//-----------------------------------------------------------------------------
// Copyright (C) 2011,2012 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency MIFARE commands
//-----------------------------------------------------------------------------

#include "cmdhfmf.h"
#include "mifare4.h"

#define MIFARE_4K_MAXBLOCK 255
#define MIFARE_2K_MAXBLOCK 128 
#define MIFARE_1K_MAXBLOCK 64
#define MIFARE_MINI_MAXBLOCK 20

static int CmdHelp(const char *Cmd);

int usage_hf14_ice(void){
		PrintAndLogEx(NORMAL, "Usage:   hf mf ice [l] <limit> [f] <name>");
		PrintAndLogEx(NORMAL, "  h            this help");
		PrintAndLogEx(NORMAL, "  l <limit>    nonces to be collected");
		PrintAndLogEx(NORMAL, "  f <name>     save nonces to <name> instead of hf-mf-<UID>-nonces.bin");
		PrintAndLogEx(NORMAL, "");
		PrintAndLogEx(NORMAL, "Examples:");
		PrintAndLogEx(NORMAL, "         hf mf ice");
		PrintAndLogEx(NORMAL, "         hf mf ice f nonces.bin");
		return 0;
}

int usage_hf14_dump(void){
		PrintAndLogEx(NORMAL, "Usage:   hf mf dump [card memory] k <name> f <name>");
		PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
		PrintAndLogEx(NORMAL, "  k <name>     : key filename, if no <name> given, UID will be used as filename");
		PrintAndLogEx(NORMAL, "  f <name>     : data filename, if no <name> given, UID will be used as filename");
		PrintAndLogEx(NORMAL, "");
		PrintAndLogEx(NORMAL, "Examples:");
		PrintAndLogEx(NORMAL, "         hf mf dump");
		PrintAndLogEx(NORMAL, "         hf mf dump 4");
		return 0;
}

int usage_hf14_mifare(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf darkside [h] <block number> <A|B>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h               this help");
	PrintAndLogEx(NORMAL, "      <block number>  (Optional) target other block");
	PrintAndLogEx(NORMAL, "      <A|B>           (optional) target key type");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "           hf mf darkside");
	PrintAndLogEx(NORMAL, "           hf mf darkside 16");
	PrintAndLogEx(NORMAL, "           hf mf darkside 16 B");
	return 0;
}
int usage_hf14_mf1ksim(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf sim [h] u <uid> n <numreads> [i] [x] [e] [v]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h    this help");
	PrintAndLogEx(NORMAL, "      u    (Optional) UID 4,7 or 10bytes. If not specified, the UID 4b from emulator memory will be used");
	PrintAndLogEx(NORMAL, "      n    (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
	PrintAndLogEx(NORMAL, "      i    (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
	PrintAndLogEx(NORMAL, "      x    (Optional) Crack, performs the 'reader attack', nr/ar attack against a reader");
	PrintAndLogEx(NORMAL, "      e    (Optional) Fill simulator keys from found keys");
	PrintAndLogEx(NORMAL, "      v    (Optional) Verbose");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "           hf mf sim u 0a0a0a0a");
	PrintAndLogEx(NORMAL, "           hf mf sim u 11223344556677");
	PrintAndLogEx(NORMAL, "           hf mf sim u 112233445566778899AA");	
	PrintAndLogEx(NORMAL, "           hf mf sim u 11223344 i x");	
	return 0;
}
int usage_hf14_dbg(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf dbg [h] <debug level>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "           h    this help");	
	PrintAndLogEx(NORMAL, "       <debug level>  (Optional) see list for valid levels");
	PrintAndLogEx(NORMAL, "           0 - no debug messages");
	PrintAndLogEx(NORMAL, "           1 - error messages");
	PrintAndLogEx(NORMAL, "           2 - plus information messages");
	PrintAndLogEx(NORMAL, "           3 - plus debug messages");
	PrintAndLogEx(NORMAL, "           4 - print even debug messages in timing critical functions");
	PrintAndLogEx(NORMAL, "               Note: this option therefore may cause malfunction itself");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "           hf mf dbg 3");
	return 0;
}
int usage_hf14_sniff(void){
	PrintAndLogEx(NORMAL, "It continuously gets data from the field and saves it to: log, emulator, emulator file.");
	PrintAndLogEx(NORMAL, "Usage:  hf mf sniff [h] [l] [d] [f]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h    this help");
	PrintAndLogEx(NORMAL, "      l    save encrypted sequence to logfile `uid.log`");
	PrintAndLogEx(NORMAL, "      d    decrypt sequence and put it to log file `uid.log`");
//	PrintAndLogEx(NORMAL, " n/a  e     decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory");
	PrintAndLogEx(NORMAL, "      f    decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`");
	PrintAndLogEx(NORMAL, "Example:");
	PrintAndLogEx(NORMAL, "           hf mf sniff l d f");
	return 0;
}
int usage_hf14_nested(void){
	PrintAndLogEx(NORMAL, "Usage:");
	PrintAndLogEx(NORMAL, " all sectors:  hf mf nested  <card memory> <block number> <key A/B> <key (12 hex symbols)> [t,d]");
	PrintAndLogEx(NORMAL, " one sector:   hf mf nested  o <block number> <key A/B> <key (12 hex symbols)>");
	PrintAndLogEx(NORMAL, "               <target block number> <target key A/B> [t]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h    this help");
	PrintAndLogEx(NORMAL, "      card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
	PrintAndLogEx(NORMAL, "      t    transfer keys into emulator memory");
	PrintAndLogEx(NORMAL, "      d    write keys to binary file `hf-mf-<UID>-key.bin`");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf nested 1 0 A FFFFFFFFFFFF ");
	PrintAndLogEx(NORMAL, "      hf mf nested 1 0 A FFFFFFFFFFFF t ");
	PrintAndLogEx(NORMAL, "      hf mf nested 1 0 A FFFFFFFFFFFF d ");
	PrintAndLogEx(NORMAL, "      hf mf nested o 0 A FFFFFFFFFFFF 4 A");
	return 0;
}
int usage_hf14_hardnested(void){
	PrintAndLogEx(NORMAL, "Usage:");
	PrintAndLogEx(NORMAL, "      hf mf hardnested <block number> <key A|B> <key (12 hex symbols)>");
	PrintAndLogEx(NORMAL, "                       <target block number> <target key A|B> [known target key (12 hex symbols)] [w] [s]");
	PrintAndLogEx(NORMAL, "  or  hf mf hardnested r [known target key]");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h         this help");	
	PrintAndLogEx(NORMAL, "      w         acquire nonces and UID, and write them to binary file with default name hf-mf-<UID>-nonces.bin");
	PrintAndLogEx(NORMAL, "      s         slower acquisition (required by some non standard cards)");
	PrintAndLogEx(NORMAL, "      r         read hf-mf-<UID>-nonces.bin if tag present, otherwise read nonces.bin, then start attack");
	PrintAndLogEx(NORMAL, "      u <UID>   read/write hf-mf-<UID>-nonces.bin instead of default name");
	PrintAndLogEx(NORMAL, "      f <name>  read/write <name> instead of default name");
	PrintAndLogEx(NORMAL, "      t         tests?");
	PrintAndLogEx(NORMAL, "      i <X>     set type of SIMD instructions. Without this flag programs autodetect it.");
	PrintAndLogEx(NORMAL, "        i 5   = AVX512");
	PrintAndLogEx(NORMAL, "        i 2   = AVX2");
	PrintAndLogEx(NORMAL, "        i a   = AVX");
	PrintAndLogEx(NORMAL, "        i s   = SSE2");
	PrintAndLogEx(NORMAL, "        i m   = MMX");
	PrintAndLogEx(NORMAL, "        i n   = none (use CPU regular instruction set)");	
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf hardnested 0 A FFFFFFFFFFFF 4 A");
	PrintAndLogEx(NORMAL, "      hf mf hardnested 0 A FFFFFFFFFFFF 4 A w");
	PrintAndLogEx(NORMAL, "      hf mf hardnested 0 A FFFFFFFFFFFF 4 A f nonces.bin w s");
	PrintAndLogEx(NORMAL, "      hf mf hardnested r");
	PrintAndLogEx(NORMAL, "      hf mf hardnested r a0a1a2a3a4a5");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Add the known target key to check if it is present in the remaining key space:");
	PrintAndLogEx(NORMAL, "      hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF");
	return 0;
}
int usage_hf14_chk(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf chk [h] <block number>|<*card memory> <key type (A/B/?)> [t|d] [<key (12 hex symbols)>] [<dic (*.dic)>]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h    this help");	
	PrintAndLogEx(NORMAL, "      *    all sectors based on card memory, other values then below defaults to 1k");
	PrintAndLogEx(NORMAL, "      			0 - MINI(320 bytes)");
	PrintAndLogEx(NORMAL, "      			1 - 1K");
	PrintAndLogEx(NORMAL, "      			2 - 2K");
	PrintAndLogEx(NORMAL, "      			4 - 4K");
	PrintAndLogEx(NORMAL, "      d    write keys to binary file");
	PrintAndLogEx(NORMAL, "      t    write keys to emulator memory\n");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf chk 0 A 1234567890ab keys.dic     -- target block 0, Key A");
	PrintAndLogEx(NORMAL, "      hf mf chk *1 ? t                        -- target all blocks, all keys, 1K, write to emul");
	PrintAndLogEx(NORMAL, "      hf mf chk *1 ? d                        -- target all blocks, all keys, 1K, write to file");
	return 0;
}
int usage_hf14_chk_fast(void){
	PrintAndLogEx(NORMAL, "This is a improved checkkeys method speedwise. It checks Mifare Classic tags sector keys against a dictionary file with keys");
	PrintAndLogEx(NORMAL, "Usage:  hf mf fchk [h] <card memory> [t|d] [<key (12 hex symbols)>] [<dic (*.dic)>]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h    this help");	
	PrintAndLogEx(NORMAL, "      <cardmem> all sectors based on card memory, other values than below defaults to 1k");
	PrintAndLogEx(NORMAL, "      			 0 - MINI(320 bytes)");
	PrintAndLogEx(NORMAL, "      			 1 - 1K   <default>");
	PrintAndLogEx(NORMAL, "      			 2 - 2K");
	PrintAndLogEx(NORMAL, "      			 4 - 4K");
	PrintAndLogEx(NORMAL, "      d    write keys to binary file");
	PrintAndLogEx(NORMAL, "      t    write keys to emulator memory\n");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf fchk 1 1234567890ab keys.dic    -- target 1K using key 1234567890ab, using dictionary file");
	PrintAndLogEx(NORMAL, "      hf mf fchk 1 t                        -- target 1K, write to emulator memory");
	PrintAndLogEx(NORMAL, "      hf mf fchk 1 d                        -- target 1K, write to file");
	return 0;
}
int usage_hf14_keybrute(void){
	PrintAndLogEx(NORMAL, "J_Run's 2nd phase of multiple sector nested authentication key recovery");
	PrintAndLogEx(NORMAL, "You have a known 4 last bytes of a key recovered with mf_nonce_brute tool.");
	PrintAndLogEx(NORMAL, "First 2 bytes of key will be bruteforced");	
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, " ---[ This attack is obsolete,  try hardnested instead ]---");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf keybrute [h] <block number> <A|B> <key>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h               this help");
	PrintAndLogEx(NORMAL, "      <block number>  target block number");
	PrintAndLogEx(NORMAL, "      <A|B>           target key type");
	PrintAndLogEx(NORMAL, "      <key>           candidate key from mf_nonce_brute tool");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "           hf mf keybrute 1 A 000011223344");
	return 0;
}
int usage_hf14_restore(void){
	PrintAndLogEx(NORMAL, "Usage:   hf mf restore [card memory] u <UID> k <name> f <name>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
	PrintAndLogEx(NORMAL, "  u <UID>      : uid, try to restore from hf-mf-<UID>-key.bin and hf-mf-<UID>-data.bin");
	PrintAndLogEx(NORMAL, "  k <name>     : key filename, specific the full filename of key file");
	PrintAndLogEx(NORMAL, "  f <name>     : data filename, specific the full filename of data file");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "         hf mf restore                            -- read the UID from tag first, then restore from hf-mf-<UID>-key.bin and and hf-mf-<UID>-data.bin");
	PrintAndLogEx(NORMAL, "         hf mf restore 1 u 12345678               -- restore from hf-mf-12345678-key.bin and hf-mf-12345678-data.bin");
	PrintAndLogEx(NORMAL, "         hf mf restore 1 u 12345678 k dumpkey.bin -- restore from dumpkey.bin and hf-mf-12345678-data.bin");
	PrintAndLogEx(NORMAL, "         hf mf restore 4                          -- read the UID from tag with 4K memory first, then restore from hf-mf-<UID>-key.bin and and hf-mf-<UID>-data.bin");
	return 0;
}
int usage_hf14_decryptbytes(void){
	PrintAndLogEx(NORMAL, "Decrypt Crypto-1 encrypted bytes given some known state of crypto. See tracelog to gather needed values\n");
	PrintAndLogEx(NORMAL, "Usage:   hf mf decrypt [h] <nt> <ar_enc> <at_enc> <data>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h            this help");
	PrintAndLogEx(NORMAL, "      <nt>         reader nonce");
	PrintAndLogEx(NORMAL, "      <ar_enc>     encrypted reader response");
	PrintAndLogEx(NORMAL, "      <at_enc>     encrypted tag response");
	PrintAndLogEx(NORMAL, "      <data>       encrypted data, taken directly after at_enc and forward");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "         hf mf decrypt b830049b 9248314a 9280e203 41e586f9\n");
	PrintAndLogEx(NORMAL, "  this sample decrypts 41e586f9 -> 3003999a  Annotated: 30 03 [99 9a]  auth block 3 [crc]");
	return 0;
}

