASR_BIT;
AT91C_BASE_PIOA->PIO_BSR |= NCPS_BSR_BIT;
} }
void FlashStop(void) { // end up SPI
//NCS_1_HIGH; void FlashStop(void)
StopTicks(); {
Dbprintf("FlashStop");
LED_A_OFF();
//* Reset all the Chip Select register //* Reset all the Chip Select register
AT91C_BASE_SPI->SPI_CSR[0] = 0; AT91C_BASE_SPI->SPI_CSR[0] = 0;
AT91C_BASE_SPI->SPI_CSR[1] = 0; AT91C_BASE_SPI->SPI_CSR[1] = 0;
@ -133,91 +105,87 @@ void FlashStop(void) {
// SPI disable // SPI disable
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS; AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
Dbprintf("FlashStop");
} }
uint16_t FlashSend(uint16_t data) { // 发送一个字节 send one byte
uint16_t FlashSendByte(uint32_t data)
{
uint16_t incoming = 0; uint16_t incoming = 0;
WDT_HIT();
// wait until SPI is ready for transfer // wait until SPI is ready for transfer
while ( !(AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY)) {}; while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0) {};
// send the data // send the data
AT91C_BASE_SPI->SPI_TDR = data; AT91C_BASE_SPI->SPI_TDR = data;
// wait recive transfer is complete // wait recive transfer is complete
while ( !(AT91C_BASE_SPI->SPI_SR & AT91C_SPI_RDRF)) {}; while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_RDRF) == 0)
WDT_HIT();
// reading incoming data // reading incoming data
incoming = ((AT91C_BASE_SPI->SPI_RDR) & 0xFFFF); incoming = ((AT91C_BASE_SPI->SPI_RDR) & 0xFFFF);
return incoming; return incoming;
} }
// send last one byte
uint16_t FlashSendLastByte(uint32_t data) {
return FlashSendByte(data | AT91C_SPI_LASTXFER);
}
// Read state register 1
uint8_t Flash_ReadStat1(void) { uint8_t Flash_ReadStat1(void) {
uint8_t stat2 = FlashSend(READSTAT1); FlashSendByte(READSTAT1);
uint8_t stat1 = FlashSend(0xFF); uint8_t stat1 = FlashSendLastByte(0xFF);
Dbprintf("stat1 [%02x] %02x ", stat1, stat2); Dbprintf("stat1 [%02x]", stat1);
// NCS_1_HIGH;
return stat1; return stat1;
} }
/*
static uint8_t Flash_ReadStat2(void) { // Read state register 2
FlashSend(READSTAT2); uint8_t Flash_ReadStat2(void) {
uint8_t stat2 = FlashSend(0xff); FlashSendByte(READSTAT2);
NCS_1_HIGH; uint8_t stat2 = FlashSendLastByte(0xFF);
Dbprintf("stat2 [%02x]", stat2);
return stat2; return stat2;
} }
*/
bool Flash_NOTBUSY(void) { // Determine whether FLASHMEM is busy
WDT_HIT(); bool Flash_CheckBusy(uint16_t times){
uint8_t state, count = 0; bool bRet = (Flash_ReadStat1() & BUSY);
do {
state = Flash_ReadStat1();
if (count > 100) {
return false;
}
count++;
} while (state & BUSY);
return true;
}
/*
static uint8_t FlashWriteRead(uint8_t data){
FlashSend(READDATA);
FlashSend(data);
uint8_t ret = MISO_VALUE;
return ret;
}
static void FlashWrite_Enable(){ if (!bRet || !times || !(times--))
FlashWriteRead(WRITEENABLE); return bRet;
Dbprintf("Flash WriteEnabled");
} while (times)
*/ {
/* WDT_HIT();
static uint8_t FlashRead(uint8_t *address, uint16_t len) { SpinDelayUs(1000); // wait 1ms
FlashSend(READDATA); bRet = (Flash_ReadStat1() & BUSY);
for (uint16_t i = 0; i < len; i++) { if (!bRet)
FlashWriteRead(address[i]); break;
times--;
} }
uint8_t tmp = FlashWriteRead(0XFF); return bRet;
return tmp;
} }
*/
// read ID out
uint8_t Flash_ReadID(void) { uint8_t Flash_ReadID(void) {
// if (!Flash_NOTBUSY()) if (Flash_CheckBusy(1000))
