//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- #include "bruteforce.h" #include #include uint8_t charset_digits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', }; uint8_t charset_uppercase[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'W', 'X', 'Y', 'Z' }; smart_generator_t *smart_generators[] = { smart_generator_byte_repeat, smart_generator_msb_byte_only, smart_generator_nibble_sequence, NULL }; void bf_generator_init(generator_context_t *ctx, uint8_t mode, uint8_t key_length) { memset(ctx, 0, sizeof(generator_context_t)); ctx->mode = mode; ctx->key_length = key_length; } int bf_generator_set_charset(generator_context_t *ctx, uint8_t charsets) { if (ctx->mode != BF_MODE_CHARSET) { return -1; } if (charsets & BF_CHARSET_DIGITS) { memcpy(ctx->charset, charset_digits, sizeof(charset_digits)); ctx->charset_length += sizeof(charset_digits); } if (charsets & BF_CHARSET_UPPERCASE) { memcpy(ctx->charset + ctx->charset_length, charset_uppercase, sizeof(charset_uppercase)); ctx->charset_length += sizeof(charset_uppercase); } return 0; } int bf_generate(generator_context_t *ctx) { switch (ctx->mode) { case BF_MODE_RANGE: return _bf_generate_mode_range(ctx); case BF_MODE_CHARSET: return _bf_generate_mode_charset(ctx); case BF_MODE_SMART: return _bf_generate_mode_smart(ctx); } return BF_GENERATOR_ERROR; } // increments values in array with carryover using modulo limit for each byte // this is used to iterate each byte in key over charset table // returns -1 if incrementing reaches its end int bf_array_increment(uint8_t *data, uint8_t data_len, uint8_t modulo) { uint8_t prev_value; // check if we reached max value already uint8_t i; for (i = 0; i < data_len; i++) if (data[i] < modulo - 1) break; if (i == data_len) return -1; for (uint8_t pos = data_len - 1;; pos--) { prev_value = ++data[pos]; data[pos] = data[pos] % modulo; if (prev_value == data[pos]) return 0; else if (pos == 0) { // we cannot carryover to next byte // with the max value check in place before, we should not reach this place return -1; } } return 0; } // get current key casted to 32 bit uint32_t bf_get_key32(generator_context_t *ctx) { return ctx->current_key & 0xFFFFFFFF; } // get current key casted to 48 bit uint64_t bf_get_key48(generator_context_t *ctx) { return ctx->current_key & 0xFFFFFFFFFFFF; } void bf_generator_clear(generator_context_t *ctx) { ctx->flag1 = 0; ctx->flag2 = 0; ctx->flag3 = 0; ctx->counter1 = 0; ctx->counter2 = 0; } int _bf_generate_mode_range(generator_context_t *ctx) { if (ctx->key_length != BF_KEY_SIZE_32 && ctx->key_length != BF_KEY_SIZE_48) return BF_GENERATOR_ERROR; if (ctx->current_key >= ctx->range_high) { return BF_GENERATOR_END; } // we use flag1 as indicator if value of range_low was already emitted // so the range generated is if (ctx->current_key <= ctx->range_low && ctx->flag1 == false) { ctx->current_key = ctx->range_low; ctx->flag1 = true; return BF_GENERATOR_NEXT; } ctx->current_key++; return BF_GENERATOR_NEXT; } int _bf_generate_mode_charset(generator_context_t *ctx) { if (ctx->key_length != BF_KEY_SIZE_32 && ctx->key_length != BF_KEY_SIZE_48) { return BF_GENERATOR_ERROR; } if (ctx->flag1) return BF_GENERATOR_END; uint8_t key_byte = 0; ctx->current_key = 0; for (key_byte = 0; key_byte < ctx->key_length; key_byte++) { ctx->current_key |= (uint64_t) ctx->charset[ctx->pos[key_byte]] << ((ctx->key_length - key_byte - 1) * 8); } if (bf_array_increment(ctx->pos, ctx->key_length, ctx->charset_length) == -1) // set flag1 to emit value last time and end generation on next call ctx->flag1 = true; return BF_GENERATOR_NEXT; } int _bf_generate_mode_smart(generator_context_t *ctx) { int ret; while (1) { if (smart_generators[ctx->smart_mode_stage] == NULL) return BF_GENERATOR_END; ret = smart_generators[ctx->smart_mode_stage](ctx); switch (ret) { case BF_GENERATOR_NEXT: return ret; case BF_GENERATOR_ERROR: return ret; case BF_GENERATOR_END: ctx->smart_mode_stage++; bf_generator_clear(ctx); continue; } } } int smart_generator_byte_repeat(generator_context_t *ctx) { // key consists of repeated single byte uint32_t current_byte = ctx->counter1; if (current_byte > 0xFF) return BF_GENERATOR_END; ctx->current_key = 0; for (uint8_t key_byte = 0; key_byte < ctx->key_length; key_byte++) { ctx->current_key |= (uint64_t)current_byte << ((ctx->key_length - key_byte - 1) * 8); } ctx->counter1++; return BF_GENERATOR_NEXT; } int smart_generator_msb_byte_only(generator_context_t *ctx) { // key of one byte (most significant one) and all others being zero uint32_t current_byte = ctx->counter1; if (current_byte > 0xFF) return BF_GENERATOR_END; ctx->current_key = (uint64_t)current_byte << ((ctx->key_length - 1) * 8); ctx->counter1++; return BF_GENERATOR_NEXT; } int smart_generator_nibble_sequence(generator_context_t *ctx) { // patterns like A0A1A2A3...F0F1F2F3 // also with offsets - A1A2A3, A2A3A4, etc // counter1 is high nibble (A, B, C), counter2 is low nibble (0,1, etc) if (ctx->counter1 == 0) { // init values on first generator call ctx->counter1 = 0x0A; } uint8_t key_byte; // we substract %2 value because max_offset must be even number uint8_t max_offset = 10 - (ctx->key_length / 2) - (ctx->key_length / 2) % 2; if (ctx->counter1 == 0x10) { return BF_GENERATOR_END; } ctx->current_key = 0; for (key_byte = 0; key_byte < ctx->key_length; key_byte++) { ctx->current_key |= (uint64_t) ctx->counter1 << (((ctx->key_length - key_byte - 1) * 8) + 4); ctx->current_key |= (uint64_t)(key_byte + ctx->counter2) % 10 << ((ctx->key_length - key_byte - 1) * 8); } // counter 2 is the offset ctx->counter2++; if (ctx->counter2 == max_offset) { ctx->counter2 = 0; ctx->counter1++; } return BF_GENERATOR_NEXT; }