//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency ISO14443B commands //----------------------------------------------------------------------------- #include #include #include #include #include "cmdhf14b.h" #define TIMEOUT 2000 static int CmdHelp(const char *Cmd); int usage_hf_14b_info(void){ PrintAndLog("Usage: hf 14b info [-h] [-s]"); PrintAndLog(" -h this help"); PrintAndLog(" -s silently"); return 0; } int usage_hf_14b_reader(void){ PrintAndLog("Usage: hf 14b reader [-h] [-s]"); PrintAndLog(" -h this help"); PrintAndLog(" -s silently"); return 0; } int usage_hf_14b_raw(void){ PrintAndLog("Usage: hf 14b raw [-h] [-r] [-c] [-p] [-s || -ss] <0A 0B 0C ... hex>"); PrintAndLog(" -h this help"); PrintAndLog(" -r do not read response"); PrintAndLog(" -c calculate and append CRC"); PrintAndLog(" -p leave the field on after receive"); PrintAndLog(" -s active signal field ON with select"); PrintAndLog(" -ss active signal field ON with select for SRx ST Microelectronics tags"); return 0; } int usage_hf_14b_snoop(void){ PrintAndLog("It get data from the field and saves it into command buffer."); PrintAndLog("Buffer accessible from command 'hf list 14b'"); PrintAndLog("Usage: hf 14b snoop [-h]"); PrintAndLog(" -h this help"); PrintAndLog("sample: hf 14b snoop"); return 0; } int usage_hf_14b_sim(void){ PrintAndLog("Emulating ISO/IEC 14443 type B tag with 4 UID"); PrintAndLog("Usage: hf 14b sim [-h]"); PrintAndLog(" -h this help"); PrintAndLog("sample: hf 14b sim"); return 0; } int usage_hf_14b_read_srx(void){ PrintAndLog("Usage: hf 14b read [h] <1|2>"); PrintAndLog("Options:"); PrintAndLog(" h this help"); PrintAndLog(" <1|2> 1 = SRIX4K , 2 = SRI512"); PrintAndLog("sample: hf 14b read 1"); PrintAndLog(" : hf 14b read 2"); return 0; } int usage_hf_14b_write_srx(void){ PrintAndLog("Usage: hf 14b write <1|2> "); PrintAndLog("Options:"); PrintAndLog(" h this help"); PrintAndLog(" <1|2> 1 = SRIX4K , 2 = SRI512"); PrintAndLog(" BLOCK number depends on tag, special block == FF"); PrintAndLog(" hex bytes of data to be written"); PrintAndLog("sample : hf 14b write 1 7F 11223344"); PrintAndLog(" : hf 14b write 1 FF 11223344"); PrintAndLog(" : hf 14b write 2 15 11223344"); PrintAndLog(" : hf 14b write 2 FF 11223344"); return 0; } static int rawClose(){ UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_DISCONNECT, 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 1; } int CmdHF14BList(const char *Cmd) { CmdHFList("14b"); return 0; } int CmdHF14BSim(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_sim(); UsbCommand c = {CMD_SIMULATE_TAG_ISO_14443B, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdHF14BSnoop(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_snoop(); UsbCommand c = {CMD_SNOOP_ISO_14443B, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdHF14BCmdRaw (const char *Cmd) { bool reply = TRUE; bool power = FALSE; bool select = FALSE; char buf[5]=""; int i = 0; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; uint16_t datalen = 0; uint32_t flags = 0; uint32_t temp = 0; if (strlen(Cmd)<3) return usage_hf_14b_raw(); // strip while (*Cmd==' ' || *Cmd=='\t') ++Cmd; while (Cmd[i]!