int usage_hf14_eget(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf eget <block number>");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf eget 0 ");
	return 0;
}
int usage_hf14_eclr(void){
	PrintAndLogEx(NORMAL, "It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n");
	PrintAndLogEx(NORMAL, "Usage:  hf mf eclr");
	return 0;
}
int usage_hf14_eset(void){
	PrintAndLogEx(NORMAL, "Usage:  hf mf eset <block number> <block data (32 hex symbols)>");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf eset 1 000102030405060708090a0b0c0d0e0f ");	
	return 0;
}
int usage_hf14_eload(void){
	PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`");
	PrintAndLogEx(NORMAL, "Usage:  hf mf eload [card memory] <file name w/o `.eml`> [numblocks]");
	PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K, u = UL");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf eload filename");
	PrintAndLogEx(NORMAL, "        hf mf eload 4 filename");	
	return 0;
}
int usage_hf14_esave(void){
	PrintAndLogEx(NORMAL, "It saves emul dump into the file `filename.eml` or `cardID.eml`");
	PrintAndLogEx(NORMAL, " Usage:  hf mf esave [card memory] [file name w/o `.eml`]");
	PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf esave ");
	PrintAndLogEx(NORMAL, "        hf mf esave 4");
	PrintAndLogEx(NORMAL, "        hf mf esave 4 filename");	
	return 0;
}
int usage_hf14_ecfill(void){
	PrintAndLogEx(NORMAL, "Read card and transfer its data to emulator memory.");
	PrintAndLogEx(NORMAL, "Keys must be laid in the emulator memory. \n");
	PrintAndLogEx(NORMAL, "Usage:  hf mf ecfill <key A/B> [card memory]");
	PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf ecfill A");
	PrintAndLogEx(NORMAL, "        hf mf ecfill A 4");
	return 0;
}
int usage_hf14_ekeyprn(void){
	PrintAndLogEx(NORMAL, "It prints the keys loaded in the emulator memory");
	PrintAndLogEx(NORMAL, "Usage:  hf mf ekeyprn [card memory]");
	PrintAndLogEx(NORMAL, "  [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "        hf mf ekeyprn 1");	
	return 0;
}

int usage_hf14_csetuid(void){
	PrintAndLogEx(NORMAL, "Set UID, ATQA, and SAK for magic Chinese card. Only works with magic cards");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf csetuid [h] <UID 8 hex symbols> [ATQA 4 hex symbols] [SAK 2 hex symbols] [w]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "       h        this help");
	PrintAndLogEx(NORMAL, "       w        wipe card before writing");
	PrintAndLogEx(NORMAL, "       <uid>    UID 8 hex symbols");
	PrintAndLogEx(NORMAL, "       <atqa>   ATQA 4 hex symbols");
	PrintAndLogEx(NORMAL, "       <sak>    SAK 2 hex symbols");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf csetuid 01020304");
	PrintAndLogEx(NORMAL, "      hf mf csetuid 01020304 0004 08 w");
	return 0;
}
int usage_hf14_csetblk(void){
	PrintAndLogEx(NORMAL, "Set block data for magic Chinese card. Only works with magic cards");
	PrintAndLogEx(NORMAL, "");		
	PrintAndLogEx(NORMAL, "Usage:  hf mf csetblk [h] <block number> <block data (32 hex symbols)> [w]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "       h         this help");
	PrintAndLogEx(NORMAL, "       w         wipe card before writing");
	PrintAndLogEx(NORMAL, "       <block>   block number");
	PrintAndLogEx(NORMAL, "       <data>    block data to write (32 hex symbols)");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "       hf mf csetblk 1 01020304050607080910111213141516");
	PrintAndLogEx(NORMAL, "       hf mf csetblk 1 01020304050607080910111213141516 w");
	return 0;
}
int usage_hf14_cload(void){
	PrintAndLogEx(NORMAL, "It loads magic Chinese card from the file `filename.eml`");
	PrintAndLogEx(NORMAL, "or from emulator memory");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf cload [h] [e] <file name w/o `.eml`>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "       h            this help");
	PrintAndLogEx(NORMAL, "       e            load card with data from emulator memory");
	PrintAndLogEx(NORMAL, "       <filename>   load card with data from file");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "       hf mf cload mydump");
	PrintAndLogEx(NORMAL, "       hf mf cload e");	
	return 0;
}
int usage_hf14_cgetblk(void){
	PrintAndLogEx(NORMAL, "Get block data from magic Chinese card. Only works with magic cards\n");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf cgetblk [h] <block number>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h         this help");
	PrintAndLogEx(NORMAL, "      <block>   block number");		
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf cgetblk 1");	
	return 0;
}
int usage_hf14_cgetsc(void){
	PrintAndLogEx(NORMAL, "Get sector data from magic Chinese card. Only works with magic cards\n");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf cgetsc [h] <sector number>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "      h          this help");
	PrintAndLogEx(NORMAL, "      <sector>   sector number");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "      hf mf cgetsc 0");
	return 0;
}
int usage_hf14_csave(void){
	PrintAndLogEx(NORMAL, "It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`");
	PrintAndLogEx(NORMAL, "or into emulator memory");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Usage:  hf mf csave [h] [e] [u] [card memory] i <file name w/o `.eml`>");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "       h             this help");
	PrintAndLogEx(NORMAL, "       e             save data to emulator memory");
	PrintAndLogEx(NORMAL, "       u             save data to file, use carduid as filename");	
	PrintAndLogEx(NORMAL, "       card memory   0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
	PrintAndLogEx(NORMAL, "       o <filename>  save data to file");
	PrintAndLogEx(NORMAL, "");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "       hf mf csave u 1");
	PrintAndLogEx(NORMAL, "       hf mf csave e 1");
	PrintAndLogEx(NORMAL, "       hf mf csave 4 o filename");
	return 0;
}
int usage_hf14_nack(void) {
	PrintAndLogEx(NORMAL, "Test a mifare classic based card for the NACK bug.");
	PrintAndLogEx(NORMAL, "");	
	PrintAndLogEx(NORMAL, "Usage:  hf mf nack [h] [v]");
	PrintAndLogEx(NORMAL, "Options:");
	PrintAndLogEx(NORMAL, "       h             this help");
	PrintAndLogEx(NORMAL, "       v             verbose");
	PrintAndLogEx(NORMAL, "Examples:");
	PrintAndLogEx(NORMAL, "       hf mf nack");
	return 0;
}

int GetHFMF14AUID(uint8_t *uid, int *uidlen) {
	UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}};
	clearCommandBuffer();
	SendCommand(&c);
	UsbCommand resp;
	if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
		PrintAndLogEx(WARNING, "iso14443a card select failed");
		DropField();
		return 0;
	}
	
	iso14a_card_select_t card;
	memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
	memcpy(uid, card.uid, card.uidlen * sizeof(uint8_t));
	*uidlen = card.uidlen;
	return 1;
}

char * GenerateFilename(const char *prefix, const char *suffix){
	uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
	int uidlen=0;
	char * fptr = malloc (sizeof (char) * (strlen(prefix) + strlen(suffix)) + sizeof(uid)*2 + 1);
	
	GetHFMF14AUID(uid, &uidlen);
	if (!uidlen) {
		PrintAndLogEx(WARNING, "No tag found.");
		return NULL;
	}
	
	strcpy(fptr, prefix);	
	FillFileNameByUID(fptr, uid, suffix, uidlen);
	return fptr;
}

int CmdHF14ADarkside(const char *Cmd) {
	uint8_t blockno = 0, key_type = MIFARE_AUTH_KEYA;
	uint64_t key = 0;
	
	char cmdp = tolower(param_getchar(Cmd, 0));	
	if ( cmdp == 'h' ) return usage_hf14_mifare();
	
	blockno = param_get8(Cmd, 0);	 
	
	cmdp = tolower(param_getchar(Cmd, 1));
	if (cmdp == 'b')
		key_type = MIFARE_AUTH_KEYB;

	int isOK = mfDarkside(blockno, key_type, &key);
	PrintAndLogEx(NORMAL, "");
	switch (isOK) {
		case -1 : PrintAndLogEx(WARNING, "button pressed. Aborted."); return 1;
		case -2 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return 1;
		case -3 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return 1;
		case -4 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown");
				  PrintAndLogEx(FAILED, "generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return 1;
		case -5 : PrintAndLogEx(WARNING, "aborted via keyboard.");  return 1;
		default : PrintAndLogEx(SUCCESS, "found valid key: %012" PRIx64 "\n", key); break;
	}
	PrintAndLogEx(NORMAL, "");
	return 0;
}

int CmdHF14AMfWrBl(const char *Cmd) {
	uint8_t blockNo = 0;
	uint8_t keyType = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
	char cmdp	= 0x00;

	if (strlen(Cmd) < 3) {
		PrintAndLogEx(NORMAL, "Usage:  hf mf wrbl    <block number> <key A/B> <key (12 hex symbols)> <block data (32 hex symbols)>");
		PrintAndLogEx(NORMAL, "Examples:");
		PrintAndLogEx(NORMAL, "        hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F");
		return 0;
	}	

	blockNo = param_get8(Cmd, 0);
	cmdp = tolower(param_getchar(Cmd, 1));
	if (cmdp == 0x00) {
		PrintAndLogEx(NORMAL, "Key type must be A or B");
		return 1;
	}
	
	if (cmdp != 'a') 
		keyType = 1;
	
	if (param_gethex(Cmd, 2, key, 12)) {
		PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols");
		return 1;
	}
	
	if (param_gethex(Cmd, 3, bldata, 32)) {
		PrintAndLogEx(NORMAL, "Block data must include 32 HEX symbols");
		return 1;
	}
	
	PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
	PrintAndLogEx(NORMAL, "--data: %s", sprint_hex(bldata, 16));
	
	UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}};
	memcpy(c.d.asBytes, key, 6);
	memcpy(c.d.asBytes + 10, bldata, 16);
	clearCommandBuffer();
	SendCommand(&c);

	UsbCommand resp;
	if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
		uint8_t isOK  = resp.arg[0] & 0xff;
		PrintAndLogEx(NORMAL, "isOk:%02x", isOK);
	} else {
		PrintAndLogEx(NORMAL, "Command execute timeout");
	}

	return 0;
}

int CmdHF14AMfRdBl(const char *Cmd) {
	uint8_t blockNo = 0;
	uint8_t keyType = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	char cmdp = 0x00;

	if (strlen(Cmd)<3) {
		PrintAndLogEx(NORMAL, "Usage:  hf mf rdbl    <block number> <key A/B> <key (12 hex symbols)>");
		PrintAndLogEx(NORMAL, "Examples:");
		PrintAndLogEx(NORMAL, "        hf mf rdbl 0 A FFFFFFFFFFFF ");
		return 0;
	}	
	
	blockNo = param_get8(Cmd, 0);
	cmdp = tolower(param_getchar(Cmd, 1));
	if (cmdp == 0x00) {
		PrintAndLogEx(NORMAL, "Key type must be A or B");
		return 1;
	}
	
	if (cmdp != 'a') 
		keyType = 1;
	
	if (param_gethex(Cmd, 2, key, 12)) {
		PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols");
		return 1;
	}
	PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6));
	
	UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}};
	memcpy(c.d.asBytes, key, 6);
	clearCommandBuffer();
	SendCommand(&c);

	UsbCommand resp;
	if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
		uint8_t isOK  = resp.arg[0] & 0xff;
		uint8_t *data = resp.d.asBytes;

		if (isOK)
			PrintAndLogEx(NORMAL, "isOk:%02x data:%s", isOK, sprint_hex(data, 16));
		else
			PrintAndLogEx(NORMAL, "isOk:%02x", isOK);
	} else {
		PrintAndLogEx(WARNING, "Command execute timeout");
	}

  return 0;
}

int CmdHF14AMfRdSc(const char *Cmd) {
	int i;
	uint8_t sectorNo = 0;
	uint8_t keyType = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint8_t isOK  = 0;
	uint8_t *data  = NULL;
	char cmdp	= 0x00;

	if (strlen(Cmd) < 3) {
		PrintAndLogEx(NORMAL, "Usage:  hf mf rdsc    <sector number> <key A/B> <key (12 hex symbols)>");
		PrintAndLogEx(NORMAL, "Examples:");
		PrintAndLogEx(NORMAL, "        hf mf rdsc 0 A FFFFFFFFFFFF ");
		return 0;
	}	
	
	sectorNo = param_get8(Cmd, 0);
	if (sectorNo > 39) {
		PrintAndLogEx(NORMAL, "Sector number must be less than 40");
		return 1;
	}
	
	cmdp = tolower(param_getchar(Cmd, 1));
	if (cmdp != 'a' && cmdp != 'b') {
		PrintAndLogEx(NORMAL, "Key type must be A or B");
		return 1;
	}
	
	if (cmdp != 'a') 
		keyType = 1;
	
	if (param_gethex(Cmd, 2, key, 12)) {
		PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols");
		return 1;
	}
	PrintAndLogEx(NORMAL, "--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6));
	
	UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
	memcpy(c.d.asBytes, key, 6);
	clearCommandBuffer();
	SendCommand(&c);
	PrintAndLogEx(NORMAL, "");

	UsbCommand resp;
	if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
		isOK  = resp.arg[0] & 0xff;
		data  = resp.d.asBytes;

		PrintAndLogEx(NORMAL, "isOk:%02x", isOK);
		if (isOK) {
			for (i = 0; i < (sectorNo<32?3:15); i++) {
				PrintAndLogEx(NORMAL, "data   : %s", sprint_hex(data + i * 16, 16));
			}
			PrintAndLogEx(NORMAL, "trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16));
		}
	} else {
		PrintAndLogEx(WARNING, "Command execute timeout");
	}

  return 0;
}

uint8_t NumOfBlocks(char card){
	switch(card){
		case '0' : return MIFARE_MINI_MAXBLOCK;
		case '1' : return MIFARE_1K_MAXBLOCK;
		case '2' : return MIFARE_2K_MAXBLOCK;
		case '4' : return MIFARE_4K_MAXBLOCK;
		default  : return MIFARE_1K_MAXBLOCK;
	}
}
uint8_t NumOfSectors(char card){
	switch(card){
		case '0' : return 5;
		case '1' : return 16;
		case '2' : return 32;
		case '4' : return 40;
		default  : return 16;
	}
}

uint8_t FirstBlockOfSector(uint8_t sectorNo) {
	if (sectorNo < 32) {
		return sectorNo * 4;
	} else {
		return 32 * 4 + (sectorNo - 32) * 16;
	}
}

uint8_t NumBlocksPerSector(uint8_t sectorNo) {
	if (sectorNo < 32) {
		return 4;
	} else {
		return 16;
	}
}

int CmdHF14AMfDump(const char *Cmd) {

	uint8_t sectorNo, blockNo;
	uint8_t keyA[40][6];
	uint8_t keyB[40][6];
	uint8_t rights[40][4];
	uint8_t carddata[256][16];
	uint8_t numSectors = 16;
	uint8_t cmdp = 0;
	
	char keyFilename[FILE_PATH_SIZE] = {0};
	char dataFilename[FILE_PATH_SIZE] = {0};
	char * fptr;
	
