//----------------------------------------------------------------------------- // Willok, June 2018 // Edits by Iceman, July 2018 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // The main i2c code, for communications with smart card module //----------------------------------------------------------------------------- #include "i2c.h" #include "proxmark3_arm.h" #include "cmd.h" #include "BigBuf.h" #include "ticks.h" #include "dbprint.h" #include "util.h" #include "string.h" #define GPIO_RST AT91C_PIO_PA1 #define GPIO_SCL AT91C_PIO_PA5 #define GPIO_SDA AT91C_PIO_PA7 #define SCL_H HIGH(GPIO_SCL) #define SCL_L LOW(GPIO_SCL) #define SDA_H HIGH(GPIO_SDA) #define SDA_L LOW(GPIO_SDA) #define SCL_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SCL) == GPIO_SCL) #define SDA_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SDA) == GPIO_SDA) #define I2C_ERROR "I2C_WaitAck Error" static volatile uint32_t c; // Direct use the loop to delay. 6 instructions loop, Masterclock 48MHz, // delay=1 is about 200kbps // timer. // I2CSpinDelayClk(4) = 12.31us // I2CSpinDelayClk(1) = 3.07us static void __attribute__((optimize("O0"))) I2CSpinDelayClk(uint16_t delay) { for (c = delay * 2; c; c--) {}; } #define I2C_DELAY_1CLK I2CSpinDelayClk(1) #define I2C_DELAY_2CLK I2CSpinDelayClk(2) #define I2C_DELAY_XCLK(x) I2CSpinDelayClk((x)) #define ISO7618_MAX_FRAME 255 // try i2c bus recovery at 100kHz = 5us high, 5us low void I2C_recovery(void) { DbpString("Performing i2c bus recovery"); // reset I2C SDA_H; SCL_H; //9nth cycle acts as NACK for (int i = 0; i < 10; i++) { SCL_H; WaitUS(5); SCL_L; WaitUS(5); } //a STOP signal (SDA from low to high while CLK is high) SDA_L; WaitUS(5); SCL_H; WaitUS(2); SDA_H; WaitUS(2); bool isok = (SCL_read && SDA_read); if (!SDA_read) DbpString("I2C bus recovery error: SDA still LOW"); if (!SCL_read) DbpString("I2C bus recovery error: SCL still LOW"); if (isok) DbpString("I2C bus recovery complete"); } void I2C_init(void) { // Configure reset pin, close up pull up, push-pull output, default high AT91C_BASE_PIOA->PIO_PPUDR = GPIO_RST; AT91C_BASE_PIOA->PIO_MDDR = GPIO_RST; // Configure I2C pin, open up, open leakage AT91C_BASE_PIOA->PIO_PPUER |= (GPIO_SCL | GPIO_SDA); AT91C_BASE_PIOA->PIO_MDER |= (GPIO_SCL | GPIO_SDA); // default three lines all pull up AT91C_BASE_PIOA->PIO_SODR |= (GPIO_SCL | GPIO_SDA | GPIO_RST); AT91C_BASE_PIOA->PIO_OER |= (GPIO_SCL | GPIO_SDA | GPIO_RST); AT91C_BASE_PIOA->PIO_PER |= (GPIO_SCL | GPIO_SDA | GPIO_RST); bool isok = (SCL_read && SDA_read); if (!isok) I2C_recovery(); } // set the reset state void I2C_SetResetStatus(uint8_t LineRST, uint8_t LineSCK, uint8_t LineSDA) { if (LineRST) HIGH(GPIO_RST); else LOW(GPIO_RST); if (LineSCK) HIGH(GPIO_SCL); else LOW(GPIO_SCL); if (LineSDA) HIGH(GPIO_SDA); else LOW(GPIO_SDA); } // Reset the SIM_Adapter, then enter the main program // Note: the SIM_Adapter will not enter the main program after power up. Please run this function before use SIM_Adapter. void I2C_Reset_EnterMainProgram(void) { StartTicks(); I2C_init(); I2C_SetResetStatus(0, 0, 0); WaitMS(30); I2C_SetResetStatus(1, 0, 0); WaitMS(30); I2C_SetResetStatus(1, 1, 1); WaitMS(10); } // Reset the SIM_Adapter, then enter the bootloader program // Reserve for firmware update. void I2C_Reset_EnterBootloader(void) { StartTicks(); I2C_init(); I2C_SetResetStatus(0, 1, 1); WaitMS(100); I2C_SetResetStatus(1, 1, 1); WaitMS(10); } // Wait for the clock to go High. static bool WaitSCL_H_delay(uint32_t delay) { while (delay--) { if (SCL_read) { return true; } I2C_DELAY_1CLK; } return false; } // 5000 * 3.07us = 15350us. 15.35ms // 15000 * 3.07us = 46050us. 46.05ms static bool WaitSCL_H(void) { return WaitSCL_H_delay(15000); } static bool WaitSCL_L_delay(uint32_t delay) { while (delay--) { if (!SCL_read) { return