='\0') { if (Cmd[i]==' ' || Cmd[i]=='\t') { ++i; continue; } if (Cmd[i]=='-') { switch (Cmd[i+1]) { case 'H': case 'h': return usage_hf_14b_raw(); case 'r': case 'R': reply = FALSE; break; case 'c': case 'C': flags |= ISO14B_APPEND_CRC; break; case 'p': case 'P': power = TRUE; break; case 's': case 'S': flags |= ISO14B_CONNECT; select = TRUE; if (Cmd[i+2]=='s' || Cmd[i+2]=='S') { flags |= ISO14B_SELECT_SR; ++i; } else { flags |= ISO14B_SELECT_STD; } break; default: return usage_hf_14b_raw(); } i+=2; continue; } if ((Cmd[i]>='0' && Cmd[i]<='9') || (Cmd[i]>='a' && Cmd[i]<='f') || (Cmd[i]>='A' && Cmd[i]<='F') ) { buf[strlen(buf)+1]=0; buf[strlen(buf)]=Cmd[i]; i++; if (strlen(buf)>=2) { sscanf(buf,"%x",&temp); data[datalen++] = (uint8_t)(temp & 0xff); *buf=0; memset(buf, 0x00, sizeof(buf)); } continue; } PrintAndLog("Invalid char on input"); return 0; } if(!power) flags |= ISO14B_DISCONNECT; if(datalen>0) flags |= ISO14B_RAW; // Max buffer is USB_CMD_DATA_SIZE datalen = (datalen > USB_CMD_DATA_SIZE) ? USB_CMD_DATA_SIZE : datalen; UsbCommand c = {CMD_ISO_14443B_COMMAND, {flags, datalen, 0}}; memcpy(c.d.asBytes, data, datalen); clearCommandBuffer(); SendCommand(&c); if (!reply) return 1; bool success = TRUE; // get back iso14b_card_select_t, don't print it. if(select) success = waitCmd(FALSE); // get back response from the raw bytes you sent. if(success && datalen>0) waitCmd(TRUE); return 1; } // print full atqb info // bytes // 0,1,2,3 = application data // 4 = bit rate capacity // 5 = max frame size / -4 info // 6 = FWI / Coding options static void print_atqb_resp(uint8_t *data, uint8_t cid){ //PrintAndLog(" UID: %s", sprint_hex(data+1,4)); PrintAndLog(" App Data: %s", sprint_hex(data,4)); PrintAndLog(" Protocol: %s", sprint_hex(data+4,3)); uint8_t BitRate = data[4]; if (!BitRate) PrintAndLog(" Bit Rate: 106 kbit/s only PICC <-> PCD"); if (BitRate & 0x10) PrintAndLog(" Bit Rate: 212 kbit/s PICC -> PCD supported"); if (BitRate & 0x20) PrintAndLog(" Bit Rate: 424 kbit/s PICC -> PCD supported"); if (BitRate & 0x40) PrintAndLog(" Bit Rate: 847 kbit/s PICC -> PCD supported"); if (BitRate & 0x01) PrintAndLog(" Bit Rate: 212 kbit/s PICC <- PCD supported"); if (BitRate & 0x02) PrintAndLog(" Bit Rate: 424 kbit/s PICC <- PCD supported"); if (BitRate & 0x04) PrintAndLog(" Bit Rate: 847 kbit/s PICC <- PCD supported"); if (BitRate & 0x80) PrintAndLog(" Same bit rate <-> required"); uint16_t maxFrame = data[5]>>4; if (maxFrame < 5) maxFrame = 8 * maxFrame + 16; else if (maxFrame == 5) maxFrame = 64; else if (maxFrame == 6) maxFrame = 96; else if (maxFrame == 7) maxFrame = 128; else if (maxFrame == 8) maxFrame = 256; else maxFrame = 257; PrintAndLog("Max Frame Size: %u%s bytes",maxFrame, (maxFrame == 257) ? "+ RFU" : ""); uint8_t protocolT = data[5] & 0xF; PrintAndLog(" Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4",(protocolT) ? "" : "not " ); uint8_t fwt = data[6]>>4; if ( fwt < 16 ){ uint32_t etus = (32 << fwt); uint32_t fwt_time = (302 << fwt); PrintAndLog("Frame Wait Integer: %u - %u ETUs | %u µS", fwt, etus, fwt_time); } else { PrintAndLog("Frame Wait Integer: %u - RFU", fwt); } PrintAndLog(" App Data Code: Application is %s",(data[6]&4) ? "Standard" : "Proprietary"); PrintAndLog(" Frame Options: NAD is %ssupported",(data[6]&2) ? "" : "not "); PrintAndLog(" Frame Options: CID is %ssupported",(data[6]&1) ? "" : "not "); PrintAndLog("Tag :"); PrintAndLog(" Max Buf Length: %u (MBLI) %s", cid>>4, (cid & 0xF0) ? "" : "chained frames not supported"); PrintAndLog(" CDI : %u", cid & 0x0f); return; } // get SRx chip model (from UID) // from ST Microelectronics char *get_ST_Chip_Model(uint8_t data){ static char model[20]; char *retStr = model; memset(model,0, sizeof(model)); switch (data) { case 0x0: sprintf(retStr, "SRIX4K (Special)"); break; case 0x2: sprintf(retStr, "SR176"); break; case 0x3: sprintf(retStr, "SRIX4K"); break; case 0x4: sprintf(retStr, "SRIX512"); break; case 0x6: sprintf(retStr, "SRI512"); break; case 0x7: sprintf(retStr, "SRI4K"); break; case 0xC: sprintf(retStr, "SRT512"); break; default : sprintf(retStr, "Unknown"); break; } return