//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // // FIX: // ==== // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // // + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc // // We still left the error signalling bytes in the traces like 0xbb // // A correct trace should look like this: // // + 21112: : 0c 03 e8 01 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- #include "../include/proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "common.h" #include "cmd.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "../common/iso14443crc.h" #include "../common/iso15693tools.h" //#include "iso15693tools.h" static int timeout = 4096; static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_RECEIVING } state; uint16_t shiftReg; int bitCnt; int byteCnt; int byteCntMax; int posCnt; int nOutOfCnt; int OutOfCnt; int syncBit; int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; uint8_t *output; } Uart; static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; if(!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return FALSE; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } /*if(Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; if(Uart.byteCnt > 15) { return TRUE; } } else { Uart.swapper = 1; }*/ if(Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; } else { bit = 0x01; } if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; } else { bitright = 0x01; } if(bit != bitright) { bit = bitright; } // So, now we only have to deal with *bit*, lets see... if(Uart.posCnt == 1) { // measurement first half bitperiod if(!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. if(Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; if(Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return TRUE Uart.output[0] = 0xf0; Uart.byteCnt++; } else { return TRUE; } } else if(Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; if(!bit) { if(Uart.dropPosition) { if(Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; if(Uart.state == STATE_START_OF_COMMUNICATION) { if(Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; } else if(Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; } else { // RECEIVING DATA // 1 out of 4 if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; } else { Uart.shiftReg >>= 2; // Swap bit order Uart.dropPosition--; //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; if(Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; } } } } else if(Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; Uart.dropPosition = 0; } } /*if(error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return TRUE; }*/ } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) if(bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if(Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if(Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; } else { Uart.highCnt = 0; } } else { if(Uart.highCnt < 8) { Uart.highCnt++; } } } return FALSE; } //============================================================================= // Manchester //============================================================================= static struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, DEMOD_SOF_COMPLETE, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; uint16_t shiftReg; int buffer; int buffer2; int buffer3; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH } sub; uint8_t *output; } Demod; static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; bit = Demod.buffer; Demod.buffer = Demod.buffer2; Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; if(Demod.buff < 3) { Demod.buff++; return FALSE; } if(Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if(bit & 0x08) { Demod.syncBit = 0x08; } if(bit & 0x04) { if(Demod.syncBit) { bit <<= 4; } Demod.syncBit = 0x04; } if(bit & 0x02) { if(Demod.syncBit) { bit <<= 2; } Demod.syncBit = 0x02; } if(bit & 0x01 && Demod.syncBit) { Demod.syncBit = 0x01; } if(Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.samples = 0; if(Demod.posCount) { //if(trigger) LED_A_OFF(); // Not useful in this case... switch(Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; } } else { // SOF must be long burst... otherwise stay unsynced!!! if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; } } error = 0; } } else { modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if(Demod.posCount==0) { Demod.posCount = 1; if(modulation) { Demod.sub = SUB_FIRST_HALF; } else { Demod.sub = SUB_NONE; } } else { Demod.posCount = 0; /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { if(Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; } }*/ //else if(modulation) { if(modulation) { if(Demod.sub == SUB_FIRST_HALF) { Demod.sub = SUB_BOTH; } else { Demod.sub = SUB_SECOND_HALF; } } else if(Demod.sub == SUB_NONE) { if(Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.state = DEMOD_UNSYNCD; // error = 0x0f; return TRUE; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } /*if(Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; }*/ } switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: if(Demod.sub == SUB_BOTH) { //Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: if(Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: if(Demod.sub == SUB_SECOND_HALF) { // Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_SOF_COMPLETE; //Demod.output[Demod.len] = Demod.syncBit & 0xFF; //Demod.len++; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; } break; case DEMOD_SOF_COMPLETE: case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else if(Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if(Demod.len > 0 || Demod.bitCount > 0) { if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; } Demod.state = DEMOD_UNSYNCD; return TRUE; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } /*if(Demod.bitCount>=9) { Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; Demod.parityBits <<= 1; Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); Demod.bitCount = 0; Demod.shiftReg = 0; }*/ if(Demod.bitCount>=8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; Demod.bitCount = 0; Demod.shiftReg = 0; } if(error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; // Look harder ;-) Demod.output[Demod.len] = Demod.buffer2 & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; return TRUE; } } } // end (state != UNSYNCED) return FALSE; } //============================================================================= // Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- void RAMFUNC SnoopIClass(void) { // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. //int triggered = FALSE; // FALSE to wait first for card // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! #define ICLASS_BUFFER_SIZE 32 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; // The response (tag -> reader) that we're receiving. uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // free all BigBuf memory BigBuf_free(); // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); set_tracing(TRUE); clear_trace(); iso14a_set_trigger(FALSE); int lastRxCounter; uint8_t *upTo; int smpl; int maxBehindBy = 0; // Count of samples received so far, so that we can include timing // information in the trace buffer. int samples = 0; rsamples = 0; // Set up the demodulator for tag -> reader responses. Demod.output = tagToReaderResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; // Setup for the DMA. FpgaSetupSsc(); upTo = dmaBuf; lastRxCounter = DMA_BUFFER_SIZE; FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // And the reader -> tag commands memset(&Uart, 0, sizeof(Uart)); Uart.output = readerToTagCmd; Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// Uart.state = STATE_UNSYNCD; // And put the FPGA in the appropriate mode // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); uint32_t time_0 = GetCountSspClk(); uint32_t time_start = 0; uint32_t time_stop = 0; int div = 0; //int div2 = 0; int decbyte = 0; int decbyter = 0; // And now we loop, receiving samples. for(;;) { LED_A_ON(); WDT_HIT(); int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); if(behindBy > maxBehindBy) { maxBehindBy = behindBy; if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); goto done; } } if(behindBy < 1) continue; LED_A_OFF(); smpl = upTo[0]; upTo++; lastRxCounter -= 1; if(upTo - dmaBuf > DMA_BUFFER_SIZE) { upTo -= DMA_BUFFER_SIZE; lastRxCounter += DMA_BUFFER_SIZE; AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } //samples += 4; samples += 1; if(smpl & 0xF) { decbyte ^= (1 << (3 - div)); } // FOR READER SIDE COMMUMICATION... decbyter <<= 2; decbyter ^= (smpl & 0x30); div++; if((div + 1) % 2 == 0) { smpl = decbyter; if(OutOfNDecoding((smpl & 0xF0) >> 4)) { rsamples = samples - Uart.samples; time_stop = (GetCountSspClk()-time_0) << 4; LED_C_ON(); //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; if(tracing) { uint8_t parity[MAX_PARITY_SIZE]; GetParity(Uart.output, Uart.byteCnt, parity); LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); } /* And ready to receive another command. */ Uart.state = STATE_UNSYNCD; /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ Demod.state = DEMOD_UNSYNCD; LED_B_OFF(); Uart.byteCnt = 0; }else{ time_start = (GetCountSspClk()-time_0) << 4; } decbyter = 0; } if(div > 3) { smpl = decbyte; if(ManchesterDecoding(smpl & 0x0F)) { time_stop = (GetCountSspClk()-time_0) << 4; rsamples = samples - Demod.samples; LED_B_ON(); if(tracing) { uint8_t parity[MAX_PARITY_SIZE]; GetParity(Demod.output, Demod.len, parity); LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); } // And ready to receive another response. memset(&Demod, 0, sizeof(Demod)); Demod.output = tagToReaderResponse; Demod.state = DEMOD_UNSYNCD; LED_C_OFF(); }else{ time_start = (GetCountSspClk()-time_0) << 4; } div = 0; decbyte = 0x00; } //} if(BUTTON_PRESS()) { DbpString("cancelled_a"); goto done; } } DbpString("COMMAND FINISHED"); Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); done: AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { int i; for(i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. Uart.output = received; Uart.byteCntMax = maxLen; Uart.state = STATE_UNSYNCD; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if(OutOfNDecoding(b & 0x0f)) { *len = Uart.byteCnt; return TRUE; } } } } static uint8_t encode4Bits(const uint8_t b) { uint8_t c = b & 0xF; // OTA, the least significant bits first // The columns are // 1 - Bit value to send // 2 - Reversed (big-endian) // 3 - Encoded // 4 - Hex values switch(c){ // 1 2 3 4 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa } } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us * * 24 pulses of 423.75 KHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * * * EOF comprises 3 parts: * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated * time of 18.88us. * - 24 pulses of fc/32 * - An unmodulated time of 56.64 us * * * A logic 0 starts with 8 pulses of fc/32 * followed by an unmodulated time of 256/fc (~18,88us). * * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by * 8 pulses of fc/32 (also 18.88us) * * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, * works like this. * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us * * In this mode the SOF can be written as 00011101 = 0x1D * The EOF can be written as 10111000 = 0xb8 * A logic 1 is 01 * A logic 0 is 10 * * */ int i; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; for(i = 0; i < len; i++) { uint8_t b = cmd[i]; ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half } // Send EOF ToSend[++ToSendMax] = 0xB8; //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end // Convert from last byte pos to length ToSendMax++; } // Only SOF static void CodeIClassTagSOF() { //So far a dummy implementation, not used //int lastProxToAirDuration =0; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning // Convert from last byte pos to length ToSendMax++; } int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf); /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { uint32_t simType = arg0; uint32_t numberOfCSNS = arg1; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Enable and clear the trace set_tracing(TRUE); clear_trace(); uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; if(simType == 0) { // Use the CSN from commandline memcpy(csn_crc, datain, 8); doIClassSimulation(csn_crc,0,NULL); }else if(simType == 1) { doIClassSimulation(csn_crc,0,NULL); } else if(simType == 2) { uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. int i = 0; for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) { // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. memcpy(csn_crc, datain+(i*8), 8); if(doIClassSimulation(csn_crc,1,mac_responses+i*8)) { cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); return; // Button pressed } } cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); } else{ // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. Dbprintf("The mode is not implemented, reserved for future use"); } Dbprintf("Done..."); } /** * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf) { // CSN followed by two CRC bytes uint8_t response1[] = { 0x0F} ; uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0}; memcpy(response3,csn,sizeof(response3)); Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); // e-Purse uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Construct anticollision-CSN rotateCSN(response3,response2); // Compute CRC on both CSNs ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); int exitLoop = 0; // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response; int modulated_response_size; uint8_t* trace_data = NULL; int trace_data_size = 0; //uint8_t sof = 0x0f; // free eventually allocated BigBuf memory BigBuf_free(); // Respond SOF -- takes 1 bytes uint8_t *resp1 = BigBuf_malloc(2); int resp1Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp2 = BigBuf_malloc(28); int resp2Len; // CSN // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp3 = BigBuf_malloc(30); int resp3Len; // e-Purse // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp4 = BigBuf_malloc(20); int resp4Len; uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); memset(receivedCmd, 0x44, MAX_FRAME_SIZE); int len; // Prepare card messages ToSendMax = 0; // First card answer: SOF CodeIClassTagSOF(); memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; // Anticollision CSN CodeIClassTagAnswer(response2, sizeof(response2)); memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; // CSN CodeIClassTagAnswer(response3, sizeof(response3)); memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; // e-Purse