//----------------------------------------------------------------------------- // Copyright (C) Jonathan Westhues, Sept 2005 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Utility functions used in many places, not specific to any piece of code. //----------------------------------------------------------------------------- #include "util.h" #include "proxmark3_arm.h" #include "ticks.h" #include "commonutil.h" #include "dbprint.h" #include "string.h" #include "usb_cdc.h" #include "usart.h" size_t nbytes(size_t nbits) { return (nbits >> 3) + ((nbits % 8) > 0); } //convert hex digit to integer uint8_t hex2int(char x) { switch (x) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 10; case 'b': case 'B': return 11; case 'c': case 'C': return 12; case 'd': case 'D': return 13; case 'e': case 'E': return 14; case 'f': case 'F': return 15; default: return 0; } } /* The following methods comes from Rfidler sourcecode. https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/ */ // convert hex to sequence of 0/1 bit values // returns number of bits converted int hex2binarray(char *target, const char *source) { return hex2binarray_n(target, source, strlen(source)); } int hex2binarray_n(char *target, const char *source, int sourcelen) { int count = 0; // process 4 bits (1 hex digit) at a time while (sourcelen--) { char x = *(source++); *(target++) = (x >> 7) & 1; *(target++) = (x >> 6) & 1; *(target++) = (x >> 5) & 1; *(target++) = (x >> 4) & 1; *(target++) = (x >> 3) & 1; *(target++) = (x >> 2) & 1; *(target++) = (x >> 1) & 1; *(target++) = (x & 1); count += 8; } return count; } int binarray2hex(const uint8_t *bs, int bs_len, uint8_t *hex) { int count = 0; int byte_index = 0; // Clear output buffer memset(hex, 0, bs_len >> 3); for (int i = 0; i < bs_len; i++) { // Set the appropriate bit in hex if (bs[i] == 1) { hex[byte_index] |= (1 << (7 - (count % 8))); } count++; // Move to the next byte if 8 bits have been filled if (count % 8 == 0) { byte_index++; } } return count; } void LEDsoff(void) { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } //ICEMAN: LED went from 1,2,3,4 -> 1,2,4,8 void LED(int led, int ms) { if (led & LED_A) // Proxmark3 historical mapping: LED_ORANGE LED_A_ON(); if (led & LED_B) // Proxmark3 historical mapping: LED_GREEN LED_B_ON(); if (led & LED_C) // Proxmark3 historical mapping: LED_RED LED_C_ON(); if (led & LED_D) // Proxmark3 historical mapping: LED_RED2 LED_D_ON(); if (!ms) return; SpinDelay(ms); if (led & LED_A) LED_A_OFF(); if (led & LED_B) LED_B_OFF(); if (led & LED_C) LED_C_OFF(); if (led & LED_D) LED_D_OFF(); } void SpinOff(uint32_t pause) { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); SpinDelay(pause); } // Blinks.. // A = 1, B = 2, C = 4, D = 8 void SpinErr(uint8_t led, uint32_t speed, uint8_t times) { SpinOff(speed); NTIME(times) { if (led & LED_A) // Proxmark3 historical mapping: LED_ORANGE LED_A_INV(); if (led & LED_B) // Proxmark3 historical mapping: LED_GREEN LED_B_INV(); if (led & LED_C) // Proxmark3 historical mapping: LED_RED LED_C_INV(); if (led & LED_D) // Proxmark3 historical mapping: LED_RED2 LED_D_INV(); SpinDelay(speed); } LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } void SpinDown(uint32_t speed) { SpinOff(speed); LED_D_ON(); SpinDelay(speed); LED_D_OFF(); LED_C_ON(); SpinDelay(speed); LED_C_OFF(); LED_B_ON(); SpinDelay(speed); LED_B_OFF(); LED_A_ON(); SpinDelay(speed); LED_A_OFF(); } void SpinUp(uint32_t speed) { SpinOff(speed); LED_A_ON(); SpinDelay(speed); LED_A_OFF(); LED_B_ON(); SpinDelay(speed); LED_B_OFF(); LED_C_ON(); SpinDelay(speed); LED_C_OFF(); LED_D_ON(); SpinDelay(speed); LED_D_OFF(); } // Determine if a button is double clicked, single clicked, // not clicked, or held down (for ms || 1sec) // In general, don't use this function unless you expect a // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead int BUTTON_CLICKED(int ms) { // Up to 500ms in between clicks to mean a double