retStr; } // REMAKE: int print_ST_Lock_info(uint8_t model){ // PrintAndLog("Chip Write Protection Bits:"); // // now interpret the data // switch (model){ // case 0x0: //fall through (SRIX4K special) // case 0x3: //fall through (SRIx4K) // case 0x7: // (SRI4K) // //only need data[3] // blk1 = 9; // PrintAndLog(" raw: %s", sprint_bin(data+3, 1)); // PrintAndLog(" 07/08:%slocked", (data[3] & 1) ? " not " : " " ); // for (uint8_t i = 1; i<8; i++){ // PrintAndLog(" %02u:%slocked", blk1, (data[3] & (1 << i)) ? " not " : " " ); // blk1++; // } // break; // case 0x4: //fall through (SRIX512) // case 0x6: //fall through (SRI512) // case 0xC: // (SRT512) // //need data[2] and data[3] // blk1 = 0; // PrintAndLog(" raw: %s", sprint_bin(data+2, 2)); // for (uint8_t b=2; b<4; b++){ // for (uint8_t i=0; i<8; i++){ // PrintAndLog(" %02u:%slocked", blk1, (data[b] & (1 << i)) ? " not " : " " ); // blk1++; // } // } // break; // case 0x2: // (SR176) // //need data[2] // blk1 = 0; // PrintAndLog(" raw: %s", sprint_bin(data+2, 1)); // for (uint8_t i = 0; i<8; i++){ // PrintAndLog(" %02u/%02u:%slocked", blk1, blk1+1, (data[2] & (1 << i)) ? " " : " not " ); // blk1+=2; // } // break; // default: // return rawClose(); // } return 1; } // print UID info from SRx chips (ST Microelectronics) static void print_st_general_info(uint8_t *data, uint8_t len){ //uid = first 8 bytes in data PrintAndLog(" UID: %s", sprint_hex(SwapEndian64(data,8,8), len)); PrintAndLog(" MFG: %02X, %s", data[6], getTagInfo(data[6])); PrintAndLog("Chip: %02X, %s", data[5]>>2, get_ST_Chip_Model(data[5]>>2)); return; } //05 00 00 = find one tag in field //1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0]) //a3 = ? (resp 03 [e2 c2]) //02 = ? (resp 02 [6a d3]) // 022b (resp 02 67 00 [29 5b]) // 0200a40400 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b]) // 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b]) // 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c]) // 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b]) // 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c]) // 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c]) // 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c]) //03 = ? (resp 03 [e3 c2]) //c2 = ? (resp c2 [66 15]) //b2 = ? (resp a3 [e9 67]) //a2 = ? (resp 02 [6a d3]) // 14b get and print Full Info (as much as we know) bool HF14B_Std_Info(bool verbose){ //add more info here return FALSE; } // SRx get and print full info (needs more info...) bool HF14B_ST_Info(bool verbose){ UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) { if (verbose) PrintAndLog("timeout while waiting for reply."); return FALSE; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t)); uint64_t status = resp.arg[0]; if ( status > 0 ) { rawClose(); return FALSE; } //add locking bit information here. uint8_t data[16] = {0x00}; // uint8_t datalen = 2; // uint8_t resplen; // uint8_t blk1; // data[0] = 0x08; // // if (model == 0x2) { //SR176 has special command: // data[1] = 0xf; // resplen = 4; // } else { // data[1] = 0xff; // resplen = 6; // } // //std read cmd // if (HF14BCmdRaw(true, true, data, &datalen, false)==0) // return rawClose(); // if (datalen != resplen || !crc) return rawClose(); //print_ST_Lock_info(data[5]>>2); rawClose(); return TRUE; } // get and print all info known about any known 14b tag bool HF14BInfo(bool verbose){ // try std 14b (atqb) if (HF14B_Std_Info(verbose)) return TRUE; // try st 14b if (HF14B_ST_Info(verbose)) return TRUE; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (verbose) PrintAndLog("no 14443B tag found"); return FALSE; } // menu command to get and print all info known about any known 14b tag int CmdHF14Binfo(const char *Cmd){ char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_info(); bool verbose = !