CodeIClassTagAnswer(response4, sizeof(response4)); memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; // Start from off (no field generated) //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); //SpinDelay(200); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); SpinDelay(100); StartCountSspClk(); // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // To control where we are in the protocol int cmdsRecvd = 0; uint32_t time_0 = GetCountSspClk(); uint32_t t2r_time =0; uint32_t r2t_time =0; LED_A_ON(); bool buttonPressed = false; while(!exitLoop) { LED_B_OFF(); //Signal tracer // Can be used to get a trigger for an oscilloscope.. LED_C_OFF(); if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { buttonPressed = true; break; } r2t_time = GetCountSspClk(); //Signal tracer LED_C_ON(); // Okay, look at the command now. if(receivedCmd[0] == 0x0a ) { // Reader in anticollission phase modulated_response = resp1; modulated_response_size = resp1Len; //order = 1; trace_data = response1; trace_data_size = sizeof(response1); } else if(receivedCmd[0] == 0x0c) { // Reader asks for anticollission CSN modulated_response = resp2; modulated_response_size = resp2Len; //order = 2; trace_data = response2; trace_data_size = sizeof(response2); //DbpString("Reader requests anticollission CSN:"); } else if(receivedCmd[0] == 0x81) { // Reader selects anticollission CSN. // Tag sends the corresponding real CSN modulated_response = resp3; modulated_response_size = resp3Len; //order = 3; trace_data = response3; trace_data_size = sizeof(response3); //DbpString("Reader selects anticollission CSN:"); } else if(receivedCmd[0] == 0x88) { // Read e-purse (88 02) modulated_response = resp4; modulated_response_size = resp4Len; //order = 4; trace_data = response4; trace_data_size = sizeof(response4); LED_B_ON(); } else if(receivedCmd[0] == 0x05) { // Reader random and reader MAC!!! // Do not respond // We do not know what to answer, so lets keep quiet modulated_response = resp1; modulated_response_size = 0; //order = 5; trace_data = NULL; trace_data_size = 0; if (breakAfterMacReceived){ // dbprintf:ing ... Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); if (reader_mac_buf != NULL) { memcpy(reader_mac_buf,receivedCmd+1,8); } exitLoop = true; } } else if(receivedCmd[0] == 0x00 && len == 1) { // Reader ends the session modulated_response = resp1; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; } else { //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 // Never seen this command before Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond modulated_response = resp1; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; } if(cmdsRecvd > 100) { //DbpString("100 commands later..."); //break; } else { cmdsRecvd++; } /** A legit tag has about 380us delay between reader EOT and tag SOF. **/ if(modulated_response_size > 0) { SendIClassAnswer(modulated_response, modulated_response_size, 1); t2r_time = GetCountSspClk(); } if (tracing) { uint8_t parity[MAX_PARITY_SIZE]; GetParity(receivedCmd, len, parity); LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); if (trace_data != NULL) { GetParity(trace_data, trace_data_size, parity); LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); } if(!tracing) { DbpString("Trace full"); //break; } } memset(receivedCmd, 0x44, MAX_FRAME_SIZE); } //Dbprintf("%x", cmdsRecvd); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); if(buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) { int i = 0, d=0;//, u = 0, d = 0; uint8_t b = 0; //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); AT91C_BASE_SSC->SSC_THR = 0x00; FpgaSetupSsc(); while(!BUTTON_PRESS()) { if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ b = AT91C_BASE_SSC->SSC_RHR; (void) b; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ b = 0x00; if(d < delay) { d++; } else { if( i < respLen){ b = resp[i]; //Hack //b = 0xAC; } i++; } AT91C_BASE_SSC->SSC_THR = b; } // if (i > respLen +4) break; if (i > respLen +1) break; } return 0; } /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { int c; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; FpgaSetupSsc(); if (wait) { if(*wait < 10) *wait = 10; for(c = 0; c < *wait;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! c++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } } uint8_t sendbyte; bool firstpart = TRUE; c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // DOUBLE THE SAMPLES! if(firstpart) { sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); } else { sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); c++; } if(sendbyte == 0xff) { sendbyte = 0xfe; } AT91C_BASE_SSC->SSC_THR = sendbyte; firstpart = !firstpart; if(c >= len) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } if (samples) *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- void CodeIClassCommand(const