click // timer counts in 21.3us increments (1024/48MHz) // WARNING: timer can't measure more than 1.39s (21.3us * 0xffff) if (ms > 1390) { if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, BUTTON_CLICKED called with %i > 1390"), ms); ms = 1390; } int ticks = ((MCK / 1000) * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (BUTTON_PRESS() == false) return BUTTON_NO_CLICK; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; int letoff = 0; for (;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // We haven't let off the button yet if (!letoff) { // We just let it off! if (BUTTON_PRESS() == false) { letoff = 1; // reset our timer for 500ms start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; ticks = ((MCK / 1000) * (500)) >> 10; } // Still haven't let it off else // Have we held down a full second? if (now == (uint16_t)(start + ticks)) return BUTTON_HOLD; } // We already let off, did we click again? else // Sweet, double click! if (BUTTON_PRESS()) return BUTTON_DOUBLE_CLICK; // Have we ran out of time to double click? else if (now == (uint16_t)(start + ticks)) // At least we did a single click return BUTTON_SINGLE_CLICK; WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // Determine if a button is held down int BUTTON_HELD(int ms) { // timer counts in 21.3us increments (1024/48MHz) // WARNING: timer can't measure more than 1.39s (21.3us * 0xffff) if (ms > 1390) { if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, BUTTON_HELD called with %i > 1390"), ms); ms = 1390; } // If button is held for one second int ticks = (48000 * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (BUTTON_PRESS() == false) { return BUTTON_NO_CLICK; } // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; for (;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // As soon as our button let go, we didn't hold long enough if (BUTTON_PRESS() == false) { return BUTTON_SINGLE_CLICK; } // Have we waited the full second? else if (now == (uint16_t)(start + ticks)) { return BUTTON_HOLD; } WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // This function returns false if no data is available or // the USB connection is invalid. bool data_available(void) { #ifdef WITH_FPC_USART_HOST return usb_poll_validate_length() || (usart_rxdata_available() > 0); #else return usb_poll_validate_length(); #endif } // This function doesn't check if the USB connection is valid. // In most of the cases, you should use data_available() unless // the timing is critical. bool data_available_fast(void) { #ifdef WITH_FPC_USART_HOST return usb_available_length() || (usart_rxdata_available() > 0); #else return usb_available_length(); #endif } uint32_t flash_size_from_cidr(uint32_t cidr) { uint8_t nvpsiz = (cidr & 0xF00) >> 8; switch (nvpsiz) { case 0: return 0; case 1: return 8 * 1024; case 2: return 16 * 1024; case 3: return 32 * 1024; case 5: return 64 * 1024; case 7: return 128 * 1024; case 9: return 256 * 1024; case 10: return 512 * 1024; case 12: return 1024 * 1024; case 14: default: // for 'reserved' values, guess 2MB return 2048 * 1024; } } uint32_t get_flash_size(void) { return flash_size_from_cidr(*AT91C_DBGU_CIDR); } // Combined function to convert an unsigned int to an array of hex values corresponding to the last three bits of k1 void convertToHexArray(uint32_t num, uint8_t *partialkey) { char binaryStr[25]; // 24 bits for binary representation + 1 for null terminator binaryStr[24] = '\0'; // Null-terminate the string // Convert the number to binary string for (int i = 23; i >= 0; i--) { binaryStr[i] = (num % 2) ? '1' : '0'; num /= 2; } // Split the binary string into groups of 3 and convert to hex for (int i = 0; i < 8 ; i++) { char group[4] = {'0', '0', '0', '\0'}; // Ensure group is initialized correctly memcpy(group, binaryStr + i * 3, 3); // Use memcpy to copy exactly 3 characters group[3] = '\0'; // Null-terminate the group string partialkey[i] = (uint8_t)strtoul(group, NULL, 2); } }