	FILE *fin, *fout;	
	UsbCommand resp;
	
	while(param_getchar(Cmd, cmdp) != 0x00) {
		switch (tolower(param_getchar(Cmd, cmdp))) {
		case 'h':
			return usage_hf14_dump();
		case 'k':
			param_getstr(Cmd, cmdp+1, keyFilename, FILE_PATH_SIZE); 
			cmdp += 2;
			break;
		case 'f':
			param_getstr(Cmd, cmdp+1, dataFilename, FILE_PATH_SIZE); 
			cmdp += 2;
			break;
		default:
			if (cmdp == 0) {
				numSectors = NumOfSectors(param_getchar(Cmd, cmdp));
				cmdp++;
			} else {
				PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
				return usage_hf14_dump();
			}
		}
	}

	if ( keyFilename[0] == 0x00 ) {
		fptr = GenerateFilename("hf-mf-", "-key.bin");
		if (fptr == NULL) 
			return 1;
		
		strcpy(keyFilename, fptr);
	}

	if ((fin = fopen(keyFilename, "rb")) == NULL) {
		PrintAndLogEx(WARNING, "Could not find file %s", keyFilename);
		return 1;
	}
	
	// Read keys A from file
	size_t bytes_read;
	for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
		bytes_read = fread( keyA[sectorNo], 1, 6, fin );
		if ( bytes_read != 6) {
			PrintAndLogEx(NORMAL, "File reading error.");
			fclose(fin);
			return 2;
		}
	}
	
	// Read keys B from file
	for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
		bytes_read = fread( keyB[sectorNo], 1, 6, fin );
		if ( bytes_read != 6) {
			PrintAndLogEx(NORMAL, "File reading error.");
			fclose(fin);
			return 2;
		}
	}
	
	fclose(fin);
			
	PrintAndLogEx(NORMAL, "|-----------------------------------------|");
	PrintAndLogEx(NORMAL, "|------ Reading sector access bits...-----|");
	PrintAndLogEx(NORMAL, "|-----------------------------------------|");
	uint8_t tries = 0;
	for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
		for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {
		
			UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 0, 0}};
			memcpy(c.d.asBytes, keyA[sectorNo], 6);
			clearCommandBuffer();
			SendCommand(&c);

			if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
				uint8_t isOK = resp.arg[0] & 0xff;
				uint8_t *data = resp.d.asBytes;
				if (isOK){
					rights[sectorNo][0] = ((data[7] & 0x10) >> 2) | ((data[8] & 0x1) << 1) | ((data[8] & 0x10) >> 4); // C1C2C3 for data area 0
					rights[sectorNo][1] = ((data[7] & 0x20) >> 3) | ((data[8] & 0x2) << 0) | ((data[8] & 0x20) >> 5); // C1C2C3 for data area 1
					rights[sectorNo][2] = ((data[7] & 0x40) >> 4) | ((data[8] & 0x4) >> 1) | ((data[8] & 0x40) >> 6); // C1C2C3 for data area 2
					rights[sectorNo][3] = ((data[7] & 0x80) >> 5) | ((data[8] & 0x8) >> 2) | ((data[8] & 0x80) >> 7); // C1C2C3 for sector trailer
					break;
				} else if (tries == 2) { // on last try set defaults
					PrintAndLogEx(FAILED, "could not get access rights for sector %2d. Trying with defaults...", sectorNo);
					rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
					rights[sectorNo][3] = 0x01;
				}
			} else {
				PrintAndLogEx(FAILED, "command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo);
				rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
				rights[sectorNo][3] = 0x01;
			}
		}
	}
	
	PrintAndLogEx(NORMAL, "|-----------------------------------------|");
	PrintAndLogEx(NORMAL, "|----- Dumping all blocks to file... -----|");
	PrintAndLogEx(NORMAL, "|-----------------------------------------|");
	
	bool isOK = true;
	for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) {
		for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
			bool received = false;
			
			for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {			
				if (blockNo == NumBlocksPerSector(sectorNo) - 1) {		// sector trailer. At least the Access Conditions can always be read with key A. 
					UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
					memcpy(c.d.asBytes, keyA[sectorNo], 6);
					clearCommandBuffer();
					SendCommand(&c);
					received = WaitForResponseTimeout(CMD_ACK, &resp, 1500);
				} else {												// data block. Check if it can be read with key A or key B
					uint8_t data_area = (sectorNo < 32) ? blockNo : blockNo/5;
					if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) {	// only key B would work
						UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}};
						memcpy(c.d.asBytes, keyB[sectorNo], 6);
						SendCommand(&c);
						received = WaitForResponseTimeout(CMD_ACK, &resp, 1500);
					} else if (rights[sectorNo][data_area] == 0x07) {										// no key would work
						isOK = false;
						PrintAndLogEx(WARNING, "access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo);
						tries = MIFARE_SECTOR_RETRY;
					} else {																				// key A would work
						UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
						memcpy(c.d.asBytes, keyA[sectorNo], 6);
						clearCommandBuffer();
						SendCommand(&c);
						received = WaitForResponseTimeout(CMD_ACK, &resp, 1500);
					}
				}
				if (received) {
					isOK  = resp.arg[0] & 0xff;
					if (isOK) break;
				}
			}

			if (received) {
				isOK  = resp.arg[0] & 0xff;
				uint8_t *data  = resp.d.asBytes;
				if (blockNo == NumBlocksPerSector(sectorNo) - 1) {		// sector trailer. Fill in the keys.
					data[0]  = (keyA[sectorNo][0]);
					data[1]  = (keyA[sectorNo][1]);
					data[2]  = (keyA[sectorNo][2]);
					data[3]  = (keyA[sectorNo][3]);
					data[4]  = (keyA[sectorNo][4]);
					data[5]  = (keyA[sectorNo][5]);
					data[10] = (keyB[sectorNo][0]);
					data[11] = (keyB[sectorNo][1]);
					data[12] = (keyB[sectorNo][2]);
					data[13] = (keyB[sectorNo][3]);
					data[14] = (keyB[sectorNo][4]);
					data[15] = (keyB[sectorNo][5]);
				}
				if (isOK) {
					memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16);
                    PrintAndLogEx(SUCCESS, "successfully read block %2d of sector %2d.", blockNo, sectorNo);
				} else {
					PrintAndLogEx(FAILED, "could not read block %2d of sector %2d", blockNo, sectorNo);
					break;
				}
			}
			else {
				isOK = false;
				PrintAndLogEx(WARNING, "command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo);
				break;
			}
		}
	}

	if (isOK) {
		if (dataFilename[0] == 0x00) {
			fptr = GenerateFilename("hf-mf-", "-data.bin");
			if (fptr == NULL) 
				return 1;
			
			strcpy(dataFilename, fptr);
		}
		
		if ((fout = fopen(dataFilename,"wb")) == NULL) { 
			PrintAndLogEx(WARNING, "could not create file name %s", dataFilename);
			return 1;
		}
		uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1);
		fwrite(carddata, 1, 16*numblocks, fout);
		fclose(fout);
		PrintAndLogEx(SUCCESS, "dumped %d blocks (%d bytes) to file %s", numblocks, 16*numblocks, dataFilename);
	}
	return 0;
}

int CmdHF14AMfRestore(const char *Cmd) {
	uint8_t sectorNo,blockNo;
	uint8_t keyType = 0;
	uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
	uint8_t bldata[16] = {0x00};
	uint8_t keyA[40][6];
	uint8_t keyB[40][6];
	uint8_t numSectors = 16;
	uint8_t cmdp = 0;
	char keyFilename[FILE_PATH_SIZE]="";	
	char dataFilename[FILE_PATH_SIZE]="";
	char szTemp[FILE_PATH_SIZE]="";	
	char *fptr;
	FILE *fdump, *fkeys;

	while(param_getchar(Cmd, cmdp) != 0x00) {
		switch(tolower(param_getchar(Cmd, cmdp))) {
		case 'h':
			return usage_hf14_restore();
		case 'u':
			param_getstr(Cmd, cmdp+1, szTemp, FILE_PATH_SIZE); 
			if(keyFilename[0]==0x00)
				snprintf(keyFilename, FILE_PATH_SIZE, "hf-mf-%s-key.bin", szTemp);
			if(dataFilename[0]==0x00)
				snprintf(dataFilename, FILE_PATH_SIZE, "hf-mf-%s-data.bin", szTemp);
			cmdp+=2;
			break;
		case 'k':
			param_getstr(Cmd, cmdp+1, keyFilename, FILE_PATH_SIZE); 
			cmdp += 2;
			break;
		case 'f':
			param_getstr(Cmd, cmdp+1, dataFilename, FILE_PATH_SIZE); 
			cmdp += 2;
			break;
		default:
			if ( cmdp == 0 ) {
				numSectors = NumOfSectors(param_getchar(Cmd, cmdp));
				cmdp++;
			} else {
				PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
				return usage_hf14_restore();
			}
		}
	}

	if ( keyFilename[0] == 0x00 ) {
		fptr = GenerateFilename("hf-mf-", "-key.bin");
		if (fptr == NULL) 
			return 1;
		
		strcpy(keyFilename, fptr);
	}

	if ((fkeys = fopen(keyFilename, "rb")) == NULL) {
		PrintAndLogEx(WARNING, "Could not find file %s", keyFilename);
		return 1;
	}
	
	size_t bytes_read;
	for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
		bytes_read = fread( keyA[sectorNo], 1, 6, fkeys );
		if ( bytes_read != 6 ) {
			PrintAndLogEx(NORMAL, "File reading error (%s).", keyFilename);
			fclose(fkeys);
			return 2;
		}
	}

	for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
		bytes_read = fread( keyB[sectorNo], 1, 6, fkeys );
		if ( bytes_read != 6 ) {
			PrintAndLogEx(NORMAL, "File reading error (%s).", keyFilename);
			fclose(fkeys);
			return 2;
		}
	}

	fclose(fkeys);

	if ( dataFilename[0] == 0x00 ) {
		fptr = GenerateFilename("hf-mf-", "-data.bin");
		if (fptr == NULL) 
			return 1;
		
		strcpy(dataFilename,fptr);
	}

	if ((fdump = fopen(dataFilename, "rb")) == NULL) {
		PrintAndLogEx(WARNING, "Could not find file %s", dataFilename);
		return 1;
	}	
	PrintAndLogEx(NORMAL, "Restoring %s to card", dataFilename);

	for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
		for (blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
			UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}};
			memcpy(c.d.asBytes, key, 6);			
			bytes_read = fread(bldata, 1, 16, fdump);
			if ( bytes_read != 16) {
				PrintAndLogEx(NORMAL, "File reading error (%s).", dataFilename);
				fclose(fdump);
				fdump = NULL;				
				return 2;
			}
					
			if (blockNo == NumBlocksPerSector(sectorNo) - 1) {	// sector trailer
				bldata[0]  = (keyA[sectorNo][0]);
				bldata[1]  = (keyA[sectorNo][1]);
				bldata[2]  = (keyA[sectorNo][2]);
				bldata[3]  = (keyA[sectorNo][3]);
				bldata[4]  = (keyA[sectorNo][4]);
				bldata[5]  = (keyA[sectorNo][5]);
				bldata[10] = (keyB[sectorNo][0]);
				bldata[11] = (keyB[sectorNo][1]);
				bldata[12] = (keyB[sectorNo][2]);
				bldata[13] = (keyB[sectorNo][3]);
				bldata[14] = (keyB[sectorNo][4]);
				bldata[15] = (keyB[sectorNo][5]);
			}		
			
			PrintAndLogEx(NORMAL, "Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16));
			
			memcpy(c.d.asBytes + 10, bldata, 16);
			clearCommandBuffer();
			SendCommand(&c);

			UsbCommand resp;
			if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
				uint8_t isOK  = resp.arg[0] & 0xff;
				PrintAndLogEx(NORMAL, "isOk:%02x", isOK);
			} else {
				PrintAndLogEx(NORMAL, "Command execute timeout");
			}
		}
	}
	
	fclose(fdump);
	return 0;
}

int CmdHF14AMfNested(const char *Cmd) {
	int i, res, iterations;
	sector_t *e_sector = NULL;
	uint8_t blockNo = 0;
	uint8_t keyType = 0;
	uint8_t trgBlockNo = 0;
	uint8_t trgKeyType = 0;
	uint8_t SectorsCnt = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint8_t keyBlock[(MIFARE_DEFAULTKEYS_SIZE + 1) *6];
	uint64_t key64 = 0;
	bool transferToEml = false;
	bool createDumpFile = false;
	FILE *fkeys;
	uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
	uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
	char *fptr;
	
	if (strlen(Cmd) < 3) return usage_hf14_nested();
	
	char cmdp, ctmp;
	cmdp = tolower(param_getchar(Cmd, 0));
	blockNo = param_get8(Cmd, 1);
	ctmp = tolower(param_getchar(Cmd, 2));

	if (ctmp != 'a' && ctmp != 'b') {
		PrintAndLogEx(WARNING, "key type must be A or B");
		return 1;
	}
	
	if (ctmp != 'a') 
		keyType = 1;
		
	if (param_gethex(Cmd, 3, key, 12)) {
		PrintAndLogEx(WARNING, "key must include 12 HEX symbols");
		return 1;
	}
	
	if (cmdp == 'o') {
		trgBlockNo = param_get8(Cmd, 4);
		ctmp = tolower(param_getchar(Cmd, 5));
		if (ctmp != 'a' && ctmp != 'b') {
			PrintAndLogEx(WARNING, "target key type must be A or B");
			return 1;
		}
		if (ctmp != 'a') { 
			trgKeyType = 1;
		}
	} else {
		SectorsCnt = NumOfSectors(cmdp);
	}

	ctmp = tolower(param_getchar(Cmd, 4));
	transferToEml |= (ctmp == 't');
	createDumpFile |= (ctmp == 'd');
	
	ctmp = tolower(param_getchar(Cmd, 6));
	transferToEml |= (ctmp == 't');
	createDumpFile |= (ctmp == 'd');
	