uint8_t * cmd, int len) { int i, j, k; uint8_t b; ToSendReset(); // Start of Communication: 1 out of 4 ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x0f; ToSend[++ToSendMax] = 0x00; // Modulate the bytes for (i = 0; i < len; i++) { b = cmd[i]; for(j = 0; j < 4; j++) { for(k = 0; k < 4; k++) { if(k == (b & 3)) { ToSend[++ToSendMax] = 0x0f; } else { ToSend[++ToSendMax] = 0x00; } } b >>= 2; } } // End of Communication ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; // Convert from last character reference to length ToSendMax++; } void ReaderTransmitIClass(uint8_t* frame, int len) { int wait = 0; int samples = 0; // This is tied to other size changes CodeIClassCommand(frame,len); // Select the card TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); if(trigger) LED_A_ON(); // Store reader command in buffer if (tracing) { uint8_t par[MAX_PARITY_SIZE]; GetParity(frame, len, par); LogTrace(frame, len, rsamples, rsamples, par, TRUE); } } //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer { // buffer needs to be 512 bytes int c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card Demod.output = receivedResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; uint8_t b; if (elapsed) *elapsed = 0; bool skip = FALSE; c = 0; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if(c < timeout) { c++; } else { return FALSE; } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; if(skip) continue; if(ManchesterDecoding(b & 0x0f)) { *samples = c << 3; return TRUE; } } } } int ReaderReceiveIClass(uint8_t* receivedAnswer) { int samples = 0; if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; rsamples += samples; if (tracing) { uint8_t parity[MAX_PARITY_SIZE]; GetParity(receivedAnswer, Demod.len, parity); LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); } if(samples == 0) return FALSE; return Demod.len; } void setupIclassReader() { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Reset trace buffer set_tracing(TRUE); clear_trace(); // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Now give it time to spin up. // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); LED_A_ON(); } size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) { while(retries-- > 0) { ReaderTransmitIClass(command, cmdsize); if(expected_size == ReaderReceiveIClass(resp)){ return 0; } } return 1;//Error } /** * @brief Talks to an iclass tag, sends the commands to get CSN and CC. * @param card_data where the CSN and CC are stored for return * @return 0 = fail * 1 = Got CSN * 2 = Got CSN and CC */ uint8_t handshakeIclassTag(uint8_t *card_data) { static uint8_t act_all[] = { 0x0a }; static uint8_t identify[] = { 0x0c }; static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static uint8_t readcheck_cc[]= { 0x88, 0x02 }; uint8_t resp[ICLASS_BUFFER_SIZE]; uint8_t read_status = 0; // Send act_all ReaderTransmitIClass(act_all, 1); // Card present? if(!ReaderReceiveIClass(resp)) return read_status;//Fail //Send Identify ReaderTransmitIClass(identify, 1); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC uint8_t len = ReaderReceiveIClass(resp); if(len != 10) return read_status;//Fail //Copy the Anti-collision CSN to our select-packet memcpy(&select[1],resp,8); //Select the card ReaderTransmitIClass(select, sizeof(select)); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC len = ReaderReceiveIClass(resp); if(len != 10) return read_status;//Fail //Success - level 1, we got CSN //Save CSN in response data memcpy(card_data,resp,8); //Flag that we got to at least stage 1, read CSN read_status = 1; // Card selected, now read e-purse (cc) ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); if(ReaderReceiveIClass(resp) == 8) { //Save CC (e-purse) in response data memcpy(card_data+8,resp,8); //Got both read_status = 2; } return read_status; } // Reader iClass Anticollission void ReaderIClass(uint8_t arg0) { uint8_t card_data[24]={0}; uint8_t last_csn[8]={0}; int read_status= 0; bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; bool get_cc = arg0 & FLAG_ICLASS_READER_GET_CC; set_tracing(TRUE); setupIclassReader(); size_t datasize = 0; while(!BUTTON_PRESS()) { if(!tracing) { DbpString("Trace full"); break; } WDT_HIT(); read_status = handshakeIclassTag(card_data); if(read_status == 0) continue; if(read_status == 1) datasize = 8; if(read_status == 2) datasize = 16; LED_B_ON(); //Send back to client, but don't bother if we already sent this if(memcmp(last_csn, card_data, 8) != 0) { if(!get_cc || (get_cc && read_status == 2)) { cmd_send(CMD_ACK,read_status,0,0,card_data,datasize); if(abort_after_read) { LED_A_OFF(); return; } //Save that we already sent this.... memcpy(last_csn, card_data, 8); } //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying... } LED_B_OFF(); } cmd_send(CMD_ACK,0,0,0,card_data, 0); LED_A_OFF(); } void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { uint8_t card_data[USB_CMD_DATA_SIZE]={0}; uint16_t block_crc_LUT[255] = {0}; {//Generate a lookup table for block crc for(int block = 0; block < 255; block++){ char bl = block; block_crc_LUT[block] = iclass_crc16(&bl ,1); } } //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; uint16_t crc = 0; uint8_t cardsize=0; uint8_t mem=0; static struct memory_t{ int k16; int book; int k2; int lockauth; int keyaccess; } memory; uint8_t resp[ICLASS_BUFFER_SIZE]; setupIclassReader(); set_tracing(TRUE); while(!BUTTON_PRESS()) { WDT_HIT(); if(!tracing) { DbpString("Trace full"); break; } uint8_t read_status = handshakeIclassTag(card_data); if(read_status < 2) continue; //for now replay captured auth (as cc not updated) memcpy(check+5,MAC,4); if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) { Dbprintf("Error: Authentication Fail!"); continue; } //first get configuration block (block 1) crc = block_crc_LUT[1]; read[1]=1; read[2] = crc >> 8; read[3] = crc & 0xff; if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) { Dbprintf("Dump config (block 1) failed"); continue; } mem=resp[5]; memory.k16= (mem & 0x80); memory.book= (mem & 0x20); memory.k2= (mem & 0x8); memory.lockauth= (mem & 0x2); memory.keyaccess= (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data memset(card_data,0x0,USB_CMD_DATA_SIZE); uint8_t failedRead =0; uint8_t stored_data_length =0; //then loop around remaining blocks for(int block=0; block < cardsize; block++){ read[1]= block; crc = block_crc_LUT[block]; read[2] = crc >> 8; read[3] = crc & 0xff; if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); //Fill up the buffer memcpy(card_data+stored_data_length,resp,8); stored_data_length += 8; if(stored_data_length +8 > USB_CMD_DATA_SIZE) {//Time to send this off and start afresh cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length); //reset stored_data_length = 0; failedRead = 0; } }else{ failedRead = 1; stored_data_length +=8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data if(stored_data_length > 0) { cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length); } //If we got here, let's break break; } //Signal end of transmission cmd_send(CMD_ACK, 0,//data length 0,//Failed blocks? 0,//Not used ATM card_data, 0); LED_A_OFF(); } //2. Create Read method (cut-down from above) based off responses from 1. // Since we have the MAC could continue to use replay function. //3. Create Write method /* void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) { uint8_t act_all[] = { 0x0a }; uint8_t identify[] = { 0x0c }; uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t readcheck_cc[]= { 0x88, 0x02 }; uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint16_t crc = 0; uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // Reset trace buffer memset(trace, 0x44, RECV_CMD_OFFSET); traceLen = 0; // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Now give it time to spin up. // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); LED_A_ON(); for(int i=0;i<1;i++) { if(traceLen > TRACE_SIZE) { DbpString("Trace full"); break; } if (BUTTON_PRESS()) break; // Send act_all ReaderTransmitIClass(act_all, 1); // Card present? if(ReaderReceiveIClass(resp)) { ReaderTransmitIClass(identify, 1); if(ReaderReceiveIClass(resp) == 10) { // Select card memcpy(&select[1],resp,8); ReaderTransmitIClass(select, sizeof(select)); if(ReaderReceiveIClass(resp) == 10) { Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); } // Card selected Dbprintf("Readcheck on Sector 2"); ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); if(ReaderReceiveIClass(resp) == 8) { Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); }else return; Dbprintf("Authenticate"); //for now replay captured auth (as cc not updated) memcpy(check+5,MAC,4); Dbprintf(" AA: %02x %02x %02x %02x", check[5], check[6], check[7],check[8]); ReaderTransmitIClass(check, sizeof(check)); if(ReaderReceiveIClass(resp) == 4) { Dbprintf(" AR: %02x %02x %02x %02x", resp[0], resp[1], resp[2],resp[3]); }else { Dbprintf("Error: Authentication Fail!"); return; } Dbprintf("Write Block"); //read configuration for max block number read_success=false; read[1]=1; uint8_t *blockno=&read[1]; crc = iclass_crc16((char *)blockno,1); read[2] = crc >> 8; read[3] = crc & 0xff; while(!read_success){ ReaderTransmitIClass(read, sizeof(read)); if(ReaderReceiveIClass(resp) == 10) { read_success=true; mem=resp[5]; memory.k16= (mem & 0x80); memory.book= (mem & 0x20); memory.k2= (mem & 0x8); memory.lockauth= (mem & 0x2); memory.keyaccess= (mem & 0x1); } } if (memory.k16){ cardsize=255; }else cardsize=32; //check card_size memcpy(write+1,blockNo,1); memcpy(write+2,data,8); memcpy(write+10,mac,4); while(!send_success){ ReaderTransmitIClass(write, sizeof(write)); if(ReaderReceiveIClass(resp) == 10) { write_success=true; } }// } WDT_HIT(); } LED_A_OFF(); }*/