true; } I2C_DELAY_1CLK; } return false; } // 5000 * 3.07us = 15350us. 15.35ms static bool WaitSCL_L(void) { return WaitSCL_L_delay(15000); } // Wait max 1800ms or until SCL goes LOW. // It timeout reading response from card // Which ever comes first static bool WaitSCL_L_timeout(void) { volatile uint32_t delay = 1800; while (delay--) { // exit on SCL LOW if (!SCL_read) return true; WaitMS(1); } return (delay == 0); } static bool I2C_Start(void) { I2C_DELAY_XCLK(4); SDA_H; I2C_DELAY_1CLK; SCL_H; if (!WaitSCL_H()) return false; I2C_DELAY_2CLK; if (!SCL_read) return false; if (!SDA_read) return false; SDA_L; I2C_DELAY_2CLK; return true; } static bool I2C_WaitForSim(void) { // wait for data from card if (!WaitSCL_L_timeout()) return false; // 8051 speaks with smart card. // 1000*50*3.07 = 153.5ms // 1byte transfer == 1ms with max frame being 256bytes if (!WaitSCL_H_delay(10 * 1000 * 50)) return false; return true; } // send i2c STOP static void I2C_Stop(void) { SCL_L; I2C_DELAY_2CLK; SDA_L; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (!WaitSCL_H()) return; SDA_H; I2C_DELAY_XCLK(8); } // Send i2c ACK static void I2C_Ack(void) { SCL_L; I2C_DELAY_2CLK; SDA_L; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (!WaitSCL_H()) return; SCL_L; I2C_DELAY_2CLK; } // Send i2c NACK static void I2C_NoAck(void) { SCL_L; I2C_DELAY_2CLK; SDA_H; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (!WaitSCL_H()) return; SCL_L; I2C_DELAY_2CLK; } static bool I2C_WaitAck(void) { SCL_L; I2C_DELAY_1CLK; SDA_H; I2C_DELAY_1CLK; SCL_H; if (!WaitSCL_H()) return false; I2C_DELAY_2CLK; I2C_DELAY_2CLK; if (SDA_read) { SCL_L; return false; } SCL_L; return true; } static void I2C_SendByte(uint8_t data) { uint8_t bits = 8; while (bits--) { SCL_L; I2C_DELAY_1CLK; if (data & 0x80) SDA_H; else SDA_L; data <<= 1; I2C_DELAY_1CLK; SCL_H; if (!WaitSCL_H()) return; I2C_DELAY_2CLK; } SCL_L; } static int16_t I2C_ReadByte(void) { uint8_t bits = 8, b = 0; SDA_H; while (bits--) { b <<= 1; SCL_L; if (!WaitSCL_L()) return -2; I2C_DELAY_1CLK; SCL_H; if (!WaitSCL_H()) return -1; I2C_DELAY_1CLK; if (SDA_read) b |= 0x01; } SCL_L; return b; } // Sends one byte ( command to be written, SlaveDevice address) bool I2C_WriteCmd(uint8_t device_cmd, uint8_t device_address) { bool bBreak = true; do { if (!I2C_Start()) return false; I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(device_cmd); if (!I2C_WaitAck()) break; bBreak = false; } while (false); I2C_Stop(); if (bBreak) { if (DBGLEVEL > 3) DbpString(I2C_ERROR); return false; } return true; } // Sends 1 byte data (Data to be written, command to be written , SlaveDevice address ). bool I2C_WriteByte(uint8_t data, uint8_t device_cmd, uint8_t device_address) { bool bBreak = true; do { if (!I2C_Start()) return false; I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(device_cmd); if (!I2C_WaitAck()) break; I2C_SendByte(data); if (!I2C_WaitAck()) break; bBreak = false; } while (false); I2C_Stop(); if (bBreak) { if (DBGLEVEL > 3) DbpString(I2C_ERROR); return false; } return true; } //Sends array of data (Array, length, command to be written , SlaveDevice address ). // len = uint8 (max buffer to write 256bytes) bool I2C_BufferWrite(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) { bool bBreak = true; do { if (!I2C_Start()) return false; I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(device_cmd); if (!I2C_WaitAck()) break; while (len) { I2C_SendByte(*data); if (!I2C_WaitAck()) break; len--; data++; } if (len == 0) bBreak = false; } while (false); I2C_Stop(); if (bBreak) { if (DBGLEVEL > 3) DbpString(I2C_ERROR); return false; } return true; } // read one array of data (Data array, Readout length, command to be written , SlaveDevice address ). // len = uint8 (max buffer to read 256bytes) int16_t