	// check if we can authenticate to sector
	res = mfCheckKeys(blockNo, keyType, true, 1, key, &key64);
	if (res) {
		PrintAndLogEx(WARNING, "key is wrong. Can't authenticate to block:%3d key type:%c", blockNo, keyType ? 'B' : 'A');
		return 3;
	}	
	
	if (cmdp == 'o') {
		int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true);
		switch (isOK) {
			case -1 : PrintAndLogEx(WARNING, "Error: No response from Proxmark.\n"); break;
			case -2 : PrintAndLogEx(WARNING, "Button pressed. Aborted.\n"); break;
			case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break;
			case -4 : PrintAndLogEx(FAILED, "No valid key found"); break;
			case -5 : 
				key64 = bytes_to_num(keyBlock, 6);

				// transfer key to the emulator
				if (transferToEml) {
					uint8_t sectortrailer;
					if (trgBlockNo < 32*4) { 	// 4 block sector
						sectortrailer = (trgBlockNo & ~0x03) + 3;
					} else {					// 16 block sector
						sectortrailer = (trgBlockNo & ~0x0f) + 15;
					}
					mfEmlGetMem(keyBlock, sectortrailer, 1);
			
					if (!trgKeyType)
						num_to_bytes(key64, 6, keyBlock);
					else
						num_to_bytes(key64, 6, &keyBlock[10]);
					mfEmlSetMem(keyBlock, sectortrailer, 1);	
					PrintAndLogEx(SUCCESS, "Key transferred to emulator memory.");
				}
				return 0;
			default : PrintAndLogEx(WARNING, "Unknown Error.\n");
		}
		return 2;
	}
	else { // ------------------------------------  multiple sectors working
		uint64_t t1 = msclock();
		
		e_sector = calloc(SectorsCnt, sizeof(sector_t));
		if (e_sector == NULL) return 1;
		
		//test current key and additional standard keys first
		// add parameter key
		memcpy( keyBlock + (MIFARE_DEFAULTKEYS_SIZE * 6), key, 6 );

		for (int cnt = 0; cnt < MIFARE_DEFAULTKEYS_SIZE; cnt++){
			num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t*)(keyBlock + cnt * 6));
		}

		PrintAndLogEx(SUCCESS, "Testing known keys. Sector count=%d", SectorsCnt);
		res = mfCheckKeys_fast( SectorsCnt, true, true, 1, MIFARE_DEFAULTKEYS_SIZE + 1, keyBlock, e_sector);
				
		uint64_t t2 = msclock() - t1;
		PrintAndLogEx(SUCCESS, "Time to check %d known keys: %.0f seconds\n", MIFARE_DEFAULTKEYS_SIZE, (float)t2/1000.0 );
		PrintAndLogEx(SUCCESS, "enter nested attack");
		
		// nested sectors
		iterations = 0;
		bool calibrate = true;

		for (i = 0; i < MIFARE_SECTOR_RETRY; i++) {
			for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) {
				for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) { 

					if (e_sector[sectorNo].foundKey[trgKeyType]) continue;
					
					int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate);
					switch (isOK) {
						case -1 : PrintAndLogEx(WARNING, "error: No response from Proxmark.\n"); break;
						case -2 : PrintAndLogEx(WARNING, "button pressed. Aborted.\n"); break;
						case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break;
						case -4 : //key not found
							calibrate = false;
							iterations++;
							continue; 
						case -5 :
							calibrate = false;
							iterations++;
							e_sector[sectorNo].foundKey[trgKeyType] = 1;
							e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6);

							res = mfCheckKeys_fast( SectorsCnt, true, true, 2, 1, keyBlock, e_sector);
							continue;
							
						default : PrintAndLogEx(WARNING, "unknown Error.\n");
					}
					free(e_sector);
					return 2;
				}
			}
		}
		
		t1 = msclock() - t1;
		PrintAndLogEx(SUCCESS, "time in nested: %.0f seconds\n", (float)t1/1000.0);


		// 20160116 If Sector A is found, but not Sector B,  try just reading it of the tag?
		PrintAndLogEx(SUCCESS, "trying to read key B...");
		for (i = 0; i < SectorsCnt; i++) {
			// KEY A  but not KEY B
			if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) {
				
				uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
				
				PrintAndLogEx(SUCCESS, "reading block %d", sectrail);
							
				UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}};
				num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A
				clearCommandBuffer();
				SendCommand(&c);

				UsbCommand resp;
				if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue;
					
				uint8_t isOK  = resp.arg[0] & 0xff;
				if (!isOK) continue;

				uint8_t *data = resp.d.asBytes;
				key64 = bytes_to_num(data+10, 6);
				if (key64) {
					PrintAndLogEx(SUCCESS, "data: %s", sprint_hex(data+10, 6));
					e_sector[i].foundKey[1] = true;
					e_sector[i].Key[1] = key64;
				}
			}
		}

		
		//print them
		printKeyTable( SectorsCnt, e_sector );
		
		// transfer them to the emulator
		if (transferToEml) {
			for (i = 0; i < SectorsCnt; i++) {
				mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
				if (e_sector[i].foundKey[0])
					num_to_bytes(e_sector[i].Key[0], 6, keyBlock);
				if (e_sector[i].foundKey[1])
					num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]);
				mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
				PrintAndLogEx(SUCCESS, "key transferred to emulator memory.");
			}		
		}
		
		// Create dump file
		if (createDumpFile) {
			fptr = GenerateFilename("hf-mf-", "-key.bin");
			if (fptr == NULL) 
				return 1;
			
			if ((fkeys = fopen(fptr, "wb")) == NULL) { 
				PrintAndLogEx(WARNING, "could not create file %s", fptr);
				free(e_sector);
				return 1;
			}
			
			PrintAndLogEx(SUCCESS, "saving keys to binary file %s...", fptr);
			for (i=0; i<SectorsCnt; i++) {
				if (e_sector[i].foundKey[0]){
					num_to_bytes(e_sector[i].Key[0], 6, tempkey);
					fwrite ( tempkey, 1, 6, fkeys );
				} else {
					fwrite ( &standart, 1, 6, fkeys );
				}
			}
			for( i=0; i<SectorsCnt; i++) {
				if (e_sector[i].foundKey[1]){
					num_to_bytes(e_sector[i].Key[1], 6, tempkey);
					fwrite ( tempkey, 1, 6, fkeys );
				} else {
					fwrite ( &standart, 1, 6, fkeys );
				}
			}
			fflush(fkeys);
			fclose(fkeys);
		}		
		free(e_sector);
	}
	return 0;
}

int CmdHF14AMfNestedHard(const char *Cmd) {
	uint8_t blockNo = 0;
	uint8_t keyType = 0;
	uint8_t trgBlockNo = 0;
	uint8_t trgKeyType = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint8_t trgkey[6] = {0, 0, 0, 0, 0, 0};
	uint8_t cmdp=0;
	char filename[FILE_PATH_SIZE], *fptr;
	char szTemp[FILE_PATH_SIZE];
	char ctmp;
	
	bool know_target_key = false;
	bool nonce_file_read = false;
	bool nonce_file_write = false;
	bool slow = false;
	int tests = 0;
	
	switch(tolower(param_getchar(Cmd, cmdp))) {
		case 'h': return usage_hf14_hardnested();
		case 'r':
			fptr = GenerateFilename("hf-mf-","-nonces.bin");
			if (fptr == NULL) 
				strncpy(filename,"nonces.bin", FILE_PATH_SIZE);
			else
				strncpy(filename,fptr, FILE_PATH_SIZE);
				
			nonce_file_read = true;
			if (!param_gethex(Cmd, cmdp+1, trgkey, 12)) {
				know_target_key = true;
			}
			cmdp++;
			break;
		case 't':
			tests = param_get32ex(Cmd, cmdp+1, 100, 10);
			if (!param_gethex(Cmd, cmdp+2, trgkey, 12)) {
				know_target_key = true;
			}
			cmdp += 2;
			break;
		default:
			if (param_getchar(Cmd, cmdp) == 0x00)
			{
				PrintAndLogEx(NORMAL, "Block number is missing");
				return 1;
			
			}
			blockNo = param_get8(Cmd, cmdp);
			ctmp = tolower(param_getchar(Cmd, cmdp+1));
			if (ctmp != 'a' && ctmp != 'b') {
				PrintAndLogEx(NORMAL, "Key type must be A or B");
				return 1;
			}
			
			if (ctmp != 'a') { 
				keyType = 1;
			}
			
			if (param_gethex(Cmd, cmdp+2, key, 12)) {
				PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols");
				return 1;
			}
			
			if (param_getchar(Cmd, cmdp+3) == 0x00)
			{
				PrintAndLogEx(NORMAL, "Target block number is missing");
				return 1;
			}
			
			trgBlockNo = param_get8(Cmd, cmdp+3);

			ctmp = tolower(param_getchar(Cmd, cmdp+4));
			if (ctmp != 'a' && ctmp != 'b') {
				PrintAndLogEx(NORMAL, "Target key type must be A or B");
				return 1;
			}
			if (ctmp != 'a') {
				trgKeyType = 1;
			}
			cmdp += 5;
	}
	if (!param_gethex(Cmd, cmdp, trgkey, 12)) {
		know_target_key = true;
		cmdp++;
	}

	while ((ctmp = param_getchar(Cmd, cmdp))) {
		switch(tolower(ctmp)) {
		case 's':
			slow = true;
			break;
		case 'w':
			nonce_file_write = true;
			fptr = GenerateFilename("hf-mf-","-nonces.bin");
			if (fptr == NULL) 
				return 1;
			strncpy(filename, fptr, FILE_PATH_SIZE);
			break;
		case 'u':
			param_getstr(Cmd, cmdp+1, szTemp, FILE_PATH_SIZE);
			snprintf(filename, FILE_PATH_SIZE, "hf-mf-%s-nonces.bin", szTemp);
			cmdp++;
			break;
		case 'f':
			param_getstr(Cmd, cmdp+1, szTemp, FILE_PATH_SIZE);
			strncpy(filename, szTemp, FILE_PATH_SIZE);
			cmdp++;
			break;
		case 'i': 
			SetSIMDInstr(SIMD_AUTO);
			ctmp = tolower(param_getchar(Cmd, cmdp+1));
			switch (ctmp) {
				case '5':
					SetSIMDInstr(SIMD_AVX512);
					break;
				case '2':
					SetSIMDInstr(SIMD_AVX2);
					break;
				case 'a':
					SetSIMDInstr(SIMD_AVX);
					break;
				case 's':
					SetSIMDInstr(SIMD_SSE2);
					break;
				case 'm':
					SetSIMDInstr(SIMD_MMX);
					break;
				case 'n':
					SetSIMDInstr(SIMD_NONE);
					break;
				default:
					PrintAndLog("Unknown SIMD type. %c", ctmp);
					return 1;
			}
			cmdp += 2;
			break;
		default:
			PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp);
			usage_hf14_hardnested();
			return 1;
		}
		cmdp++;
	}
	
	if ( !know_target_key ) {
		uint64_t key64 = 0;
		// check if we can authenticate to sector
		int res = mfCheckKeys(blockNo, keyType, true, 1, key, &key64);
		if (res) {
			PrintAndLogEx(NORMAL, "Key is wrong. Can't authenticate to block:%3d key type:%c", blockNo, keyType ? 'B' : 'A');
			return 3;
		}	
	}
	
	PrintAndLogEx(NORMAL, "--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ", 
			trgBlockNo, 
			trgKeyType?'B':'A', 
			trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5],
			know_target_key ? "" : " (not set)",
			nonce_file_write ? "write": nonce_file_read ? "read" : "none",
			slow ? "Yes" : "No",
			tests);

	uint64_t foundkey = 0;
	int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key ? trgkey : NULL, nonce_file_read, nonce_file_write, slow, tests, &foundkey, filename);

	DropField();
	if (isOK) {
		switch (isOK) {
			case 1 : PrintAndLogEx(WARNING, "Error: No response from Proxmark.\n"); break;
			case 2 : PrintAndLogEx(NORMAL, "Button pressed. Aborted.\n"); break;
			default : break;
		}
		return 2;
	}
	return 0;
}

int randInRange(int min, int max) {
	return min + (int) (rand() / (double) (RAND_MAX) * (max - min + 1));
}

//Fisher–Yates shuffle
void shuffle( uint8_t *array, uint16_t len) {
	uint8_t tmp[6];
	uint16_t x;
	time_t t;
	srand((unsigned) time(&t));
	while (len) {		
		x = randInRange(0, (len -= 6) ) | 0; // 0 = i < n
		x %= 6;
		memcpy(tmp, array + x, 6);
		memcpy(array + x, array + len, 6);	
		memcpy(array + len, tmp, 6);		
	}
}

int CmdHF14AMfChk_fast(const char *Cmd) {

	char ctmp = 0x00;
	ctmp = param_getchar(Cmd, 0);
	if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_chk_fast();

	FILE * f;
	char filename[FILE_PATH_SIZE]={0};
	char buf[13];
	char *fptr;
	uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
	uint8_t *keyBlock = NULL, *p;
	uint8_t sectorsCnt = 1;
	int i, keycnt = 0;
	int clen = 0;
	int transferToEml = 0, createDumpFile = 0;
	uint32_t keyitems = MIFARE_DEFAULTKEYS_SIZE;

	sector_t *e_sector = NULL;
	
	keyBlock = calloc(MIFARE_DEFAULTKEYS_SIZE, 6);
	if (keyBlock == NULL) return 1;

	for (int cnt = 0; cnt < MIFARE_DEFAULTKEYS_SIZE; cnt++)
		num_to_bytes(g_mifare_default_keys[cnt], 6, keyBlock + cnt * 6);
	