((cmdp == 's') || (cmdp == 'S')); return HF14BInfo(verbose); } bool HF14B_ST_Reader(bool verbose){ bool isSuccess = FALSE; // SRx get and print general info about SRx chip from UID UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) { if (verbose) PrintAndLog("timeout while waiting for reply."); return FALSE; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t)); uint64_t status = resp.arg[0]; switch( status ){ case 0: print_st_general_info(card.uid, card.uidlen); isSuccess = TRUE; break; case 1: if (verbose) PrintAndLog("iso14443-3 random chip id fail"); break; case 2: if (verbose) PrintAndLog("iso14443-3 ATTRIB fail"); break; case 3: if (verbose) PrintAndLog("iso14443-3 CRC fail"); break; default: if (verbose) PrintAndLog("iso14443b card select SRx failed"); break; } rawClose(); return isSuccess; } bool HF14B_Std_Reader(bool verbose){ bool isSuccess = FALSE; // 14b get and print UID only (general info) UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) { if (verbose) PrintAndLog("timeout while waiting for reply."); return FALSE; } iso14b_card_select_t card; memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t)); uint64_t status = resp.arg[0]; switch( status ){ case 0: PrintAndLog(" UID : %s", sprint_hex(card.uid, card.uidlen)); PrintAndLog(" ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb))); PrintAndLog(" CHIPID : %02X", card.chipid); print_atqb_resp(card.atqb, card.cid); isSuccess = TRUE; break; case 2: if (verbose) PrintAndLog("iso14443-3 ATTRIB fail"); break; case 3: if (verbose) PrintAndLog("iso14443-3 CRC fail"); break; default: if (verbose) PrintAndLog("iso14443b card select failed"); break; } rawClose(); return isSuccess; } // test for other 14b type tags (mimic another reader - don't have tags to identify) bool HF14B_Other_Reader(){ // uint8_t data[] = {0x00, 0x0b, 0x3f, 0x80}; // uint8_t datalen = 4; // // 14b get and print UID only (general info) // uint32_t flags = ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_RAW | ISO14B_APPEND_CRC; // UsbCommand c = {CMD_ISO_14443B_COMMAND, {flags, datalen, 0}}; // memcpy(c.d.asBytes, data, datalen); // clearCommandBuffer(); // SendCommand(&c); // UsbCommand resp; // WaitForResponse(CMD_ACK,&resp); // if (datalen > 2 ) { // printandlog ("\n14443-3b tag found:"); // printandlog ("unknown tag type answered to a 0x000b3f80 command ans:"); // //printandlog ("%s", sprint_hex(data, datalen)); // rawclose(); // return true; // } // c.arg1 = 1; // c.d.asBytes[0] = ISO14443B_AUTHENTICATE; // clearCommandBuffer(); // SendCommand(&c); // UsbCommand resp; // WaitForResponse(CMD_ACK, &resp); // if (datalen > 0) { // PrintAndLog ("\n14443-3b tag found:"); // PrintAndLog ("Unknown tag type answered to a 0x0A command ans:"); // // PrintAndLog ("%s", sprint_hex(data, datalen)); // rawClose(); // return TRUE; // } // c.arg1 = 1; // c.d.asBytes[0] = ISO14443B_RESET; // clearCommandBuffer(); // SendCommand(&c); // UsbCommand resp; // WaitForResponse(CMD_ACK, &resp); // if (datalen > 0) { // PrintAndLog ("\n14443-3b tag found:"); // PrintAndLog ("Unknown tag type answered to a 0x0C command ans:"); // PrintAndLog ("%s", sprint_hex(data, datalen)); // rawClose(); // return TRUE; // } // rawClose(); return FALSE; } // get and print general info about all known 14b chips bool HF14BReader(bool verbose){ // try std 14b (atqb) if (HF14B_Std_Reader(verbose)) return TRUE; // try ST Microelectronics 14b if (HF14B_ST_Reader(verbose)) return TRUE; // try unknown 14b read commands (to be identified later) // could be read of calypso, CEPAS, moneo, or pico pass. if (HF14B_Other_Reader()) return TRUE; if (verbose) PrintAndLog("no 14443B tag found"); return FALSE; } // menu command to get and print general info about all known 14b chips int CmdHF14BReader(const char *Cmd){ char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_reader(); bool verbose = !