// return true; return 0;
// Manufacture ID / device ID // Manufacture ID / device ID
uint8_t t0 = FlashSend(ID); uint8_t t0 = FlashSendByte(ID);
uint8_t t1 = FlashSend(0x00); uint8_t t1 = FlashSendByte(0x00);
uint8_t t2 = FlashSend(0x00); uint8_t t2 = FlashSendByte(0x00);
uint8_t t3 = FlashSend(0x00); uint8_t t3 = FlashSendByte(0x00);
uint8_t man_id = FlashSend(0xFF); uint8_t man_id = FlashSendByte(0xFF);
uint8_t dev_id = 0; // FlashSend(0xff); uint8_t dev_id = FlashSendLastByte(0xFF);
Dbprintf(" [%02x] %02x %02x %02x | %02x %02x", t0,t1,t2,t3, man_id, dev_id); Dbprintf(" [%02x] %02x %02x %02x | %02x %02x", t0,t1,t2,t3, man_id, dev_id);
@ -225,192 +193,178 @@ uint8_t Flash_ReadID(void) {
if ( man_id == WINBOND_MANID ) { if ( man_id == WINBOND_MANID ) {
Dbprintf("Correct read of Manucaturer ID [%02x] == %02x", man_id, WINBOND_MANID); Dbprintf("Correct read of Manucaturer ID [%02x] == %02x", man_id, WINBOND_MANID);
} }
// if ( dev_id > 0) {
// Dbprintf("Got a device ID [%02x] == %02x ( 0x11 0x30 0x12", dev_id, WINBOND_DEVID);
// }
// NCS_1_HIGH; if (man_id != WINBOND_MANID)
return man_id; dev_id = 0;
return dev_id;
} }
bool FlashInit(void) {
StartTicks(); // 读取数据 address buffer length
uint8_t Flash_ReadDate(uint32_t Address, uint8_t *Buffer, uint16_t len)
{
// length should never be zero
if (!len || Flash_CheckBusy(1000))
return 0;
LED_A_ON(); FlashSendByte(READDATA);
FlashSendByte((Address >> 16) & 0xFF);
FlashSendByte((Address >> 8) & 0xFF);
FlashSendByte((Address >> 0) & 0xFF);
uint16_t i = 0;
for (; i < (len - 1); i++)
Buffer[i] = FlashSendByte(0xFF);
Buffer[i] = FlashSendLastByte(0xFF);
return len;
}
// 写入数据 地址 address 缓冲区 buffer 长度length
uint8_t Flash_WriteDate(uint32_t Address, uint8_t *Buffer, uint16_t len)
{
// length should never be zero
if (!len || Flash_CheckBusy(1000))
return 0;
// 不能跨越 256 字节边界
if (((Address & 255) + len) > 256)
return 0;
FlashSendByte(PAGEPROG);
FlashSendByte((Address >> 16) & 0xFF);
FlashSendByte((Address >> 8) & 0xFF);
FlashSendByte((Address >> 0) & 0xFF);
uint16_t i = 0;
for (; i < (len - 1); i++)
FlashSendByte(Buffer[i]);
FlashSendLastByte(Buffer[i]);
return len;
}
// enable the flash write
void Flash_WriteEnable()
{
FlashSendLastByte(WRITEENABLE);
Dbprintf("Flash WriteEnabled");
}
// erase 4K at one time
bool Flash_Erase4k(uint32_t Address)
{
if (Address & (4096 - 1))
{
Dbprintf("Flash_Erase4k : Address is not align at 4096");
return false;
}
FlashSendByte(SECTORERASE);
FlashSendByte((Address >> 16) & 0xFF);
FlashSendByte((Address >> 8) & 0xFF);
FlashSendLastByte((Address >> 0) & 0xFF);
return true;
}
// erase 32K at one time
bool Flash_Erase32k(uint32_t Address)
{
if (Address & (32*1024 - 1))
{
Dbprintf("Flash_Erase4k : Address is not align at 4096");
return false;
}
FlashSendByte(BLOCK32ERASE);
FlashSendByte((Address >> 16) & 0xFF);
FlashSendByte((Address >> 8) & 0xFF);
FlashSendLastByte((Address >> 0) & 0xFF);
return true;
}
// erase 64k at one time
bool Flash_Erase64k(uint32_t Address)
{
if (Address & (64*1024 - 1))
{
Dbprintf("Flash_Erase4k : Address is not align at 4096");
return false;
}
FlashSendByte(BLOCK64ERASE);
FlashSendByte((Address >> 16) & 0xFF);
FlashSendByte((Address >> 8) & 0xFF);
FlashSendLastByte((Address >> 0) & 0xFF);