	// sectors
	switch(ctmp) {
		case '0': sectorsCnt =  5; break;
		case '1': sectorsCnt = 16; break;
		case '2': sectorsCnt = 32; break;
		case '4': sectorsCnt = 40; break;
		default:  sectorsCnt = 16;
	}

	for (i = 1; param_getchar(Cmd, i); i++) {
		
		ctmp = param_getchar(Cmd, i);
		clen = param_getlength(Cmd, i);
		
		if (clen == 12) {
			
			if ( param_gethex(Cmd, i, keyBlock + 6 * keycnt, 12) ){
				PrintAndLogEx(FAILED, "not hex, skipping");
				continue;
			}

			if ( keyitems - keycnt < 2) {
				p = realloc(keyBlock, 6 * (keyitems += 64));
				if (!p) {
					PrintAndLogEx(FAILED, "Cannot allocate memory for Keys");
					free(keyBlock);
					return 2;
				}
				keyBlock = p;
			}
			PrintAndLogEx(NORMAL, "[%2d] key %s", keycnt, sprint_hex( (keyBlock + 6*keycnt), 6 ) );
			keycnt++;
		} else if ( clen == 1) {
			if (ctmp == 't' || ctmp == 'T') { transferToEml = 1; continue; }
			if (ctmp == 'd' || ctmp == 'D') { createDumpFile = 1; continue; }
		} else {
			// May be a dic file
			if ( param_getstr(Cmd, i, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE ) {
				PrintAndLogEx(FAILED, "Filename too long");
				continue;
			}
			
			f = fopen( filename, "r");
			if ( !f ){
				PrintAndLogEx(FAILED, "File: %s: not found or locked.", filename);
				continue;
			}
			
			// read file
			while( fgets(buf, sizeof(buf), f) ){
				if (strlen(buf) < 12 || buf[11] == '\n')
					continue;
			
				while (fgetc(f) != '\n' && !feof(f)) ;  //goto next line
				
				if( buf[0]=='#' ) continue;	//The line start with # is comment, skip

				if (!isxdigit(buf[0])){
					PrintAndLogEx(FAILED, "File content error. '%s' must include 12 HEX symbols",buf);
					continue;
				}
				
				buf[12] = 0;
				if ( keyitems - keycnt < 2) {
					p = realloc(keyBlock, 6 * (keyitems += 64));
					if (!p) {
						PrintAndLogEx(FAILED, "Cannot allocate memory for default keys");
						free(keyBlock);
						fclose(f);
						return 2;
					}
					keyBlock = p;
				}
				int pos = 6 * keycnt;
				memset(keyBlock + pos, 0, 6);
				num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + pos);
				keycnt++;
				memset(buf, 0, sizeof(buf));
			}
			fclose(f);
			PrintAndLogEx(SUCCESS, "Loaded %2d keys from %s", keycnt, filename);
		}
	}
		
	if (keycnt == 0) {
		PrintAndLogEx(SUCCESS, "No key specified, trying default keys");
		for (;keycnt < MIFARE_DEFAULTKEYS_SIZE; keycnt++)
			PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
				(keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
				(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4],	(keyBlock + 6*keycnt)[5]);
	}
	
	// // initialize storage for found keys
	e_sector = calloc(sectorsCnt, sizeof(sector_t));
	if (e_sector == NULL) {
		free(keyBlock);
		return 1;
	}
			
	uint32_t chunksize = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
	bool firstChunk = true, lastChunk = false;
	
	// time
	uint64_t t1 = msclock();
	
	// strategys. 1= deep first on sector 0 AB,  2= width first on all sectors
	for (uint8_t strategy = 1; strategy < 3; strategy++) {
		PrintAndLogEx(SUCCESS, "Running strategy %u", strategy);
		// main keychunk loop			
		for (uint32_t i = 0; i < keycnt; i += chunksize) {
			
			if (ukbhit()) {
				int gc = getchar(); (void)gc;
				PrintAndLogEx(NORMAL, "\naborted via keyboard!\n");
				goto out;
			}
			
			uint32_t size = ((keycnt - i)  > chunksize) ? chunksize : keycnt - i;
			
			// last chunk?
			if ( size == keycnt - i)
				lastChunk = true;
			
			int res = mfCheckKeys_fast( sectorsCnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector);

			if ( firstChunk )
				firstChunk = false;
						
			// all keys,  aborted
			if ( res == 0 || res == 2 )
				goto out;
		} // end chunks of keys
		firstChunk = true;
		lastChunk = false;
	} // end strategy
out: 
	t1 = msclock() - t1;
	PrintAndLogEx(SUCCESS, "Time in checkkeys (fast):  %.1fs\n", (float)(t1/1000.0));

	printKeyTable( sectorsCnt, e_sector );

	if (transferToEml) {
		uint8_t block[16] = {0x00};
		for (uint8_t i = 0; i < sectorsCnt; ++i ) {
			mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
			if (e_sector[i].foundKey[0])
				num_to_bytes(e_sector[i].Key[0], 6, block);
			if (e_sector[i].foundKey[1])
				num_to_bytes(e_sector[i].Key[1], 6, block+10);
			mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
		}
		PrintAndLogEx(NORMAL, "Found keys have been transferred to the emulator memory");
	}
	
	if (createDumpFile) {
		fptr = GenerateFilename("hf-mf-", "-key.bin");
		if (fptr == NULL) 
			return 1;

		FILE *fkeys = fopen(fptr, "wb");
		if (fkeys == NULL) { 
			PrintAndLogEx(WARNING, "Could not create file %s", fptr);
			free(keyBlock);
			free(e_sector);
			return 1;
		}
		PrintAndLogEx(NORMAL, "Printing keys to binary file %s...", fptr);
	
		for (i=0; i<sectorsCnt; i++) {
			num_to_bytes(e_sector[i].Key[0], 6, tempkey);
			fwrite (tempkey, 1, 6, fkeys);
		}

		for (i=0; i<sectorsCnt; i++) {
			num_to_bytes(e_sector[i].Key[1], 6, tempkey);
			fwrite (tempkey, 1, 6, fkeys );
		}

		fclose(fkeys);
		PrintAndLogEx(NORMAL, "Found keys have been dumped to %s --> 0xffffffffffff has been inserted for unknown keys.", fptr);			
	}
	
	free(keyBlock);
	free(e_sector);
	PrintAndLogEx(NORMAL, "");
	return 0;
}

int CmdHF14AMfChk(const char *Cmd) {

	char ctmp = param_getchar(Cmd, 0);
	if (strlen(Cmd) < 3 || ctmp == 'h' || ctmp == 'H') return usage_hf14_chk();

	FILE * f;
	char filename[FILE_PATH_SIZE]={0};
	char buf[13];
	uint8_t *keyBlock = NULL, *p;
	sector_t *e_sector = NULL;

	uint8_t blockNo = 0;
	uint8_t SectorsCnt = 1;
	uint8_t keyType = 0;
	uint32_t keyitems = MIFARE_DEFAULTKEYS_SIZE;
	uint64_t key64 = 0;	
	uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
	char *fptr;
	int clen = 0;
	int transferToEml = 0;
	int createDumpFile = 0;	
	int i, res, keycnt = 0;

	keyBlock = calloc(MIFARE_DEFAULTKEYS_SIZE, 6);
	if (keyBlock == NULL) return 1;

	for (int cnt = 0; cnt < MIFARE_DEFAULTKEYS_SIZE; cnt++)
		num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t*)(keyBlock + cnt * 6));
	
	if (param_getchar(Cmd, 0)=='*') {
		blockNo = 3;
		SectorsCnt = NumOfSectors( param_getchar(Cmd+1, 0) );
	} else {
		blockNo = param_get8(Cmd, 0);
	}
	
	ctmp = param_getchar(Cmd, 1);
	clen = param_getlength(Cmd, 1);
	if (clen == 1) {
		switch (ctmp) {	
		case 'a':
		case 'A':
			keyType = 0;
			break;
		case 'b':
		case 'B':
			keyType = 1;
			break;
		case '?':
			keyType = 2;
			break;
		default:
			PrintAndLogEx(NORMAL, "Key type must be A , B or ?");
			free(keyBlock);
			return 1;
		};
	}

	for (i = 2; param_getchar(Cmd, i); i++) {

		ctmp = param_getchar(Cmd, i);	
		clen = param_getlength(Cmd, i);
		
		if (clen == 12) {
			
			if ( param_gethex(Cmd, i, keyBlock + 6 * keycnt, 12) ){
				PrintAndLogEx(FAILED, "not hex, skipping");
				continue;
			}

			if ( keyitems - keycnt < 2) {
				p = realloc(keyBlock, 6 * (keyitems += 64));
				if (!p) {
					PrintAndLogEx(FAILED, "cannot allocate memory for Keys");
					free(keyBlock);
					return 2;
				}
				keyBlock = p;
			}
			PrintAndLogEx(NORMAL, "[%2d] key %s", keycnt, sprint_hex( (keyBlock + 6*keycnt), 6 ) );;
			keycnt++;
		} else if ( clen == 1 ) {
			if (ctmp == 't' || ctmp == 'T') { transferToEml = 1; continue; }
			if (ctmp == 'd' || ctmp == 'D') { createDumpFile = 1; continue; }
		} else {
			// May be a dic file
			if ( param_getstr(Cmd, i, filename, sizeof(filename)) >= FILE_PATH_SIZE ) {
				PrintAndLogEx(FAILED, "File name too long");
				continue;
			}
			
			f = fopen( filename , "r");
			if ( !f ) {
				PrintAndLogEx(FAILED, "File: %s: not found or locked.", filename);
				continue;
			}
			
			// load keys from dictionary file
			while( fgets(buf, sizeof(buf), f) ){
				if (strlen(buf) < 12 || buf[11] == '\n')
					continue;
			
				while (fgetc(f) != '\n' && !feof(f)) ;  //goto next line
				
				if( buf[0]=='#' ) continue;	//The line start with # is comment, skip

				// codesmell, only checks first char?
				if (!isxdigit(buf[0])){
					PrintAndLogEx(FAILED, "File content error. '%s' must include 12 HEX symbols",buf);
					continue;
				}
				
				buf[12] = 0;

				if ( keyitems - keycnt < 2) {
					p = realloc(keyBlock, 6 * (keyitems += 64));
					if (!p) {
						PrintAndLogEx(FAILED, "Cannot allocate memory for defKeys");
						free(keyBlock);
						fclose(f);
						return 2;
					}
					keyBlock = p;
				}
				memset(keyBlock + 6 * keycnt, 0, 6);
				num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt);
				//PrintAndLogEx(NORMAL, "check key[%2d] %012" PRIx64, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6));
				keycnt++;
				memset(buf, 0, sizeof(buf));
			}
			fclose(f);
			PrintAndLogEx(SUCCESS, "Loaded %2d keys from %s", keycnt, filename);
		}
	}
	
	if (keycnt == 0) {
		PrintAndLogEx(NORMAL, "No key specified, trying default keys");
		for (;keycnt < MIFARE_DEFAULTKEYS_SIZE; keycnt++)
			PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
				(keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
				(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4],	(keyBlock + 6*keycnt)[5], 6);
	}
	
	// initialize storage for found keys
	e_sector = calloc(SectorsCnt, sizeof(sector_t));
	if (e_sector == NULL) {
		free(keyBlock);
		return 1;
	}

	// empty e_sector
	for(int i = 0; i < SectorsCnt; ++i){
		e_sector[i].Key[0] = 0xffffffffffff;
		e_sector[i].Key[1] = 0xffffffffffff;
		e_sector[i].foundKey[0] = false;
		e_sector[i].foundKey[1] = false;
	}
		
	
	uint8_t trgKeyType = 0;
	uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
	
	// time
	uint64_t t1 = msclock();

	
	// check keys.
	for (trgKeyType = (keyType==2)?0:keyType; trgKeyType < 2; (keyType==2) ? (++trgKeyType) : (trgKeyType=2) ) {

		int b = blockNo;
		for (int i = 0; i < SectorsCnt; ++i) {
			
			// skip already found keys.
			if (e_sector[i].foundKey[trgKeyType]) continue;
						
			for (uint32_t c = 0; c < keycnt; c += max_keys) {
								
				printf("."); fflush(stdout);
				if (ukbhit()) {
					int gc = getchar();	(void)gc;
					PrintAndLogEx(NORMAL, "\naborted via keyboard!\n");
					goto out;
				}
								
				uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c;
				
				res = mfCheckKeys(b, trgKeyType, true, size, &keyBlock[6*c], &key64);
				if (!res) {
					e_sector[i].Key[trgKeyType] = key64;
					e_sector[i].foundKey[trgKeyType] = true;
					break;
				}
				

			}
			b < 127 ? ( b +=4 ) : ( b += 16 );	
		}
	}
	t1 = msclock() - t1;
	PrintAndLogEx(NORMAL, "\nTime in checkkeys: %.0f seconds\n", (float)t1/1000.0);

		
	// 20160116 If Sector A is found, but not Sector B,  try just reading it of the tag?
	if ( keyType != 1 ) {
		PrintAndLogEx(NORMAL, "testing to read key B...");
		for (i = 0; i < SectorsCnt; i++) {
			// KEY A  but not KEY B
			if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) {
							
				uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
				
				PrintAndLogEx(NORMAL, "Reading block %d", sectrail);
				
				UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}};
				num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A
				clearCommandBuffer();
				SendCommand(&c);

				UsbCommand resp;
				if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue;
					
				uint8_t isOK  = resp.arg[0] & 0xff;
				if (!isOK) continue;

				uint8_t *data = resp.d.asBytes;
				key64 = bytes_to_num(data+10, 6);
				if (key64) {
					PrintAndLogEx(NORMAL, "Data:%s", sprint_hex(data+10, 6));
					e_sector[i].foundKey[1] = 1;
					e_sector[i].Key[1] = key64;
				}
			}
		}
	}

out:
	
	//print keys
	printKeyTable( SectorsCnt, e_sector );
	
	if (transferToEml) {
		uint8_t block[16] = {0x00};
		for (uint8_t i = 0; i < SectorsCnt; ++i ) {
			mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
			if (e_sector[i].foundKey[0])
				num_to_bytes(e_sector[i].Key[0], 6, block);
			if (e_sector[i].foundKey[1])
				num_to_bytes(e_sector[i].Key[1], 6, block+10);
			mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
		}
		PrintAndLogEx(NORMAL, "Found keys have been transferred to the emulator memory");
	}
	
	if (createDumpFile) {
		fptr = GenerateFilename("hf-mf-", "-key.bin");
		if (fptr == NULL) 
			return 1;