I2C_BufferRead(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) { if (!data || len == 0) return 0; // extra wait 500us (514us measured) // 200us (xx measured) WaitUS(600); bool bBreak = true; uint16_t readcount = 0; do { if (!I2C_Start()) return 0; // 0xB0 / 0xC0 == i2c write I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(device_cmd); if (!I2C_WaitAck()) break; // 0xB1 / 0xC1 == i2c read I2C_Start(); I2C_SendByte(device_address | 1); if (!I2C_WaitAck()) break; bBreak = false; } while (false); if (bBreak) { I2C_Stop(); if (DBGLEVEL > 3) DbpString(I2C_ERROR); return 0; } while (len) { int16_t tmp = I2C_ReadByte(); if (tmp < 0) return tmp; *data = (uint8_t)tmp & 0xFF; len--; // The first byte in response is the message length if (!readcount && (len > *data)) { len = *data; } else { data++; } readcount++; // acknowledgements. After last byte send NACK. if (len == 0) I2C_NoAck(); else I2C_Ack(); } I2C_Stop(); // return bytecount - first byte (which is length byte) return --readcount; } int16_t I2C_ReadFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) { //START, 0xB0, 0x00, 0x00, START, 0xB1, xx, yy, zz, ......, STOP bool bBreak = true; uint8_t readcount = 0; // sending do { if (!I2C_Start()) return 0; // 0xB0 / 0xC0 i2c write I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(msb); if (!I2C_WaitAck()) break; I2C_SendByte(lsb); if (!I2C_WaitAck()) break; // 0xB1 / 0xC1 i2c read I2C_Start(); I2C_SendByte(device_address | 1); if (!I2C_WaitAck()) break; bBreak = false; } while (false); if (bBreak) { I2C_Stop(); if (DBGLEVEL > 3) DbpString(I2C_ERROR); return 0; } // reading while (len) { int16_t tmp = I2C_ReadByte(); if (tmp < 0) return tmp; *data = (uint8_t)tmp & 0xFF; data++; readcount++; len--; // acknowledgements. After last byte send NACK. if (len == 0) I2C_NoAck(); else I2C_Ack(); } I2C_Stop(); return readcount; } bool I2C_WriteFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) { //START, 0xB0, 0x00, 0x00, xx, yy, zz, ......, STOP bool bBreak = true; do { if (!I2C_Start()) return false; // 0xB0 == i2c write I2C_SendByte(device_address & 0xFE); if (!I2C_WaitAck()) break; I2C_SendByte(msb); if (!I2C_WaitAck()) break; I2C_SendByte(lsb); if (!I2C_WaitAck()) break; while (len) { I2C_SendByte(*data); if (!I2C_WaitAck()) break; len--; data++; } if (len == 0) bBreak = false; } while (false); I2C_Stop(); if (bBreak) { if (DBGLEVEL > 3) DbpString(I2C_ERROR); return false; } return true; } void I2C_print_status(void) { DbpString(_CYAN_("Smart card module (ISO 7816)")); uint8_t maj, min; if (I2C_get_version(&maj, &min) == PM3_SUCCESS) Dbprintf(" version................." _YELLOW_("v%x.%02d"), maj, min); else DbpString(" version................." _RED_("FAILED")); } int I2C_get_version(uint8_t *maj, uint8_t *min) { uint8_t resp[] = {0, 0, 0, 0}; I2C_Reset_EnterMainProgram(); uint8_t len = I2C_BufferRead(resp, sizeof(resp), I2C_DEVICE_CMD_GETVERSION, I2C_DEVICE_ADDRESS_MAIN); if (len > 0) { *maj = resp[0]; *min = resp[1]; return PM3_SUCCESS; } return PM3_EDEVNOTSUPP; } // Will read response from smart card module, retries 3 times to get the data. bool sc_rx_bytes(uint8_t *dest, uint8_t *destlen) { uint8_t i = 3; int16_t len = 0; while (i--) { I2C_WaitForSim(); len = I2C_BufferRead(dest, *destlen, I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN); LED_C_ON(); if (len > 1) { break; } else if (len == 1) { continue; } else if (len <= 0) { return false; } } // after three if (len <= 1) return false; *destlen = (uint8_t)len & 0xFF; return true; } bool GetATR(smart_card_atr_t *card_ptr, bool verbose) { if (!card_ptr) return false; card_ptr->atr_len = 0; memset(card_ptr->atr, 0, sizeof(card_ptr->atr)); // Send ATR // start [C0 01] stop start C1 len aa bb cc stop] I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN); //wait for sim