((cmdp == 's') || (cmdp == 'S')); return HF14BReader(verbose); } /* New command to read the contents of a SRI512|SRIX4K tag * SRI* tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory/ */ int CmdHF14BReadSri(const char *Cmd){ char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') return usage_hf_14b_read_srx(); uint8_t tagtype = param_get8(Cmd, 0); uint8_t blocks = (tagtype == 1) ? 0x7F : 0x0F; UsbCommand c = {CMD_READ_SRI_TAG, {blocks, 0, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } // New command to write a SRI512/SRIX4K tag. int CmdHF14BWriteSri(const char *Cmd){ /* * For SRIX4K blocks 00 - 7F * hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata * * For SR512 blocks 00 - 0F * hf 14b raw -c -p 09 $sr512wblock $sr512wdata * * Special block FF = otp_lock_reg block. * Data len 4 bytes- */ char cmdp = param_getchar(Cmd, 0); uint8_t blockno = -1; uint8_t data[4] = {0x00}; bool isSrix4k = true; char str[30]; memset(str, 0x00, sizeof(str)); if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') return usage_hf_14b_write_srx(); if ( cmdp == '2' ) isSrix4k = false; //blockno = param_get8(Cmd, 1); if ( param_gethex(Cmd, 1, &blockno, 2) ) { PrintAndLog("Block number must include 2 HEX symbols"); return 0; } if ( isSrix4k ){ if ( blockno > 0x7f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } else { if ( blockno > 0x0f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } if (param_gethex(Cmd, 2, data, 8)) { PrintAndLog("Data must include 8 HEX symbols"); return 0; } if ( blockno == 0xff) { PrintAndLog("[%s] Write special block %02X [ %s ]", (isSrix4k) ? "SRIX4K":"SRI512", blockno, sprint_hex(data,4) ); } else { PrintAndLog("[%s] Write block %02X [ %s ]", (isSrix4k) ? "SRIX4K":"SRI512", blockno, sprint_hex(data,4) ); } sprintf(str, "-ss -c %02x %02x %02x%02x%02x%02x", ISO14443B_WRITE_BLK, blockno, data[0], data[1], data[2], data[3]); CmdHF14BCmdRaw(str); return 0; } uint32_t srix4kEncode(uint32_t value) { /* // vv = value // pp = position // vv vv vv pp 4 bytes : 00 1A 20 01 */ // only the lower crumbs. uint8_t block = (value & 0xFF); uint8_t i = 0; uint8_t valuebytes[] = {0,0,0}; num_to_bytes(value, 3, valuebytes); // Scrambled part // Crumb swapping of value. uint8_t temp[] = {0,0}; temp[0] = (CRUMB(value, 22) << 4 | CRUMB(value, 14 ) << 2 | CRUMB(value, 6)) << 4; temp[0] |= CRUMB(value, 20) << 4 | CRUMB(value, 12 ) << 2 | CRUMB(value, 4); temp[1] = (CRUMB(value, 18) << 4 | CRUMB(value, 10 ) << 2 | CRUMB(value, 2)) << 4; temp[1] |= CRUMB(value, 16) << 4 | CRUMB(value, 8 ) << 2 | CRUMB(value, 0); // chksum part uint32_t chksum = 0xFF - block; // chksum is reduced by each nibbles of value. for (i = 0; i < 3; ++i){ chksum -= NIBBLE_HIGH(valuebytes[i]); chksum -= NIBBLE_LOW(valuebytes[i]); } // base4 conversion and left shift twice i = 3; uint8_t base4[] = {0,0,0,0}; while( chksum !