		FILE *fkeys = fopen(fptr, "wb");
		if (fkeys == NULL) { 
			PrintAndLogEx(WARNING, "Could not create file %s", fptr);
			free(keyBlock);
			free(e_sector);
			return 1;
		}
		PrintAndLogEx(NORMAL, "Printing keys to binary file %s...", fptr);
	
		for( i=0; i<SectorsCnt; i++) {
			num_to_bytes(e_sector[i].Key[0], 6, tempkey);
			fwrite ( tempkey, 1, 6, fkeys );
		}
		for(i=0; i<SectorsCnt; i++) {
			num_to_bytes(e_sector[i].Key[1], 6, tempkey);
			fwrite ( tempkey, 1, 6, fkeys );
		}
		fclose(fkeys);
		PrintAndLogEx(NORMAL, "Found keys have been dumped to file %s. 0xffffffffffff has been inserted for unknown keys.", fptr);
	}

	free(keyBlock);
	free(e_sector);
	PrintAndLogEx(NORMAL, "");
	return 0;
}

sector_t *k_sector = NULL;
uint8_t k_sectorsCount = 16;
static void emptySectorTable(){

	// initialize storage for found keys
	if (k_sector == NULL)
		k_sector = calloc(k_sectorsCount, sizeof(sector_t));
	if (k_sector == NULL) 
		return;
		
	// empty e_sector
	for(int i = 0; i < k_sectorsCount; ++i){
		k_sector[i].Key[0] = 0xffffffffffff;
		k_sector[i].Key[1] = 0xffffffffffff;
		k_sector[i].foundKey[0] = false;
		k_sector[i].foundKey[1] = false;
	}
}

void showSectorTable(){
	if (k_sector != NULL) {
		printKeyTable(k_sectorsCount, k_sector);
		free(k_sector);
		k_sector = NULL;
	}
}

void readerAttack(nonces_t data, bool setEmulatorMem, bool verbose) {

	uint64_t key = 0;	
	bool success = false;
	
	if (k_sector == NULL)
		emptySectorTable();

	success = mfkey32_moebius(data, &key);
	if (success) {
		uint8_t sector = data.sector;
		uint8_t keytype = data.keytype;

		PrintAndLogEx(NORMAL, "Reader is trying authenticate with: Key %s, sector %02d: [%012" PRIx64 "]"
			, keytype ? "B" : "A"
			, sector
			, key
		);

		k_sector[sector].Key[keytype] = key;
		k_sector[sector].foundKey[keytype] = true;

		//set emulator memory for keys
		if (setEmulatorMem) {
			uint8_t	memBlock[16] = {0,0,0,0,0,0, 0xff, 0x0F, 0x80, 0x69, 0,0,0,0,0,0};
			num_to_bytes( k_sector[sector].Key[0], 6, memBlock);
			num_to_bytes( k_sector[sector].Key[1], 6, memBlock+10);
			//iceman,  guessing this will not work so well for 4K tags.
			PrintAndLogEx(NORMAL, "Setting Emulator Memory Block %02d: [%s]"
				, (sector*4) + 3
				, sprint_hex( memBlock, sizeof(memBlock))
				);
			mfEmlSetMem( memBlock, (sector*4) + 3, 1);
		}
	}
}

int CmdHF14AMf1kSim(const char *Cmd) {

	uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
	uint8_t exitAfterNReads = 0;
	uint8_t flags = (FLAG_UID_IN_EMUL | FLAG_4B_UID_IN_DATA);
	int uidlen = 0;
	uint8_t cmdp = 0;
	bool errors = false, verbose = false, setEmulatorMem = false;
	nonces_t data[1];
		
	while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
		switch( tolower(param_getchar(Cmd, cmdp))) {
		case 'e':
			setEmulatorMem = true;
			cmdp++;
			break;
		case 'h':
			return usage_hf14_mf1ksim();
		case 'i':
			flags |= FLAG_INTERACTIVE;
			cmdp++;
			break;
		case 'n':
			exitAfterNReads = param_get8(Cmd, cmdp+1);
			cmdp += 2;
			break;
		case 'u':
			param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);
			switch(uidlen) {
				case 20: flags = FLAG_10B_UID_IN_DATA; break;
				case 14: flags = FLAG_7B_UID_IN_DATA; break;
				case  8: flags = FLAG_4B_UID_IN_DATA; break;
				default: return usage_hf14_mf1ksim();
			}
			cmdp += 2;
			break;
		case 'v':
			verbose = true;
			cmdp++;
			break;
		case 'x':
			flags |= FLAG_NR_AR_ATTACK;
			cmdp++;
			break;
		default:
			PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
			errors = true;
			break;
		}
	}
	//Validations
	if (errors) return usage_hf14_mf1ksim();
	
	PrintAndLogEx(NORMAL, " uid:%s, numreads:%d, flags:%d (0x%02x) "
				, (uidlen == 0 ) ? "N/A" : sprint_hex(uid, uidlen>>1)
				, exitAfterNReads
				, flags
				, flags);

	UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, 0}};
	memcpy(c.d.asBytes, uid, sizeof(uid));
	clearCommandBuffer();
	SendCommand(&c);
	UsbCommand resp;		

	if(flags & FLAG_INTERACTIVE) {
		PrintAndLogEx(NORMAL, "Press pm3-button or send another cmd to abort simulation");

		while( !ukbhit() ){	
			if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue;
			if ( !(flags & FLAG_NR_AR_ATTACK) ) break;
			if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break;

			memcpy(data, resp.d.asBytes, sizeof(data));
			readerAttack(data[0], setEmulatorMem, verbose);
		}
		showSectorTable();
	}
	return 0;
}

int CmdHF14AMfSniff(const char *Cmd){
	bool wantLogToFile = false;
	bool wantDecrypt = false;
	//bool wantSaveToEml = false; TODO
	bool wantSaveToEmlFile = false;

	//var 
	int res = 0, len = 0, blockLen = 0;
	int pckNum = 0, num = 0;
	uint8_t sak = 0;
	uint8_t uid[10];
	uint8_t uid_len = 0;
	uint8_t atqa[2] = {0x00, 0x00};
	bool isTag = false;
	uint8_t *buf = NULL;
	uint16_t bufsize = 0;
	uint8_t *bufPtr = NULL;
	uint16_t traceLen = 0;
	
	memset(uid, 0x00, sizeof(uid));
	
	char ctmp = param_getchar(Cmd, 0);
	if ( ctmp == 'h' || ctmp == 'H' ) return usage_hf14_sniff();
	
	for (int i = 0; i < 4; i++) {
		ctmp = tolower(param_getchar(Cmd, i));
		if (ctmp == 'l') wantLogToFile = true;
		if (ctmp == 'd') wantDecrypt = true;
		//if (ctmp == 'e') wantSaveToEml = true; TODO
		if (ctmp == 'f') wantSaveToEmlFile = true;
	}
	
	PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n");
	PrintAndLogEx(NORMAL, "Executing mifare sniffing command. \n");
	PrintAndLogEx(NORMAL, "Press the key on the proxmark3 device to abort both proxmark3 and client.\n");
	PrintAndLogEx(NORMAL, "Press the key on pc keyboard to abort the client.\n");
	PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n");

	UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}};
	clearCommandBuffer();
	SendCommand(&c);

	UsbCommand resp;
	
	// wait cycle
	while (true) {
		printf("."); fflush(stdout);
		if (ukbhit()) {
			int gc = getchar(); (void)gc;
			PrintAndLogEx(NORMAL, "\n[!] aborted via keyboard!\n");
			break;
		}
		
		if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
			continue;
		}
		
		res = resp.arg[0] & 0xff;
		traceLen = resp.arg[1];
		len = resp.arg[2];

		if (res == 0) {
			PrintAndLogEx(SUCCESS, "hf mifare sniff finished");
			free(buf);
			return 0;
		}

		if (res == 1) {								// there is (more) data to be transferred
			if (pckNum == 0) {						// first packet, (re)allocate necessary buffer
				if (traceLen > bufsize || buf == NULL) {
					uint8_t *p;
					if (buf == NULL)				// not yet allocated
						p = malloc(traceLen);
					else							// need more memory
						p = realloc(buf, traceLen);
					
					if (p == NULL) {
						PrintAndLogEx(FAILED, "Cannot allocate memory for trace");
						free(buf);
						return 2;
					}
					buf = p;
				}
				bufPtr = buf;
				bufsize = traceLen;
				memset(buf, 0x00, traceLen);
			}
			if (bufPtr == NULL) {
				PrintAndLogEx(FAILED, "Cannot allocate memory for trace");
				free(buf);
				return 2;
			}
			// what happens if LEN is bigger then TRACELEN --iceman
			memcpy(bufPtr, resp.d.asBytes, len);
			bufPtr += len;
			pckNum++;
		}

		if (res == 2) {								// received all data, start displaying
			blockLen = bufPtr - buf;
			bufPtr = buf;
			PrintAndLogEx(NORMAL, ">\n");
			PrintAndLogEx(SUCCESS, "received trace len: %d packages: %d", blockLen, pckNum);
			while (bufPtr - buf < blockLen) {
				bufPtr += 6;						// skip (void) timing information
				len = *((uint16_t *)bufPtr);
				if(len & 0x8000) {
					isTag = true;
					len &= 0x7fff;
				} else {
					isTag = false;
				}
				bufPtr += 2;
				
				// the uid identification package 
				// 0xFF 0xFF xx xx xx xx xx xx xx xx xx xx aa aa cc 0xFF 0xFF
				// x = uid,  a = atqa, c = sak
				if ((len == 17) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[15] == 0xff) && (bufPtr[16] == 0xff)) {
					memcpy(uid, bufPtr + 2, 10);
					memcpy(atqa, bufPtr + 2 + 10, 2);
					switch (atqa[0] & 0xC0) {
						case 0x80: uid_len = 10; break;
						case 0x40: uid_len = 7; break;
						default:   uid_len = 4; break;
					}
					sak = bufPtr[14];
					PrintAndLogEx(SUCCESS, "UID %s | ATQA %02x %02x | SAK 0x%02x", 
						sprint_hex(uid, uid_len),
						atqa[1], 
						atqa[0], 
						sak);
					if (wantLogToFile || wantDecrypt) {
						FillFileNameByUID(logHexFileName, uid, ".log", uid_len);
						AddLogCurrentDT(logHexFileName);
						PrintAndLogEx(SUCCESS, "Trace saved to %s", logHexFileName);
					}						
					if (wantDecrypt)
						mfTraceInit(uid, uid_len, atqa, sak, wantSaveToEmlFile);
				} else {
					PrintAndLogEx(NORMAL, "%03d| %s |%s", num, isTag ? "TAG" : "RDR", sprint_hex(bufPtr, len));
					if (wantLogToFile) 
						AddLogHex(logHexFileName, isTag ? "TAG| ":"RDR| ", bufPtr, len);
					if (wantDecrypt) 
						mfTraceDecode(bufPtr, len, wantSaveToEmlFile);
					num++;	
				}
				bufPtr += len;
				bufPtr += ((len-1)/8+1);	// ignore parity
			}
			pckNum = 0;
		}
	} // while (true)

	free(buf);
	return 0;
}

int CmdHF14AMfDbg(const char *Cmd) {

	char ctmp = tolower(param_getchar(Cmd, 0));
	if (strlen(Cmd) < 1 || ctmp == 'h' ) return usage_hf14_dbg();
	
	uint8_t dbgMode = param_get8ex(Cmd, 0, 0, 10);
	if (dbgMode > 4) return usage_hf14_dbg();

	UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}};
	SendCommand(&c);
	return 0;
}

int CmdHF14AMfKeyBrute(const char *Cmd) {

	uint8_t blockNo = 0, keytype = 0;
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint64_t foundkey = 0;
	
	char cmdp = tolower(param_getchar(Cmd, 0));	
	if ( cmdp == 'h' ) return usage_hf14_keybrute();
	
	// block number
	blockNo = param_get8(Cmd, 0);	 
	
	// keytype
	cmdp = tolower(param_getchar(Cmd, 1));
	if ( cmdp == 'b' ) keytype = 1;
	
	// key
	if (param_gethex(Cmd, 2, key, 12)) return usage_hf14_keybrute();
	
	uint64_t t1 = msclock();
	
	if (mfKeyBrute( blockNo, keytype, key, &foundkey))
		PrintAndLogEx(SUCCESS, "found valid key: %012" PRIx64 " \n", foundkey);
	else
		PrintAndLogEx(FAILED, "key not found");
	
	t1 = msclock() - t1;
	PrintAndLogEx(SUCCESS, "\ntime in keybrute: %.0f seconds\n", (float)t1/1000.0);
	return 0;	
}

void printKeyTable( uint8_t sectorscnt, sector_t *e_sector ){
	char strA[12+1] = {0};
	char strB[12+1] = {0};	
	PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|");
	PrintAndLogEx(NORMAL, "|sec|key A           |res|key B           |res|");
	PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|");
	for (uint8_t i = 0; i < sectorscnt; ++i) {
		
		snprintf(strA, sizeof(strA), "------------");
		snprintf(strB, sizeof(strB), "------------");
		
		if ( e_sector[i].foundKey[0] )
			snprintf(strA, sizeof(strA), "%012" PRIx64, e_sector[i].Key[0]);
		
		if ( e_sector[i].foundKey[1] )
			snprintf(strB, sizeof(strB), "%012" PRIx64, e_sector[i].Key[1]);

		
		PrintAndLogEx(NORMAL, "|%03d|  %s  | %d |  %s  | %d |"
			, i
			, strA, e_sector[i].foundKey[0]
			, strB, e_sector[i].foundKey[1]
		);
	}
	PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|");
}

// EMULATOR COMMANDS
int CmdHF14AMfEGet(const char *Cmd) {
	uint8_t blockNo = 0;
	uint8_t data[16] = {0x00};
	char c = tolower(param_getchar(Cmd, 0));
	
	if (strlen(Cmd) < 1 || c == 'h') return usage_hf14_eget();
	
	blockNo = param_get8(Cmd, 0);

	PrintAndLogEx(NORMAL, "");
	if (!mfEmlGetMem(data, blockNo, 1)) {
		PrintAndLogEx(NORMAL, "data[%3d]:%s", blockNo, sprint_hex(data, sizeof(data)));
	} else {
		PrintAndLogEx(WARNING, "Command execute timeout");
	}
  return 0;
}

int CmdHF14AMfEClear(const char *Cmd) {
	char c = tolower(param_getchar(Cmd, 0));
	if (c == 'h') return usage_hf14_eclr();
	
	UsbCommand cmd = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}};
	clearCommandBuffer();
	SendCommand(&cmd);
	return 0;
}

int CmdHF14AMfESet(const char *Cmd) {
	char c = tolower(param_getchar(Cmd, 0));
	uint8_t memBlock[16];
	uint8_t blockNo = 0;
	memset(memBlock, 0x00, sizeof(memBlock));

	if (strlen(Cmd) < 3 || c == 'h')
		return usage_hf14_eset();
	
	blockNo = param_get8(Cmd, 0);
	
	if (param_gethex(Cmd, 1, memBlock, 32)) {
		PrintAndLogEx(WARNING, "block data must include 32 HEX symbols");
		return 1;
	}
	
	//  1 - blocks count
	return mfEmlSetMem(memBlock, blockNo, 1);
}

int CmdHF14AMfELoad(const char *Cmd) {

	size_t counter = 0;
	char filename[FILE_PATH_SIZE];
	int blockNum, numBlocks, nameParamNo = 1;
	uint8_t blockWidth = 16;
	char c = tolower(param_getchar(Cmd, 0));

	if ( strlen(Cmd) < 2 &&  c == 'h' ) 
		return usage_hf14_eload();
	
	switch (c) {
		case '0' : numBlocks = 5*4; break;
		case '1' : 
		case '\0': numBlocks = 16*4; break;
		case '2' : numBlocks = 32*4; break;
		case '4' : numBlocks = 256; break;
		case 'u' : numBlocks = 255; blockWidth = 4; break;
		default:  {
			numBlocks = 16*4;
			nameParamNo = 0;
		}
	}
	uint32_t numblk2 = param_get32ex(Cmd, 2, 0, 10);
	if (numblk2 > 0) 
		numBlocks = numblk2;

	param_getstr(Cmd, nameParamNo, filename, sizeof(filename));
	
	uint8_t *data = calloc(1, 4096);
	size_t datalen = 0;
	//int res = loadFile(filename, "bin", data, &datalen);
	int res = loadFileEML( filename, "eml", data, &datalen);
	if ( res ) {
		free(data);
		return 1;
	}
	
	// 64 or 256 blocks.
	if ( (datalen % blockWidth) != 0 ) {
		PrintAndLogEx(FAILED, "File content error. Size doesn't match blockwidth ");
		free(data);		
		return 2;
	}
	
	PrintAndLogEx(INFO, "Copying to emulator memory");
	
	blockNum = 0;
	while ( datalen ) {
		
		if (mfEmlSetMem_xt(data + counter, blockNum, 1, blockWidth)) {
			PrintAndLogEx(FAILED, "Cant set emul block: %3d", blockNum);
			free(data);
			return 3;
		}
		printf("."); fflush(stdout);
		
		blockNum++;
		counter += blockWidth;
		datalen -= blockWidth;
	}
	PrintAndLogEx(NORMAL, "\n");

	// Ultralight /Ntag
	if ( blockWidth == 4 ) {
		if ((blockNum != numBlocks)) {		
			PrintAndLogEx(FAILED, "Warning, Ultralight/Ntag file content, Loaded %d blocks into emulator memory", blockNum);
			return 0;
		}
	} else {
		if ((blockNum != numBlocks)) {
			PrintAndLogEx(FAILED, "Error, file content, Only loaded %d blocks, must be %d blocks into emulator memory", blockNum, numBlocks);
			return 4;
		}
	}
	PrintAndLogEx(SUCCESS, "Loaded %d blocks from file: %s", blockNum, filename);
	return 0;
}

#define MFBLOCK_SIZE 16
int CmdHF14AMfESave(const char *Cmd) {

	char filename[FILE_PATH_SIZE];
	char * fnameptr = filename;
	uint8_t *dump;
	int len, bytes, nameParamNo = 1;
	uint16_t blocks;

	memset(filename, 0, sizeof(filename));

	char c = tolower(param_getchar(Cmd, 0));	
	if (c == 'h') return usage_hf14_esave();

	blocks = NumOfBlocks(c);
	bytes = blocks * MFBLOCK_SIZE;	

	dump = calloc(sizeof(uint8_t), bytes);
	if (!dump) {
		PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
		return 1;
	}
	memset(dump, 0, bytes);
	
	PrintAndLogEx(INFO, "dowingloading from emulator memory");
	if (!GetFromDevice( BIG_BUF_EML, dump, bytes, 0, NULL, 2500, false)) {
		PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
		free(dump);
		return 2;
	}	

	len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename));
	if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
	
	// user supplied filename?
	if (len < 1) {
		fnameptr += sprintf(fnameptr, "hf-mf-");
		FillFileNameByUID(fnameptr, dump, "-dump", 4);
	}
	
	saveFile(filename, "bin", dump, bytes);
	saveFileEML(filename, "eml", dump, bytes, MFBLOCK_SIZE);
	free(dump);
	return 0;
}

int CmdHF14AMfECFill(const char *Cmd) {
	uint8_t keyType = 0;
	uint8_t numSectors = 16;
	char c = tolower(param_getchar(Cmd, 0));
	
	if (strlen(Cmd) < 1 || c == 'h')
		return usage_hf14_ecfill();

	if (c != 'a' &&  c != 'b') {
		PrintAndLogEx(WARNING, "Key type must be A or B");
		return 1;
	}
	if (c != 'a')
		keyType = 1;

	c = tolower(param_getchar(Cmd, 1));
	numSectors = NumOfSectors(c);

	PrintAndLogEx(NORMAL, "--params: numSectors: %d, keyType: %c\n", numSectors, (keyType == 0) ? 'A' : 'B');
	UsbCommand cmd = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}};
	clearCommandBuffer();
	SendCommand(&cmd);
	return 0;
}

int CmdHF14AMfEKeyPrn(const char *Cmd) {
	int i;
	uint8_t numSectors;
	uint8_t data[16];
	uint64_t keyA, keyB;

	char c = tolower(param_getchar(Cmd, 0));
	if ( c == 'h' )
		return usage_hf14_ekeyprn();

	numSectors = NumOfSectors(c);
	
	PrintAndLogEx(NORMAL, "|---|----------------|----------------|");
	PrintAndLogEx(NORMAL, "|sec|key A           |key B           |");
	PrintAndLogEx(NORMAL, "|---|----------------|----------------|");
	for (i = 0; i < numSectors; i++) {
		if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) {
			PrintAndLogEx(WARNING, "error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
			break;
		}
		keyA = bytes_to_num(data, 6);
		keyB = bytes_to_num(data + 10, 6);
		PrintAndLogEx(NORMAL, "|%03d|  %012" PRIx64 "  |  %012" PRIx64 "  |", i, keyA, keyB);
	}
	PrintAndLogEx(NORMAL, "|---|----------------|----------------|");
	return 0;
}

// CHINESE MAGIC COMMANDS 
int CmdHF14AMfCSetUID(const char *Cmd) {
	uint8_t wipeCard = 0;
	uint8_t uid[8] = {0x00};
	uint8_t oldUid[8] = {0x00};
	uint8_t atqa[2] = {0x00};
	uint8_t sak[1] = {0x00};
	uint8_t atqaPresent = 1;
	int res, argi = 0;
	char ctmp;

	if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') 
		return usage_hf14_csetuid();

	if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8))
		return usage_hf14_csetuid();

	argi++;

	ctmp = tolower(param_getchar(Cmd, argi));
	if (ctmp == 'w') {
		wipeCard = 1;
		atqaPresent = 0;
	}

	if (atqaPresent) {
		if (param_getchar(Cmd, argi)) {
			if (param_gethex(Cmd, argi, atqa, 4)) {
				PrintAndLogEx(WARNING, "ATQA must include 4 HEX symbols");
				return 1;
			}
			argi++;
			if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) {
				PrintAndLogEx(WARNING, "SAK must include 2 HEX symbols");
				return 1;
			}
			argi++;
		} else
			atqaPresent = 0;
	}

	if (!wipeCard) {
		ctmp = tolower(param_getchar(Cmd, argi));
		if (ctmp == 'w') {
			wipeCard = 1;
		}
	}

	PrintAndLogEx(NORMAL, "--wipe card:%s  uid:%s", (wipeCard)?"YES":"NO", sprint_hex(uid, 4));

	res = mfCSetUID(uid, (atqaPresent) ? atqa : NULL, (atqaPresent) ? sak : NULL, oldUid, wipeCard);
	if (res) {
		PrintAndLogEx(WARNING, "Can't set UID. error=%d", res);
		return 1;
	}
	
	PrintAndLogEx(SUCCESS, "old UID:%s", sprint_hex(oldUid, 4));
	PrintAndLogEx(SUCCESS, "new UID:%s", sprint_hex(uid, 4));
	return 0;
}

int CmdHF14AMfCSetBlk(const char *Cmd) {
	uint8_t block[16] = {0x00};
	uint8_t blockNo = 0;
	uint8_t params = MAGIC_SINGLE;
	int res;
	char ctmp = tolower(param_getchar(Cmd, 0));

	if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_csetblk();

	blockNo = param_get8(Cmd, 0);

	if (param_gethex(Cmd, 1, block, 32)) return usage_hf14_csetblk();
	
	ctmp = tolower(param_getchar(Cmd, 2));
	if (ctmp == 'w')
		params |= MAGIC_WIPE;
	
	PrintAndLogEx(NORMAL, "--block number:%2d data:%s", blockNo, sprint_hex(block, 16));

	res = mfCSetBlock(blockNo, block, NULL, params);
	if (res) {
		PrintAndLogEx(WARNING, "Can't write block. error=%d", res);
		return 1;
	}
	return 0;
}

int CmdHF14AMfCLoad(const char *Cmd) {

	uint8_t buf8[16] = {0x00};
	uint8_t fillFromEmulator = 0;
	int blockNum, flags = 0;
	
	char ctmp = tolower(param_getchar(Cmd, 0));
	if ( strlen(Cmd) == 1 ) {
		if (ctmp == 'h' || ctmp == 0x00) return usage_hf14_cload();
		if (ctmp == 'e' ) fillFromEmulator = 1;
	}
	
	if (fillFromEmulator) {
		for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) {
			if (mfEmlGetMem(buf8, blockNum, 1)) {
				PrintAndLogEx(WARNING, "Cant get block: %d", blockNum);
				return 2;
			}
			if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC;				// switch on field and send magic sequence
			if (blockNum == 1) flags = 0;									// just write
			if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF;		// Done. Magic Halt and switch off field.

			if (mfCSetBlock(blockNum, buf8, NULL, flags)) {
				PrintAndLogEx(WARNING, "Cant set magic card block: %d", blockNum);
				return 3;
			}
			printf("."); fflush(stdout);
		}
		PrintAndLogEx(NORMAL, "\n");
		return 0;
	}

	uint8_t *data = calloc(1, 4096);
	size_t datalen = 0;
	//int res = loadFile(Cmd, "bin", data, &datalen);
	int res = loadFileEML( Cmd, "eml", data, &datalen);
	if ( res ) {
		free(data);
		return 1;
	}
	
//	PrintAndLogEx(INFO, "DATA | %s", sprint_hex(data+1000, 24) );
	

	// 64 or 256blocks.
	if (datalen != 1024 && datalen != 4096) {
		PrintAndLogEx(WARNING, "File content error. ");
		free(data);		
		return 2;
	}
	
	PrintAndLogEx(INFO, "Copying to magic card");
			
	blockNum = 0;
	while ( datalen ) {

		// switch on field and send magic sequence	
		if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC;

		// write					
		if (blockNum == 1) flags = 0;
		
		// Switch off field.
		if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF;

		if (mfCSetBlock(blockNum, data + (16 * blockNum), NULL, flags)) {
			PrintAndLogEx(WARNING, "Can't set magic card block: %d", blockNum);
			free(data);
			return 3;
		}
		
		datalen -= 16;
		
		printf("."); fflush(stdout);
		blockNum++;
		
		// magic card type - mifare 1K
		if (blockNum >= 16 * 4) break;  
	}
	PrintAndLogEx(NORMAL, "\n");

	// 64 or 256blocks.
	if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){
		PrintAndLogEx(WARNING, "File content error. There must be 64 blocks");
		free(data);
		return 4;
	}
	
	PrintAndLogEx(SUCCESS, "Card loaded %d blocks from file", blockNum);	
	free(data);
	return 0;
}

int CmdHF14AMfCGetBlk(const char *Cmd) {
	uint8_t data[16] = {0};
	uint8_t blockNo = 0;
	int res;
	memset(data, 0x00, sizeof(data));

	char ctmp = param_getchar(Cmd, 0);
	if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_cgetblk();

	blockNo = param_get8(Cmd, 0);

	PrintAndLogEx(NORMAL, "--block number:%2d ", blockNo);

	res = mfCGetBlock(blockNo, data, MAGIC_SINGLE);
	if (res) {
		PrintAndLogEx(WARNING, "Can't read block. error=%d", res);
		return 1;
	}
	
	PrintAndLogEx(NORMAL, "data: %s", sprint_hex(data, sizeof(data)));
	return 0;
}

int CmdHF14AMfCGetSc(const char *Cmd) {
	uint8_t data[16] = {0};
	uint8_t sector = 0;
	int i, res, flags;

	char ctmp = param_getchar(Cmd, 0);
	if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_cgetsc();

	sector = param_get8(Cmd, 0);
	if (sector > 39) {
		PrintAndLogEx(WARNING, "Sector number must be less then 40");
		return 1;
	}