card to answer. // 1byte = 1ms , max frame 256bytes. Should wait 256ms atleast just in case. if (I2C_WaitForSim() == false) return false; // read bytes from module uint8_t len = sizeof(card_ptr->atr); if (sc_rx_bytes(card_ptr->atr, &len) == false) return false; uint8_t pos_td = 1; if ((card_ptr->atr[1] & 0x10) == 0x10) pos_td++; if ((card_ptr->atr[1] & 0x20) == 0x20) pos_td++; if ((card_ptr->atr[1] & 0x40) == 0x40) pos_td++; // T0 indicate presence T=0 vs T=1. T=1 has checksum TCK if ((card_ptr->atr[1] & 0x80) == 0x80) { pos_td++; // 1 == T1 , presence of checksum TCK if ((card_ptr->atr[pos_td] & 0x01) == 0x01) { uint8_t chksum = 0; // xor property. will be zero when xored with chksum. for (uint8_t i = 1; i < len; ++i) chksum ^= card_ptr->atr[i]; if (chksum) { if (DBGLEVEL > 2) DbpString("Wrong ATR checksum"); } } } card_ptr->atr_len = len; if (verbose) { LogTrace(card_ptr->atr, card_ptr->atr_len, 0, 0, NULL, false); } return true; } void SmartCardAtr(void) { LED_D_ON(); set_tracing(true); I2C_Reset_EnterMainProgram(); smart_card_atr_t card; int res = GetATR(&card, true) ? PM3_SUCCESS : PM3_ETIMEOUT; reply_ng(CMD_SMART_ATR, res, (uint8_t*)&card, sizeof(smart_card_atr_t)); set_tracing(false); LEDsoff(); } void SmartCardRaw(uint64_t arg0, uint64_t arg1, uint8_t *data) { LED_D_ON(); uint8_t len = 0; uint8_t *resp = BigBuf_malloc(ISO7618_MAX_FRAME); smartcard_command_t flags = arg0; if ((flags & SC_CLEARLOG) == SC_CLEARLOG) clear_trace(); if ((flags & SC_LOG) == SC_LOG) set_tracing(true); else set_tracing(false); if ((flags & SC_CONNECT)) { I2C_Reset_EnterMainProgram(); if ((flags & SC_SELECT)) { smart_card_atr_t card; bool gotATR = GetATR(&card, true); //reply_old(CMD_ACK, gotATR, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t)); if (!gotATR) goto OUT; } } if ((flags & SC_RAW) || (flags & SC_RAW_T0)) { LogTrace(data, arg1, 0, 0, NULL, true); // Send raw bytes // asBytes = A0 A4 00 00 02 // arg1 = len 5 bool res = I2C_BufferWrite(data, arg1, ((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND), I2C_DEVICE_ADDRESS_MAIN); if (!res && DBGLEVEL > 3) DbpString(I2C_ERROR); // read bytes from module len = ISO7618_MAX_FRAME; res = sc_rx_bytes(resp, &len); if (res) { LogTrace(resp, len, 0, 0, NULL, false); } else { len = 0; } } OUT: reply_mix(CMD_ACK, len, 0, 0, resp, len); BigBuf_free(); set_tracing(false); LEDsoff(); } void SmartCardUpgrade(uint64_t arg0) { LED_C_ON(); #define I2C_BLOCK_SIZE 128 // write. Sector0, with 11,22,33,44 // erase is 128bytes, and takes 50ms to execute I2C_Reset_EnterBootloader(); bool isOK = true; uint16_t length = arg0, pos = 0; uint8_t *fwdata = BigBuf_get_addr(); uint8_t *verfiydata = BigBuf_malloc(I2C_BLOCK_SIZE); while (length) { uint8_t msb = (pos >> 8) & 0xFF; uint8_t lsb = pos & 0xFF; Dbprintf("FW %02X%02X", msb, lsb); size_t size = MIN(I2C_BLOCK_SIZE, length); // write int16_t res = I2C_WriteFW(fwdata + pos, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT); if (!res) { DbpString("Writing failed"); isOK = false; break; } // writing takes time. WaitMS(50); // read res = I2C_ReadFW(verfiydata, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT); if (res <= 0) { DbpString("Reading back failed"); isOK = false; break; } // cmp if (0 != memcmp(fwdata + pos, verfiydata, size)) { DbpString("not equal data"); isOK = false; break; } length -= size; pos += size; } reply_ng(CMD_SMART_UPGRADE, (isOK) ? PM3_SUCCESS : PM3_ESOFT, NULL, 0); LED_C_OFF(); BigBuf_free(); } void SmartCardSetBaud(uint64_t arg0) { } void SmartCardSetClock(uint64_t arg0) { LED_D_ON(); set_tracing(true); I2C_Reset_EnterMainProgram(); // Send SIM CLC // start [C0 05 xx] stop I2C_WriteByte(arg0, I2C_DEVICE_CMD_SIM_CLC, I2C_DEVICE_ADDRESS_MAIN); reply_ng(CMD_SMART_SETCLOCK, PM3_SUCCESS, NULL, 0); set_tracing(false); LEDsoff(); }