return true;
}
// erase all
void Flash_EraseChip(void)
{
FlashSendLastByte(CHIPERASE);
}
// initialize
bool FlashInit(void)
{
FlashSetup(); FlashSetup();
if (!Flash_NOTBUSY()) if (Flash_CheckBusy(1000))
return false; return false;
// FlashSend(ENABLE_RESET);
// NCS_1_HIGH;
// FlashSend(RESET);
// NCS_1_HIGH;
// WaitUS(10);
Dbprintf("FlashInit"); Dbprintf("FlashInit");
return true; return true;
} }
void EXFLASH_TEST(void) { void EXFLASH_TEST(void)
//uint8_t a[3] = {0x00,0x00,0x00}; {
//uint8_t b[3] = {0x00,0x01,0x02}; uint8_t Data[256] = { 0x00, 0x01, 0x02 };
//uint8_t d = 0; uint8_t Data2[256] = { 0x00};
uint32_t FlashSize = 0;
if (!FlashInit()) return; if (!FlashInit()) return;
//FlashWrite_Enable(); Flash_ReadStat1();
Flash_ReadID(); switch (Flash_ReadID())
{
case 0x11: // W25X20CL
FlashSize = 2048*1024;
break;
case 0x10: // W25X10CL
FlashSize = 1024*1024;
break;
case 0x05: // W25X05CL
FlashSize = 512*1024;
break;
}
//Dbprintf("Flash test write: 012 to 0x00 0x01 0x02"); Dbprintf("Flash Size = %dk", FlashSize / 1024);
//EXFLASH_Program(a, b, sizeof(b));
//d = FlashRead(a, sizeof(a)); if (FlashSize != 2048*1024)
//Dbprintf("%02x | %02x %02x %02x", d, a[0], a[1], a[2]); return;
Dbprintf("Flash test write: 012 to 0x00 0x01 0x02");
Flash_WriteEnable();
Flash_Erase4k(0x00);
if (Flash_CheckBusy(1000))
{
Dbprintf("Flash_Erase4k CheckBusy Error.");
return;
}
Flash_ReadDate(0, Data2, 256);
Flash_WriteEnable();
Flash_WriteDate(0x12, Data, sizeof(Data)); // this will never run, cuz out of 256byte boundary
Flash_WriteDate(0x12, Data, 3);
if (Flash_CheckBusy(1000))
{
Dbprintf("Flash_WriteDate CheckBusy Error.");
return;
}
Flash_ReadDate(0, Data2, 256);
FlashStop(); FlashStop();
cmd_send(CMD_ACK, 1, 0, 0, 0,0);
}
/*
// IO spi write or read
uint8_t EXFLASH_spi_write_read(uint8_t wData) {
uint8_t tmp = 0;
SCK_LOW;
LOW(GPIO_NCS2);
for (uint8_t i = 0; i < 8; i++) {
SCK_LOW;
SpinDelayUs(2);
if (wData & 0x80) {
MOSI_HIGH;
} else {
MOSI_LOW;
SpinDelayUs(2);
}
wData <<= 1;
SCK_HIGH;
tmp <<= 1;
tmp |= MISO_VALUE;
}
SCK_LOW;
return tmp;
} }
void EXFLASH_Write_Enable(void) {
EXFLASH_spi_write_read(WRITEENABLE);
HIGH(GPIO_NCS2);
}
uint8_t EXFLASH_Read(uint8_t *address, uint16_t len) {
if (!EXFLASH_NOTBUSY())
return false;
EXFLASH_spi_write_read(READDATA);
uint8_t tmp;
for (uint16_t i=0; i < len; i++) {
EXFLASH_spi_write_read(address[i]);
}
tmp = EXFLASH_spi_write_read(0XFF);
HIGH(GPIO_NCS2);
return tmp;
}
uint8_t EXFLASH_Program(uint8_t address[], uint8_t *array, uint8_t len) {
uint8_t state1, count = 0, i;
EXFLASH_Write_Enable();
do {
state1 = EXFLASH_readStat1();
if (count > 100) {
return false;
}
count++;
} while ((state1 & WRTEN) != WRTEN);
EXFLASH_spi_write_read(PAGEPROG);
for (i=0; i<address_length; i++) {
EXFLASH_spi_write_read(address[i]);
}
for (i=0; i<len; i++) {
EXFLASH_spi_write_read(array[i]);
}
HIGH(GPIO_NCS2);
return true;
}
uint8_t EXFLASH_ReadID(void) {
if (!EXFLASH_NOTBUSY())
return true;
uint8_t ManID; // DevID
EXFLASH_spi_write_read(MANID);
EXFLASH_spi_write_read(0x00);
EXFLASH_spi_write_read(0x00);
EXFLASH_spi_write_read(0x00);
ManID = EXFLASH_spi_write_read(0xff);
// DevID = EXFLASH_spi_write_read(0xff);
HIGH(GPIO_NCS2);
return ManID;
}
bool EXFLASH_Erase(void) {
uint8_t state1, count = 0;
EXFLASH_Write_Enable();
do {
state1 = EXFLASH_readStat1();
if (count > 100) {
return false;
}
count++;
} while ((state1 & WRTEN) != WRTEN);
EXFLASH_spi_write_read(CHIPERASE);
HIGH(GPIO_NCS2);
return true;
}
*/
/*
void EXFLASH_TEST(void) {
uint8_t a[3] = {0x00,0x00,0x00};
uint8_t b[3] = {0x00,0x01,0x02};
uint8_t f[3] = {0x00,0x00,0x01};
uint8_t e[3] = {0x00,0x00,0x02};
uint8_t d = 0;
//EXFLASH_Init();
// c = EXFLASH_ReadID();
//EXFLASH_Write_Enable();
//EXFLASH_readStat1();
Dbprintf("%s \r\n", "write 012 to 0x00 0x01 0x02");
Dbprintf("%s \r\n"," wait... ");
EXFLASH_Program(a, b, sizeof(b));
d = EXFLASH_Read(a, sizeof(a) );
Dbprintf(" %d ", d);
d = EXFLASH_Read(f, sizeof(f) );
Dbprintf(" %d ", d);
d = EXFLASH_Read(e, sizeof(e) );
Dbprintf(" %d ", d);
Dbprintf("%s \r\n","TEST done!");
EXFLASH_Erase();
cmd_send(CMD_ACK, 1, 0, 0, 0,0);
}
*/

View file

@ -31,29 +31,37 @@
#include "proxmark3.h" #include "proxmark3.h"
#include "apps.h" #include "apps.h"
// Used Command
#define ID 0x90
#define MANID 0x90 #define MANID 0x90
#define PAGEPROG 0x02 #define JEDECID 0x9F
#define READDATA 0x03
#define FASTREAD 0x0B
#define WRITEDISABLE 0x04
#define READSTAT1 0x05 #define READSTAT1 0x05
#define READSTAT2 0x35 #define READSTAT2 0x35
#define WRITESTAT 0x01 #define WRITESTAT 0x01
#define WRITEDISABLE 0x04
#define WRITEENABLE 0x06 #define WRITEENABLE 0x06
#define READDATA 0x03
#define PAGEPROG 0x02
#define SECTORERASE 0x20 #define SECTORERASE 0x20
#define BLOCK32ERASE 0x52 #define BLOCK32ERASE 0x52
#define CHIPERASE 0xC7
#define SUSPEND 0x75
#define ID 0x90
#define RESUME 0x7A
#define JEDECID 0x9F
#define RELEASE 0xAB
#define POWERDOWN 0xB9
#define BLOCK64ERASE 0xD8 #define BLOCK64ERASE 0xD8
#define ENABLE_RESET 0x66 #define CHIPERASE 0xC7
#define RESET 0x99
#define UNIQUE_ID 0x4B #define UNIQUE_ID 0x4B
// Not used or not support command
#define RELEASE 0xAB
#define POWERDOWN 0xB9
#define FASTREAD 0x0B
#define SUSPEND 0x75
#define RESUME 0x7A
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~// //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~//
// Chip specific instructions // // Chip specific instructions //
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~// //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~//
@ -69,10 +77,12 @@
// Definitions // // Definitions //
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~// //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~//
#define SPI_CLK 75000000 //Hex equivalent of 75MHz
#define BUSY 0x01 #define BUSY 0x01
#define SPI_CLK 104000000 //Hex equivalent of 104MHz
#define WRTEN 0x02 #define WRTEN 0x02
#define SUS 0x40 #define SUS 0x40
#define DUMMYBYTE 0xEE #define DUMMYBYTE 0xEE
#define NULLBYTE 0x00 #define NULLBYTE 0x00
#define NULLINT 0x0000 #define NULLINT 0x0000
@ -103,10 +113,10 @@ extern void Dbprintf(const char *fmt, ...);
void FlashSetup(void); void FlashSetup(void);
void FlashStop(void); void FlashStop(void);
bool Flash_NOTBUSY(void); bool Flash_WaitIdle(void);
uint8_t Flash_ReadStat1(void); uint8_t Flash_ReadStat1(void);
uint8_t Flash_ReadStat2(void); uint8_t Flash_ReadStat2(void);
uint16_t FlashSend(uint16_t data); uint16_t FlashSendByte(uint32_t data);
bool FlashInit(); bool FlashInit();
void EXFLASH_TEST(void); void EXFLASH_TEST(void);