	PrintAndLogEx(NORMAL, "\n  # | data    |  Sector | %02d/ 0x%02X ", sector, sector);
	PrintAndLogEx(NORMAL, "----+------------------------------------------------");
	uint8_t blocks = 4;
	uint8_t start = sector * 4;
	if ( sector > 32 ) {
		blocks = 16;
		start = 128 + ( sector - 32 ) * 16;
	}
	
	flags = MAGIC_INIT + MAGIC_WUPC;
	
	for (i = 0; i < blocks; i++) {
		if (i == 1) flags = 0;
		if (i == blocks-1) flags = MAGIC_HALT + MAGIC_OFF;

		res = mfCGetBlock( start + i, data, flags);
		if (res) {
			PrintAndLogEx(WARNING, "Can't read block. %d error=%d", start + i, res);
			return 1;
		}
		PrintAndLogEx(NORMAL, "%3d | %s", start + i, sprint_hex(data, 16));
	}
	return 0;
}

int CmdHF14AMfCSave(const char *Cmd) {

	char filename[FILE_PATH_SIZE];
	char * fnameptr = filename;
	uint8_t *dump;	
	bool fillEmulator = false;
	bool errors = false, hasname = false, useuid = false;
	int i, len, flags;
	uint8_t numblocks = 0, cmdp = 0;
	uint16_t bytes = 0;
	char ctmp;

	while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
		ctmp = tolower(param_getchar(Cmd, cmdp));
		switch (ctmp) {	
		case 'e':
			useuid = true;
			fillEmulator = true;
			cmdp++;
			break;
		case 'h':
			return usage_hf14_csave();
		case '0':
		case '1':
		case '2':
		case '4':
			numblocks = NumOfBlocks(ctmp);
			bytes =  numblocks * MFBLOCK_SIZE;
			PrintAndLogEx(SUCCESS, "Saving magic mifare %cK", ctmp);
			cmdp++;
			break;
		case 'u':
			useuid = true;
			hasname = true;
			cmdp++;			
			break;
		case 'o':
			len = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE);
			if (len < 1) {
				errors = true;
				break;
			}
			if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;				

			useuid = false;
			hasname = true;		
			cmdp += 2;
			break;			
		default:
			PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
			errors = true;
			break;
		}
	}

	if (!hasname && !fillEmulator) errors = true;
	
	if (errors || cmdp == 0) return usage_hf14_csave();

	dump = malloc(bytes);
	if (!dump) {
		PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
		return 1;
	}
	memset(dump, 0, bytes);
	
	flags = MAGIC_INIT + MAGIC_WUPC;
	for (i = 0; i < numblocks; i++) {
		if (i == 1) flags = 0;
		if (i == numblocks - 1) flags = MAGIC_HALT + MAGIC_OFF;
	
		if (mfCGetBlock(i, dump + (i*MFBLOCK_SIZE), flags)) {
			PrintAndLogEx(WARNING, "Cant get block: %d", i);
			free(dump);
			return 2;
		}
	}
	
	if ( useuid ){
		fnameptr += sprintf(fnameptr, "hf-mf-");		
		FillFileNameByUID(fnameptr, dump, "-dump", 4);
	}
	
	if (fillEmulator) {
		PrintAndLogEx(INFO, "uploading to emulator memory");
		for (i = 0; i < numblocks; i += 5) {			
			if (mfEmlSetMem(dump + (i*MFBLOCK_SIZE), i, 5)) {
				PrintAndLogEx(WARNING, "Cant set emul block: %d", i);
			}
			printf("."); fflush(stdout);
		}
		PrintAndLogEx(NORMAL, "\n");
		PrintAndLogEx(SUCCESS, "uploaded %d bytes to emulator memory", bytes);
	}

	saveFile(filename, "bin", dump, bytes);
	saveFileEML(filename, "eml", dump, bytes, MFBLOCK_SIZE);
	free(dump);
	return 0;
}

//needs nt, ar, at, Data to decrypt
int CmdHf14AMfDecryptBytes(const char *Cmd){
	
	char ctmp = param_getchar(Cmd, 0);
	if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_decryptbytes();
	
	uint32_t nt 	= param_get32ex(Cmd,0,0,16);
	uint32_t ar_enc = param_get32ex(Cmd,1,0,16);
	uint32_t at_enc = param_get32ex(Cmd,2,0,16);

	int len = param_getlength(Cmd, 3);
	if (len & 1 ) {
		PrintAndLogEx(WARNING, "Uneven hex string length. LEN=%d", len);
		return 1;
	}

	PrintAndLogEx(NORMAL, "nt\t%08X", nt);
	PrintAndLogEx(NORMAL, "ar enc\t%08X", ar_enc);
	PrintAndLogEx(NORMAL, "at enc\t%08X", at_enc);
		
	uint8_t *data = calloc(len, sizeof(uint8_t));
	param_gethex_ex(Cmd, 3, data, &len);
	len >>= 1;
	tryDecryptWord( nt, ar_enc, at_enc, data, len);
	free (data);
	return 0;
}

int CmdHf14AMfSetMod(const char *Cmd) {
	uint8_t key[6] = {0, 0, 0, 0, 0, 0};
	uint8_t mod = 2;

	char ctmp = param_getchar(Cmd, 0);
	if (ctmp == '0') {
		mod = 0;
	} else if (ctmp == '1') {
		mod = 1;
	}
	int gethexfail = param_gethex(Cmd, 1, key, 12);
	if (mod == 2 || gethexfail) {
		PrintAndLogEx(NORMAL, "Sets the load modulation strength of a MIFARE Classic EV1 card.");
		PrintAndLogEx(NORMAL, "Usage: hf mf setmod <0|1> <block 0 key A>");
		PrintAndLogEx(NORMAL, "       0 = normal modulation");
		PrintAndLogEx(NORMAL, "       1 = strong modulation (default)");
		return 1;
	}

	UsbCommand c = {CMD_MIFARE_SETMOD, {mod, 0, 0}};
	memcpy(c.d.asBytes, key, 6);
	clearCommandBuffer();
	SendCommand(&c);

	UsbCommand resp;
	if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
		uint8_t ok = resp.arg[0] & 0xff;
		PrintAndLogEx(NORMAL, "isOk:%02x", ok);
		if (!ok)
			PrintAndLogEx(FAILED, "Failed.");
	} else {
		PrintAndLogEx(WARNING, "Command execute timeout");
	}
	return 0;
}

// Mifare NACK bug detection
int CmdHf14AMfNack(const char *Cmd) {

	bool verbose = false;
	char ctmp = param_getchar(Cmd, 0);	
	if ( ctmp == 'h' || ctmp == 'H' ) return usage_hf14_nack();
	if ( ctmp == 'v' || ctmp == 'V' ) verbose = true;

	if ( verbose )
		PrintAndLogEx(NORMAL, "Started testing card for NACK bug. Press key to abort");
	
	detect_classic_nackbug(verbose);
	return 0;
}

int CmdHF14AMfice(const char *Cmd) {

	uint8_t blockNo = 0;
	uint8_t keyType = 0;
	uint8_t trgBlockNo = 0;
	uint8_t trgKeyType = 1;
	bool slow = false;
	bool initialize = true;
	bool acquisition_completed = false;
	uint8_t cmdp=0;
	uint32_t flags = 0;
	uint32_t total_num_nonces = 0;
	char ctmp;
	char filename[FILE_PATH_SIZE], *fptr;
	FILE *fnonces = NULL;
	UsbCommand resp;

	uint32_t part_limit = 3000;
	uint32_t limit = 50000;

	while ((ctmp = param_getchar(Cmd, cmdp))) {
		switch(tolower(ctmp))
		{
		case 'h':
			return usage_hf14_ice();
		case 'f':
			param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE);
			cmdp++;
			break;
		case 'l':
			limit = param_get32ex(Cmd, cmdp+1, 50000, 10);
			cmdp++;
			break;
		default:
			PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp);
			usage_hf14_ice();
			return 1;
		}
		cmdp++;
	}

	if(filename[0]=='\0')
	{
		fptr = GenerateFilename("hf-mf-","-nonces.bin");
		if (fptr == NULL) 
			return 1;
		strcpy(filename, fptr);
	}

	PrintAndLogEx(NORMAL, "Collecting %u nonces \n", limit);
	
	if ((fnonces = fopen(filename,"wb")) == NULL) { 
		PrintAndLogEx(WARNING, "Could not create file %s",filename);
		return 3;
	}

	clearCommandBuffer();

	uint64_t t1 = msclock();
	
	do {
		if (ukbhit()) {
			int gc = getchar(); (void)gc;
			PrintAndLogEx(NORMAL, "\naborted via keyboard!\n");
			break;
		}
		
		flags = 0;
		flags |= initialize ? 0x0001 : 0;
		flags |= slow ? 0x0002 : 0;
		UsbCommand c = {CMD_MIFARE_ACQUIRE_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
		clearCommandBuffer();
		SendCommand(&c);		
	
		if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) goto out;
		if (resp.arg[0])  goto out;

		uint32_t items = resp.arg[2];
		if (fnonces) {
			fwrite(resp.d.asBytes, 1, items*4, fnonces);
			fflush(fnonces);
		}
	
		total_num_nonces += items;
		if ( total_num_nonces > part_limit ) {
			PrintAndLogEx(NORMAL, "Total nonces %u\n", total_num_nonces);
			part_limit += 3000;
		}
		
		acquisition_completed = ( total_num_nonces > limit); 

		initialize = false;
		
	} while (!acquisition_completed);

out:
	PrintAndLogEx(NORMAL, "time: %" PRIu64 " seconds\n", (msclock()-t1)/1000);
	
	if ( fnonces ) {
		fflush(fnonces);
		fclose(fnonces);
	}

	UsbCommand c = {CMD_MIFARE_ACQUIRE_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 4}};
	clearCommandBuffer();
	SendCommand(&c);
	return 0;
}

int CmdHF14AMfAuth4(const char *cmd) {
	uint8_t keyn[20] = {0};
	int keynlen = 0;
	uint8_t key[16] = {0};
	int keylen = 0;

	CLIParserInit("hf mf auth4", 
		"Executes AES authentication command in ISO14443-4", 
		"Usage:\n\thf mf auth4 4000 000102030405060708090a0b0c0d0e0f -> executes authentication\n"
			"\thf mf auth4 9003 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> executes authentication\n");

	void* argtable[] = {
		arg_param_begin,
		arg_str1(NULL,  NULL,     "<Key Num (HEX 2 bytes)>", NULL),
		arg_str1(NULL,  NULL,     "<Key Value (HEX 16 bytes)>", NULL),
		arg_param_end
	};
	CLIExecWithReturn(cmd, argtable, true);
	
	CLIGetHexWithReturn(1, keyn, &keynlen);
	CLIGetHexWithReturn(2, key, &keylen);
	CLIParserFree();
	
	if (keynlen != 2) {
		PrintAndLogEx(ERR, "<Key Num> must be 2 bytes long instead of: %d", keynlen);
		return 1;
	}
	
	if (keylen != 16) {
		PrintAndLogEx(ERR, "<Key Value> must be 16 bytes long instead of: %d", keylen);
		return 1;
	}

	return MifareAuth4(NULL, keyn, key, true, false, true);
}

static command_t CommandTable[] = {
	{"help",		CmdHelp,				1, "This help"},
	{"darkside",	CmdHF14ADarkside,		0, "Darkside attack. read parity error messages."},
	{"nested",		CmdHF14AMfNested,		0, "Nested attack. Test nested authentication"},
	{"hardnested", 	CmdHF14AMfNestedHard, 	0, "Nested attack for hardened Mifare cards"},
	{"keybrute",	CmdHF14AMfKeyBrute,		0, "J_Run's 2nd phase of multiple sector nested authentication key recovery"},	
	{"nack",		CmdHf14AMfNack,			0, "Test for Mifare NACK bug"},
	{"chk",			CmdHF14AMfChk,			0, "Check keys"},
	{"fchk",		CmdHF14AMfChk_fast,		0, "Check keys fast, targets all keys on card"},
	{"decrypt",		CmdHf14AMfDecryptBytes, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"},
	{"-----------",	CmdHelp,				1, ""},
	{"dbg",			CmdHF14AMfDbg,			0, "Set default debug mode"},
	{"rdbl",		CmdHF14AMfRdBl,			0, "Read MIFARE classic block"},
	{"rdsc",		CmdHF14AMfRdSc,			0, "Read MIFARE classic sector"},
	{"dump",		CmdHF14AMfDump,			0, "Dump MIFARE classic tag to binary file"},
	{"restore",		CmdHF14AMfRestore,		0, "Restore MIFARE classic binary file to BLANK tag"},
	{"wrbl",		CmdHF14AMfWrBl,			0, "Write MIFARE classic block"},
	{"setmod",		CmdHf14AMfSetMod, 		0, "Set MIFARE Classic EV1 load modulation strength"},	
	{"auth4",		CmdHF14AMfAuth4,		0, "ISO14443-4 AES authentication"},
//	{"sniff",		CmdHF14AMfSniff,		0, "Sniff card-reader communication"},
	{"-----------",	CmdHelp,				1, ""},
	{"sim",			CmdHF14AMf1kSim,		0, "Simulate MIFARE card"},
	{"eclr",		CmdHF14AMfEClear,		0, "Clear simulator memory block"},
	{"eget",		CmdHF14AMfEGet,			0, "Get simulator memory block"},
	{"eset",		CmdHF14AMfESet,			0, "Set simulator memory block"},
	{"eload",		CmdHF14AMfELoad,		0, "Load from file emul dump"},
	{"esave",		CmdHF14AMfESave,		0, "Save to file emul dump"},
	{"ecfill",		CmdHF14AMfECFill,		0, "Fill simulator memory with help of keys from simulator"},
	{"ekeyprn",		CmdHF14AMfEKeyPrn,		0, "Print keys from simulator memory"},
	{"-----------",	CmdHelp,				1, ""},
	{"csetuid",		CmdHF14AMfCSetUID,		0, "Set UID for magic Chinese card"},
	{"csetblk",		CmdHF14AMfCSetBlk,		0, "Write block - Magic Chinese card"},
	{"cgetblk",		CmdHF14AMfCGetBlk,		0, "Read block - Magic Chinese card"},
	{"cgetsc",		CmdHF14AMfCGetSc,		0, "Read sector - Magic Chinese card"},
	{"cload",		CmdHF14AMfCLoad,		0, "Load dump into magic Chinese card"},
	{"csave",		CmdHF14AMfCSave,		0, "Save dump from magic Chinese card into file or emulator"},

	{"ice",			CmdHF14AMfice,			0, "collect Mifare Classic nonces to file"},
	{NULL, NULL, 0, NULL}
};

int CmdHFMF(const char *Cmd) {
	clearCommandBuffer();
	CmdsParse(CommandTable, Cmd);
	return 0;
}

int CmdHelp(const char *Cmd) {
	CmdsHelp(CommandTable);
	return 0;
}