=0 ){ base4[i--] = (chksum % 4 << 2); chksum /= 4; } // merge scambled and chksum parts uint32_t encvalue = ( NIBBLE_LOW ( base4[0]) << 28 ) | ( NIBBLE_HIGH( temp[0]) << 24 ) | ( NIBBLE_LOW ( base4[1]) << 20 ) | ( NIBBLE_LOW ( temp[0]) << 16 ) | ( NIBBLE_LOW ( base4[2]) << 12 ) | ( NIBBLE_HIGH( temp[1]) << 8 ) | ( NIBBLE_LOW ( base4[3]) << 4 ) | NIBBLE_LOW ( temp[1] ); PrintAndLog("ICE encoded | %08X -> %08X", value, encvalue); return encvalue; } uint32_t srix4kDecode(uint32_t value) { switch(value) { case 0xC04F42C5: return 0x003139; case 0xC1484807: return 0x002943; case 0xC0C60848: return 0x001A20; } return 0; } uint32_t srix4kDecodeCounter(uint32_t num) { uint32_t value = ~num; ++value; return value; } uint32_t srix4kGetMagicbytes( uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19 ){ #define MASK 0xFFFFFFFF; uint32_t uid32 = uid & MASK; uint32_t counter = srix4kDecodeCounter(block6); uint32_t decodedBlock18 = srix4kDecode(block18); uint32_t decodedBlock19 = srix4kDecode(block19); uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1; uint32_t result = (uid32 * doubleBlock * counter) & MASK; PrintAndLog("Magic bytes | %08X", result); return result; } int srix4kValid(const char *Cmd){ uint64_t uid = 0xD00202501A4532F9; uint32_t block6 = 0xFFFFFFFF; uint32_t block18 = 0xC04F42C5; uint32_t block19 = 0xC1484807; uint32_t block21 = 0xD1BCABA4; uint32_t test_b18 = 0x00313918; uint32_t test_b18_enc = srix4kEncode(test_b18); //uint32_t test_b18_dec = srix4kDecode(test_b18_enc); PrintAndLog("ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc , ""); uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19); PrintAndLog("BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21); return 0; } int CmdteaSelfTest(const char *Cmd){ uint8_t v[8], v_le[8]; memset(v, 0x00, sizeof(v)); memset(v_le, 0x00, sizeof(v_le)); uint8_t* v_ptr = v_le; uint8_t cmdlen = strlen(Cmd); cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen; if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){ PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen); return 1; } SwapEndian64ex(v , 8, 4, v_ptr); // ENCRYPTION KEY: uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB }; uint8_t keyle[16]; uint8_t* key_ptr = keyle; SwapEndian64ex(key , sizeof(key), 4, key_ptr); PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8)); tea_decrypt(v_ptr, key_ptr); PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); tea_encrypt(v_ptr, key_ptr); PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8)); return 0; } bool waitCmd(bool verbose) { bool crc = FALSE; uint8_t b1 = 0, b2 = 0; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; uint8_t status = 0; uint16_t len = 0; UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) { status = (resp.arg[0] & 0xFFFF); if ( status > 0 ) return FALSE; len = (resp.arg[1] & 0xFFFF); memcpy(data, resp.d.asBytes, len); if (verbose) { ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2); crc = ( data[len-2] == b1 && data[len-1] == b2); PrintAndLog("[LEN %u] %s[%02X %02X] %s", len, sprint_hex(data, len-2), data[len-2], data[len-1], (crc) ? "OK" : "FAIL" ); } return TRUE; } else { PrintAndLog("timeout while waiting for reply."); return FALSE; } } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"info", CmdHF14Binfo, 0, "Find and print details about a 14443B tag"}, {"list", CmdHF14BList, 0, "[Deprecated] List ISO 14443B history"}, {"raw", CmdHF14BCmdRaw, 0, "Send raw hex data to tag"}, {"reader", CmdHF14BReader, 0, "Act as a 14443B reader to identify a tag"}, {"sim", CmdHF14BSim, 0, "Fake ISO 14443B tag"}, {"snoop", CmdHF14BSnoop, 0, "Eavesdrop ISO 14443B"}, {"sriread", CmdHF14BReadSri, 0, "Read contents of a SRI512 | SRIX4K tag"}, {"sriwrite", CmdHF14BWriteSri, 0, "Write data to a SRI512 | SRIX4K tag"}, //{"valid", srix4kValid, 1, "srix4k checksum test"}, //{"valid", CmdteaSelfTest, 1, "tea test"}, {NULL, NULL, 0, NULL} }; int CmdHF14B(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }