//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Data and Graph commands //----------------------------------------------------------------------------- #include "cmddata.h" uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN]; //uint8_t g_debugMode = 0; size_t DemodBufferLen = 0; size_t g_DemodStartIdx = 0; int g_DemodClock = 0; static int CmdHelp(const char *Cmd); int usage_data_printdemodbuf(void){ PrintAndLogEx(NORMAL, "Usage: data printdemodbuffer x o l "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " x output in hex (omit for binary output)"); PrintAndLogEx(NORMAL, " o enter offset in # of bits"); PrintAndLogEx(NORMAL, " l enter length to print in # of bits or hex characters respectively"); return 0; } int usage_data_manrawdecode(void){ PrintAndLogEx(NORMAL, "Usage: data manrawdecode [invert] [maxErr]"); PrintAndLogEx(NORMAL, " Takes 10 and 01 and converts to 0 and 1 respectively"); PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLogEx(NORMAL, " [invert] invert output"); PrintAndLogEx(NORMAL, " [maxErr] set number of errors allowed (default = 20)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data manrawdecode = decode manchester bitstream from the demodbuffer"); return 0; } int usage_data_biphaserawdecode(void){ PrintAndLogEx(NORMAL, "Usage: data biphaserawdecode [offset] [invert] [maxErr]"); PrintAndLogEx(NORMAL, " Converts 10 or 01 to 1 and 11 or 00 to 0"); PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLogEx(NORMAL, " --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position"); PrintAndLogEx(NORMAL, " [invert <0|1>], set to 1 to invert output"); PrintAndLogEx(NORMAL, " [maxErr int], set max errors tolerated - default=20"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data biphaserawdecode = decode biphase bitstream from the demodbuffer"); PrintAndLogEx(NORMAL, " Example: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output"); return 0; } int usage_data_rawdemod(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod [modulation] |"); PrintAndLogEx(NORMAL, " [modulation] as 2 char, 'ab' for ask/biphase, 'am' for ask/manchester, 'ar' for ask/raw, 'fs' for fsk, ..."); PrintAndLogEx(NORMAL, " 'nr' for nrz/direct, 'p1' for psk1, 'p2' for psk2"); PrintAndLogEx(NORMAL, " as 'h', prints the help for the specific modulation"); PrintAndLogEx(NORMAL, " see specific modulation help for optional parameters"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod fs h = print help specific to fsk demod"); PrintAndLogEx(NORMAL, " : data rawdemod fs = demod GraphBuffer using: fsk - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect"); return 0; } int usage_data_rawdemod_am(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod am [clock] [maxError] [maxLen] [amplify]"); PrintAndLogEx(NORMAL, " ['s'] optional, check for Sequence Terminator"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod am = demod an ask/manchester tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_ab(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod ab [offset] [clock] [maxError] [maxLen] "); PrintAndLogEx(NORMAL, " [offset], offset to begin biphase, default=0"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, " NOTE: can be entered as second or third argument"); PrintAndLogEx(NORMAL, " NOTE: can be entered as first, second or last argument"); PrintAndLogEx(NORMAL, " NOTE: any other arg must have previous args set to work"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod ab = demod an ask/biph tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified"); PrintAndLogEx(NORMAL, " : data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLogEx(NORMAL, " : data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return 0; } int usage_data_rawdemod_ar(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod ar [clock] [maxError] [maxLen] [amplify]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect"); PrintAndLogEx(NORMAL, " , 1 to invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100"); PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (1024 bits at rf/64)"); PrintAndLogEx(NORMAL, " , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod ar = demod an ask tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod ar a = demod an ask tag from GraphBuffer, amplified"); PrintAndLogEx(NORMAL, " : data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLogEx(NORMAL, " : data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return 0; } int usage_data_rawdemod_fs(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod fs [clock] [fchigh] [fclow]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, omit for autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output, can be used even if the clock is omitted"); PrintAndLogEx(NORMAL, " [fchigh], larger field clock length, omit for autodetect"); PrintAndLogEx(NORMAL, " [fclow], small field clock length, omit for autodetect"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect"); PrintAndLogEx(NORMAL, " : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc"); PrintAndLogEx(NORMAL, " : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output"); PrintAndLogEx(NORMAL, " : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc"); PrintAndLogEx(NORMAL, " : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer"); return 0; } int usage_data_rawdemod_nr(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod nr [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod nr = demod a nrz/direct tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_p1(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod p1 [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod p1 = demod a psk1 tag from GraphBuffer"); PrintAndLogEx(NORMAL, " : data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " : data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_p2(void){ PrintAndLogEx(NORMAL, "Usage: data rawdemod p2 [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " , 1 for invert output"); PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock"); PrintAndLogEx(NORMAL, " : data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " : data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output"); PrintAndLogEx(NORMAL, " : data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output"); PrintAndLogEx(NORMAL, " : data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors"); return 0; } int usage_data_autocorr(void) { PrintAndLogEx(NORMAL, "Autocorrelate is used to detect repeating sequences. We use it as detection of length in bits a message inside the signal is"); PrintAndLogEx(NORMAL, "Usage: data autocorr w [g]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " w window length for correlation - default = 4000"); PrintAndLogEx(NORMAL, " g save back to GraphBuffer (overwrite)"); return 0; } int usage_data_undecimate(void){ PrintAndLogEx(NORMAL, "Usage: data undec [factor]"); PrintAndLogEx(NORMAL, "This function performs un-decimation, by repeating each sample N times"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " factor The number of times to repeat each sample.[default:2]"); PrintAndLogEx(NORMAL, "Example: 'data undec 3'"); return 0; } int usage_data_detectclock(void){ PrintAndLogEx(NORMAL, "Usage: data detectclock [modulation] "); PrintAndLogEx(NORMAL, " [modulation as char], specify the modulation type you want to detect the clock of"); PrintAndLogEx(NORMAL, " , specify the clock (optional - to get best start position only)"); PrintAndLogEx(NORMAL, " 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " Example: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer"); PrintAndLogEx(NORMAL, " data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer"); return 0; } int usage_data_hex2bin(void){ PrintAndLogEx(NORMAL, "Usage: data hex2bin "); PrintAndLogEx(NORMAL, " This function will ignore all non-hexadecimal characters (but stop reading on whitespace)"); return 0; } int usage_data_bin2hex(void){ PrintAndLogEx(NORMAL, "Usage: data bin2hex "); PrintAndLogEx(NORMAL, " This function will ignore all characters not 1 or 0 (but stop reading on whitespace)"); return 0; } int usage_data_buffclear(void){ PrintAndLogEx(NORMAL, "This function clears the bigbuff on deviceside"); PrintAndLogEx(NORMAL, "Usage: data buffclear [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); return 0; } int usage_data_fsktonrz() { PrintAndLogEx(NORMAL, "Usage: data fsktonrz c l f "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " c enter the a clock (omit to autodetect)"); PrintAndLogEx(NORMAL, " l enter a field clock (omit to autodetect)"); PrintAndLogEx(NORMAL, " f enter a field clock (omit to autodetect)"); return 0; } //set the demod buffer with given array of binary (one bit per byte) //by marshmellow void setDemodBuf(uint8_t *buf, size_t size, size_t startIdx) { if (buf == NULL) return; if ( size > MAX_DEMOD_BUF_LEN - startIdx) size = MAX_DEMOD_BUF_LEN - startIdx; for (size_t i = 0; i < size; i++) DemodBuffer[i] = buf[startIdx++]; DemodBufferLen = size; } bool getDemodBuf(uint8_t *buf, size_t *size) { if (buf == NULL) return false; if (size == NULL) return false; if (*size == 0) return false; *size = (*size > DemodBufferLen) ? DemodBufferLen : *size; memcpy(buf, DemodBuffer, *size); return true; } // include // Root mean square double rms(double *v, size_t n) { double sum = 0.0; for(size_t i = 0; i < n; i++) sum += v[i] * v[i]; return sqrt(sum / n); } int cmp_int( const void *a, const void *b) { if (*(const int *)a < *(const int *)b) return -1; else return *(const int *)a > *(const int *)b; } int cmp_uint8( const void *a, const void *b) { if (*(const uint8_t *)a < *(const uint8_t *)b) return -1; else return *(const uint8_t *)a > *(const uint8_t *)b; } // Median of a array of values double median_int( int *src, size_t size ) { qsort( src, size, sizeof(int), cmp_int); return 0.5 * ( src[size/2] + src[(size-1)/2]); } double median_uint8( uint8_t *src, size_t size ) { qsort( src, size, sizeof(uint8_t), cmp_uint8); return 0.5 * ( src[size/2] + src[(size-1)/2]); } // function to compute mean for a series static double compute_mean(const int *data, size_t n) { double mean = 0.0; for (size_t i=0; i < n; i++) mean += data[i]; mean /= n; return mean; } // function to compute variance for a series static double compute_variance(const int *data, size_t n) { double variance = 0.0; double mean = compute_mean(data, n); for (size_t i=0; i < n; i++) variance += pow(( data[i] - mean), 2.0); variance /= n; return variance; } // Function to compute autocorrelation for a series // Author: Kenneth J. Christensen // - Corrected divide by n to divide (n - lag) from Tobias Mueller /* static double compute_autoc(const int *data, size_t n, int lag) { double autocv = 0.0; // Autocovariance value double ac_value; // Computed autocorrelation value to be returned double variance; // Computed variance double mean; mean = compute_mean(data, n); variance = compute_variance(data, n); for (size_t i=0; i < (n - lag); i++) autocv += (data[i] - mean) * (data[i+lag] - mean); autocv = (1.0 / (n - lag)) * autocv; // Autocorrelation is autocovariance divided by variance ac_value = autocv / variance; return ac_value; } */ // option '1' to save DemodBuffer any other to restore void save_restoreDB(uint8_t saveOpt) { static uint8_t SavedDB[MAX_DEMOD_BUF_LEN]; static size_t SavedDBlen; static bool DB_Saved = false; static size_t savedDemodStartIdx = 0; static int savedDemodClock = 0; if (saveOpt == GRAPH_SAVE) { //save memcpy(SavedDB, DemodBuffer, sizeof(DemodBuffer)); SavedDBlen = DemodBufferLen; DB_Saved=true; savedDemodStartIdx = g_DemodStartIdx; savedDemodClock = g_DemodClock; } else if (DB_Saved) { //restore memcpy(DemodBuffer, SavedDB, sizeof(DemodBuffer)); DemodBufferLen = SavedDBlen; g_DemodClock = savedDemodClock; g_DemodStartIdx = savedDemodStartIdx; } } int CmdSetDebugMode(const char *Cmd) { int demod = 0; sscanf(Cmd, "%i", &demod); g_debugMode = (uint8_t)demod; return 1; } //by marshmellow // max output to 512 bits if we have more - should be plenty void printDemodBuff(void) { int len = DemodBufferLen; if (len < 1) { PrintAndLogEx(NORMAL, "(printDemodBuff) no bits found in demod buffer"); return; } if (len > 512) len = 512; PrintAndLogEx(NORMAL, "%s", sprint_bin_break(DemodBuffer, len, 16) ); } int CmdPrintDemodBuff(const char *Cmd) { char hex[512] = {0x00}; bool hexMode = false; bool errors = false; uint32_t offset = 0; uint32_t length = 512; char cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_data_printdemodbuf(); case 'x': hexMode = true; cmdp++; break; case 'o': offset = param_get32ex(Cmd, cmdp+1, 0, 10); if (!offset) errors = true; cmdp += 2; break; case 'l': length = param_get32ex(Cmd, cmdp+1, 512, 10); if (!length) errors = true; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_data_printdemodbuf(); if (DemodBufferLen == 0) { PrintAndLogEx(NORMAL, "Demodbuffer is empty"); return 0; } length = (length > (DemodBufferLen-offset)) ? DemodBufferLen-offset : length; int numBits = (length) & 0x00FFC; //make sure we don't exceed our string if (hexMode){ char *buf = (char *) (DemodBuffer + offset); numBits = (numBits > sizeof(hex)) ? sizeof(hex) : numBits; numBits = binarraytohex(hex, buf, numBits); if (numBits==0) return 0; PrintAndLogEx(NORMAL, "DemodBuffer: %s",hex); } else { PrintAndLogEx(NORMAL, "DemodBuffer:\n%s", sprint_bin_break(DemodBuffer+offset,numBits,16)); } return 1; } //by marshmellow //this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer int CmdGetBitStream(const char *Cmd) { CmdHpf(Cmd); for (uint32_t i = 0; i < GraphTraceLen; i++) GraphBuffer[i] = (GraphBuffer[i] >= 1) ? 1 : 0; RepaintGraphWindow(); return 0; } //by marshmellow //Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a' // (amp may not be needed anymore) //verbose will print results and demoding messages //emSearch will auto search for EM410x format in bitstream //askType switches decode: ask/raw = 0, ask/manchester = 1 int ASKDemod_ext(const char *Cmd, bool verbose, bool emSearch, uint8_t askType, bool *stCheck) { int invert = 0; int clk = 0; int maxErr = 100; int maxLen = 0; uint8_t askamp = 0; char amp = param_getchar(Cmd, 0); uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0}; sscanf(Cmd, "%i %i %i %i %c", &clk, &invert, &maxErr, &maxLen, &); if (!maxLen) maxLen = BIGBUF_SIZE; if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "Invalid argument: %s", Cmd); return 0; } if (clk == 1) { invert = 1; clk = 0; } size_t BitLen = getFromGraphBuf(BitStream); PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Bitlen from grphbuff: %d", BitLen); if (BitLen < 255) return 0; if (maxLen < BitLen && maxLen != 0) BitLen = maxLen; int foundclk = 0; //amp before ST check if (amp == 'a' || amp == 'A') askAmp(BitStream, BitLen); bool st = false; size_t ststart = 0, stend = 0; if (*stCheck) st = DetectST(BitStream, &BitLen, &foundclk, &ststart, &stend); if (st) { *stCheck = st; clk = (clk == 0) ? foundclk : clk; CursorCPos = ststart; CursorDPos = stend; if (verbose || g_debugMode) PrintAndLogEx(NORMAL, "Found Sequence Terminator - First one is shown by orange and blue graph markers"); } int startIdx = 0; int errCnt = askdemod_ext(BitStream, &BitLen, &clk, &invert, maxErr, askamp, askType, &startIdx); if (errCnt < 0 || BitLen < 16){ //if fatal error (or -1) PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) No data found errors:%d, invert:%d, bitlen:%d, clock:%d", errCnt, invert, BitLen, clk); return 0; } if (errCnt > maxErr){ PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Too many errors found, errors:%d, bits:%d, clock:%d", errCnt, BitLen, clk); return 0; } if (verbose || g_debugMode) PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Using clock:%d, invert:%d, bits found:%d", clk, invert, BitLen); //output setDemodBuf(BitStream,BitLen,0); setClockGrid(clk, startIdx); if (verbose || g_debugMode){ if (errCnt > 0) PrintAndLogEx(NORMAL, "# Errors during Demoding (shown as 7 in bit stream): %d",errCnt); if (askType) PrintAndLogEx(NORMAL, "ASK/Manchester - Clock: %d - Decoded bitstream:",clk); else PrintAndLogEx(NORMAL, "ASK/Raw - Clock: %d - Decoded bitstream:",clk); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); } uint64_t lo = 0; uint32_t hi = 0; if (emSearch) AskEm410xDecode(true, &hi, &lo); return 1; } int ASKDemod(const char *Cmd, bool verbose, bool emSearch, uint8_t askType) { bool st = false; return ASKDemod_ext(Cmd, verbose, emSearch, askType, &st); } //by marshmellow //takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a' //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int Cmdaskmandemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 45 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_am(); bool st = true; if (Cmd[0]=='s') return ASKDemod_ext(Cmd++, true, true, 1, &st); else if (Cmd[1] == 's') return ASKDemod_ext(Cmd+=2, true, true, 1, &st); return ASKDemod(Cmd, true, true, 1); } //by marshmellow //manchester decode //stricktly take 10 and 01 and convert to 0 and 1 int Cmdmandecoderaw(const char *Cmd) { int i = 0; int errCnt = 0; size_t size = 0; int invert = 0; int maxErr = 20; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 5 || cmdp == 'h' || cmdp == 'H') return usage_data_manrawdecode(); if (DemodBufferLen==0) return 0; uint8_t BitStream[MAX_DEMOD_BUF_LEN]={0}; int high = 0, low = 0; for (; i < DemodBufferLen; ++i){ if (DemodBuffer[i] > high) high=DemodBuffer[i]; else if(DemodBuffer[i] < low) low=DemodBuffer[i]; BitStream[i] = DemodBuffer[i]; } if (high>7 || low <0 ){ PrintAndLogEx(WARNING, "Error: please raw demod the wave first then manchester raw decode"); return 0; } sscanf(Cmd, "%i %i", &invert, &maxErr); size = i; uint8_t alignPos = 0; errCnt = manrawdecode(BitStream, &size, invert, &alignPos); if (errCnt >= maxErr){ PrintAndLogEx(WARNING, "Too many errors: %d",errCnt); return 0; } PrintAndLogEx(NORMAL, "Manchester Decoded - # errors:%d - data:",errCnt); PrintAndLogEx(NORMAL, "%s", sprint_bin_break(BitStream, size, 16)); if (errCnt == 0){ uint64_t id = 0; uint32_t hi = 0; size_t idx=0; if (Em410xDecode(BitStream, &size, &idx, &hi, &id)){ //need to adjust to set bitstream back to manchester encoded data //setDemodBuf(BitStream, size, idx); printEM410x(hi, id); } } return 1; } //by marshmellow //biphase decode //take 01 or 10 = 0 and 11 or 00 = 1 //takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit // and "invert" default = 0 if 1 it will invert output // the argument offset allows us to manually shift if the output is incorrect - [EDIT: now auto detects] int CmdBiphaseDecodeRaw(const char *Cmd) { size_t size=0; int offset=0, invert=0, maxErr=20, errCnt=0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_data_biphaserawdecode(); sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr); if (DemodBufferLen==0){ PrintAndLogEx(NORMAL, "DemodBuffer Empty - run 'data rawdemod ar' first"); return 0; } uint8_t BitStream[MAX_DEMOD_BUF_LEN]={0}; size = sizeof(BitStream); if ( !getDemodBuf(BitStream, &size) ) return 0; errCnt=BiphaseRawDecode(BitStream, &size, &offset, invert); if (errCnt < 0){ PrintAndLogEx(WARNING, "Error during decode:%d", errCnt); return 0; } if (errCnt > maxErr){ PrintAndLogEx(WARNING, "Too many errors attempting to decode: %d",errCnt); return 0; } if (errCnt > 0) PrintAndLogEx(WARNING, "# Errors found during Demod (shown as 7 in bit stream): %d",errCnt); PrintAndLogEx(NORMAL, "Biphase Decoded using offset: %d - # invert:%d - data:",offset,invert); PrintAndLogEx(NORMAL, "%s", sprint_bin_break(BitStream, size, 16)); if (offset) setDemodBuf(DemodBuffer,DemodBufferLen-offset, offset); //remove first bit from raw demod setClockGrid(g_DemodClock, g_DemodStartIdx + g_DemodClock*offset/2); return 1; } //by marshmellow // - ASK Demod then Biphase decode GraphBuffer samples int ASKbiphaseDemod(const char *Cmd, bool verbose) { //ask raw demod GraphBuffer first int offset=0, clk=0, invert=0, maxErr=0; sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr); uint8_t BitStream[MAX_DEMOD_BUF_LEN]; size_t size = getFromGraphBuf(BitStream); if (size == 0 ) { PrintAndLogEx(DEBUG, "DEBUG: no data in graphbuf"); return 0; } int startIdx = 0; //invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer int errCnt = askdemod_ext(BitStream, &size, &clk, &invert, maxErr, 0, 0, &startIdx); if ( errCnt < 0 || errCnt > maxErr ) { PrintAndLogEx(DEBUG, "DEBUG: no data or error found %d, clock: %d", errCnt, clk); return 0; } //attempt to Biphase decode BitStream errCnt = BiphaseRawDecode(BitStream, &size, &offset, invert); if (errCnt < 0){ if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode: %d", errCnt); return 0; } if (errCnt > maxErr) { if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode too many errors: %d", errCnt); return 0; } //success set DemodBuffer and return setDemodBuf(BitStream, size, 0); setClockGrid(clk, startIdx + clk*offset/2); if (g_debugMode || verbose){ PrintAndLogEx(NORMAL, "Biphase Decoded using offset: %d - clock: %d - # errors:%d - data:",offset,clk,errCnt); printDemodBuff(); } return 1; } //by marshmellow - see ASKbiphaseDemod int Cmdaskbiphdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_ab(); return ASKbiphaseDemod(Cmd, true); } //by marshmellow - see ASKDemod int Cmdaskrawdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_ar(); return ASKDemod(Cmd, true, false, 0); } int AutoCorrelate(const int *in, int *out, size_t len, int window, bool SaveGrph, bool verbose) { // sanity check if ( window > len ) window = len; if (verbose) PrintAndLogEx(INFO, "performing %d correlations", GraphTraceLen - window); //test double autocv = 0.0; // Autocovariance value double ac_value; // Computed autocorrelation value to be returned double variance; // Computed variance double mean; size_t correlation = 0; int lastmax = 0; // in, len, 4000 mean = compute_mean(in, len); variance = compute_variance(in, len); static int CorrelBuffer[MAX_GRAPH_TRACE_LEN]; for (int i = 0; i < len - window; ++i) { for (size_t j=0; j < (len - i); j++) { autocv += (in[j] - mean) * (in[j+i] - mean); } autocv = (1.0 / (len - i)) * autocv; CorrelBuffer[i] = autocv; // Autocorrelation is autocovariance divided by variance ac_value = autocv / variance; // keep track of which distance is repeating. if ( ac_value > 1) { correlation = i-lastmax; lastmax = i; } } if (verbose && ( correlation > 1 ) ) { PrintAndLogEx(SUCCESS, "possible correlation %4d samples", correlation); } else { PrintAndLogEx(FAILED, "no repeating pattern found"); } if (SaveGrph){ //GraphTraceLen = GraphTraceLen - window; memcpy(out, CorrelBuffer, len * sizeof(int)); RepaintGraphWindow(); } return correlation; } int CmdAutoCorr(const char *Cmd) { uint32_t window = 4000; uint8_t cmdp = 0; bool updateGrph = false; bool errors = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_data_autocorr(); case 'g': case 'G': updateGrph = true; cmdp++; break; case 'w': case 'W': window = param_get32ex(Cmd, cmdp+1, 4000, 10); if (window >= GraphTraceLen) { PrintAndLogEx(WARNING, "window must be smaller than trace (%d samples)", GraphTraceLen); errors = true; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0 ) return usage_data_autocorr(); return AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, window, updateGrph, true); } int CmdBitsamples(const char *Cmd) { int cnt = 0; uint8_t got[12288]; GetFromBigBuf(got, sizeof(got), 0); WaitForResponse(CMD_ACK, NULL); for (int j = 0; j < sizeof(got); j++) { for (int k = 0; k < 8; k++) { if(got[j] & (1 << (7 - k))) GraphBuffer[cnt++] = 1; else GraphBuffer[cnt++] = 0; } } GraphTraceLen = cnt; RepaintGraphWindow(); return 0; } int CmdBuffClear(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_data_buffclear(); UsbCommand c = {CMD_BUFF_CLEAR, {0,0,0}}; clearCommandBuffer(); SendCommand(&c); ClearGraph(true); return 0; } int CmdDec(const char *Cmd) { for (int i = 0; i < (GraphTraceLen / 2); ++i) GraphBuffer[i] = GraphBuffer[i * 2]; GraphTraceLen /= 2; PrintAndLogEx(NORMAL, "decimated by 2"); RepaintGraphWindow(); return 0; } /** * Undecimate - I'd call it 'interpolate', but we'll save that * name until someone does an actual interpolation command, not just * blindly repeating samples * @param Cmd * @return */ int CmdUndec(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_data_undecimate(); uint8_t factor = param_get8ex(Cmd, 0, 2, 10); //We have memory, don't we? int swap[MAX_GRAPH_TRACE_LEN] = {0}; uint32_t g_index = 0, s_index = 0; while(g_index < GraphTraceLen && s_index + factor < MAX_GRAPH_TRACE_LEN) { int count = 0; for (count = 0; count < factor && s_index + count < MAX_GRAPH_TRACE_LEN; count++) swap[s_index+count] = GraphBuffer[g_index]; s_index += count; g_index++; } memcpy(GraphBuffer, swap, s_index * sizeof(int)); GraphTraceLen = s_index; RepaintGraphWindow(); return 0; } //by marshmellow //shift graph zero up or down based on input + or - int CmdGraphShiftZero(const char *Cmd) { int shift = 0, shiftedVal = 0; //set options from parameters entered with the command sscanf(Cmd, "%i", &shift); for(int i = 0; i < GraphTraceLen; i++){ if ( i+shift >= GraphTraceLen) shiftedVal = GraphBuffer[i]; else shiftedVal = GraphBuffer[i] + shift; if (shiftedVal > 127) shiftedVal = 127; else if (shiftedVal < -127) shiftedVal = -127; GraphBuffer[i] = shiftedVal; } CmdNorm(""); return 0; } int AskEdgeDetect(const int *in, int *out, int len, int threshold) { int last = 0; for(int i = 1; i= threshold) //large jump up last = 127; else if (in[i] - in[i-1] <= -1 * threshold) //large jump down last = -127; out[i-1] = last; } return 0; } //by marshmellow //use large jumps in read samples to identify edges of waves and then amplify that wave to max //similar to dirtheshold, threshold commands //takes a threshold length which is the measured length between two samples then determines an edge int CmdAskEdgeDetect(const char *Cmd) { int thresLen = 25; int ans = 0; sscanf(Cmd, "%i", &thresLen); ans = AskEdgeDetect(GraphBuffer, GraphBuffer, GraphTraceLen, thresLen); RepaintGraphWindow(); return ans; } /* Print our clock rate */ // uses data from graphbuffer // adjusted to take char parameter for type of modulation to find the clock - by marshmellow. int CmdDetectClockRate(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_data_detectclock(); int clock = 0; switch ( cmdp ) { case 'a' : case 'A' : clock = GetAskClock(Cmd+1, true); break; case 'f' : case 'F' : clock = GetFskClock("", true); break; case 'n' : case 'N' : clock = GetNrzClock("", true); break; case 'p' : case 'P' : clock = GetPskClock("", true); break; default : PrintAndLogEx(NORMAL, "Please specify a valid modulation to detect the clock of - see option h for help"); break; } RepaintGraphWindow(); return clock; } char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert) { static char fType[8]; memset(fType, 0x00, 8); char *fskType = fType; if (fchigh==10 && fclow==8){ if (invert) //fsk2a memcpy(fskType, "FSK2a", 5); else //fsk2 memcpy(fskType, "FSK2", 4); } else if (fchigh == 8 && fclow == 5) { if (invert) memcpy(fskType, "FSK1", 4); else memcpy(fskType, "FSK1a", 5); } else { memcpy(fskType, "FSK??", 5); } return fskType; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) int FSKrawDemod(const char *Cmd, bool verbose) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint8_t rfLen, invert, fchigh, fclow; //set defaults //set options from parameters entered with the command rfLen = param_get8(Cmd, 0); invert = param_get8(Cmd, 1); fchigh = param_get8(Cmd, 2); fclow = param_get8(Cmd, 3); if (strlen(Cmd)>0 && strlen(Cmd)<=2) { if (rfLen==1) { invert = 1; //if invert option only is used rfLen = 0; } } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; //get field clock lengths uint16_t fcs=0; if (!fchigh || !fclow) { fcs = countFC(BitStream, BitLen, 1); if (!fcs) { fchigh = 10; fclow = 8; } else { fchigh = (fcs >> 8) & 0x00FF; fclow = fcs & 0x00FF; } } //get bit clock length if (!rfLen) { int firstClockEdge = 0; //todo - align grid on graph with this... rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow, &firstClockEdge); if (!rfLen) rfLen = 50; } int startIdx = 0; int size = fskdemod(BitStream, BitLen, rfLen, invert, fchigh, fclow, &startIdx); if (size > 0) { setDemodBuf(BitStream, size, 0); setClockGrid(rfLen, startIdx); // Now output the bitstream to the scrollback by line of 16 bits if (verbose || g_debugMode) { PrintAndLogEx(DEBUG, "DEBUG: (FSKrawDemod) Using Clock:%u, invert:%u, fchigh:%u, fclow:%u", rfLen, invert, fchigh, fclow); PrintAndLogEx(NORMAL, "%s decoded bitstream:", GetFSKType(fchigh, fclow, invert)); printDemodBuff(); } return 1; } else { if (g_debugMode) PrintAndLogEx(NORMAL, "no FSK data found"); } return 0; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) int CmdFSKrawdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 20 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_fs(); return FSKrawDemod(Cmd, true); } //by marshmellow //attempt to psk1 demod graph buffer int PSKDemod(const char *Cmd, bool verbose) { int invert = 0, clk = 0, maxErr = 100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk == 1){ invert = 1; clk=0; } if (invert != 0 && invert != 1) { if (g_debugMode || verbose) PrintAndLogEx(WARNING, "Invalid argument: %s", Cmd); return 0; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen == 0) return 0; int errCnt = 0; int startIdx = 0; errCnt = pskRawDemod_ext(BitStream, &BitLen, &clk, &invert, &startIdx); if (errCnt > maxErr){ if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d", clk, invert, BitLen, errCnt); return 0; } if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d", clk, invert, BitLen, errCnt); return 0; } if (verbose || g_debugMode){ PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Using Clock:%d, invert:%d, Bits Found:%d",clk,invert,BitLen); if (errCnt > 0){ PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) errors during Demoding (shown as 7 in bit stream): %d",errCnt); } } //prime demod buffer for output setDemodBuf(BitStream, BitLen, 0); setClockGrid(clk, startIdx); return 1; } int CmdPSKIdteck(const char *Cmd) { if (!PSKDemod("", false)) { PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck PSKDemod failed"); return 0; } size_t size = DemodBufferLen; //get binary from PSK1 wave int idx = detectIdteck(DemodBuffer, &size); if (idx < 0){ if (idx == -1) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: not enough samples"); else if (idx == -2) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: preamble not found"); else if (idx == -3) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: size not correct: %d", size); else PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: idx: %d",idx); // if didn't find preamble try again inverting if (!PSKDemod("1", false)) { PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck PSKDemod failed"); return 0; } idx = detectIdteck(DemodBuffer, &size); if (idx < 0){ if (idx == -1) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: not enough samples"); else if (idx == -2) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: preamble not found"); else if (idx == -3) PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: size not correct: %d", size); else PrintAndLogEx(DEBUG, "DEBUG: Error - Idteck: idx: %d",idx); return 0; } } setDemodBuf(DemodBuffer, 64, idx); //got a good demod uint32_t id = 0; uint32_t raw1 = bytebits_to_byte(DemodBuffer, 32); uint32_t raw2 = bytebits_to_byte(DemodBuffer+32, 32); //parity check (TBD) //checksum check (TBD) //output PrintAndLogEx(SUCCESS, "IDTECK Tag Found: Card ID %u , Raw: %08X%08X", id, raw1, raw2); return 1; } // by marshmellow // takes 3 arguments - clock, invert, maxErr as integers // attempts to demodulate nrz only // prints binary found and saves in demodbuffer for further commands int NRZrawDemod(const char *Cmd, bool verbose) { int invert=0; int clk=0; int maxErr=100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk==1){ invert=1; clk=0; } if (invert != 0 && invert != 1) { PrintAndLogEx(WARNING, "(NRZrawDemod) Invalid argument: %s", Cmd); return 0; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; int errCnt=0; int clkStartIdx = 0; errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, &clkStartIdx); if (errCnt > maxErr){ PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (errCnt<0 || BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (verbose || g_debugMode) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen); //prime demod buffer for output setDemodBuf(BitStream,BitLen,0); setClockGrid(clk, clkStartIdx); if (errCnt>0 && (verbose || g_debugMode)) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Errors during Demoding (shown as 7 in bit stream): %d",errCnt); if (verbose || g_debugMode) { PrintAndLogEx(NORMAL, "NRZ demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); } return 1; } int CmdNRZrawDemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 16 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_nr(); return NRZrawDemod(Cmd, true); } // by marshmellow // takes 3 arguments - clock, invert, maxErr as integers // attempts to demodulate psk only // prints binary found and saves in demodbuffer for further commands int CmdPSK1rawDemod(const char *Cmd) { int ans; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 16 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_p1(); ans = PSKDemod(Cmd, true); //output if (!ans){ if (g_debugMode) PrintAndLogEx(WARNING, "Error demoding: %d",ans); return 0; } PrintAndLogEx(NORMAL, "PSK1 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return 1; } // by marshmellow // takes same args as cmdpsk1rawdemod int CmdPSK2rawDemod(const char *Cmd) { int ans = 0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 16 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_p2(); ans = PSKDemod(Cmd, true); if (!ans){ if (g_debugMode) PrintAndLogEx(WARNING, "Error demoding: %d",ans); return 0; } psk1TOpsk2(DemodBuffer, DemodBufferLen); PrintAndLogEx(NORMAL, "PSK2 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return 1; } // by marshmellow - combines all raw demod functions into one menu command int CmdRawDemod(const char *Cmd) { char cmdp = Cmd[0]; //param_getchar(Cmd, 0); char cmdp2 = Cmd[1]; int ans = 0; if (strlen(Cmd) > 35 || cmdp == 'h' || cmdp == 'H' || strlen(Cmd) < 2) return usage_data_rawdemod(); if (cmdp == 'f' && cmdp2 == 's') ans = CmdFSKrawdemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'b') ans = Cmdaskbiphdemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'm') ans = Cmdaskmandemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'r') ans = Cmdaskrawdemod(Cmd+2); else if(cmdp == 'n' && cmdp2 == 'r') ans = CmdNRZrawDemod(Cmd+2); else if(cmdp == 'p' && cmdp2 == '1') ans = CmdPSK1rawDemod(Cmd+2); else if(cmdp == 'p' && cmdp2 == '2') ans = CmdPSK2rawDemod(Cmd+2); else PrintAndLogEx(WARNING, "Unknown modulation entered - see help ('h') for parameter structure"); return ans; } void setClockGrid(int clk, int offset) { g_DemodStartIdx = offset; g_DemodClock = clk; PrintAndLogEx(DEBUG, "DEBUG: (setClockGrid) demodoffset %d, clk %d", offset, clk); if (offset > clk) offset %= clk; if (offset < 0) offset += clk; if (offset > GraphTraceLen || offset < 0) return; if (clk < 8 || clk > GraphTraceLen) { GridLocked = false; GridOffset = 0; PlotGridX = 0; PlotGridXdefault = 0; RepaintGraphWindow(); } else { GridLocked = true; GridOffset = offset; PlotGridX = clk; PlotGridXdefault = clk; RepaintGraphWindow(); } } int CmdGrid(const char *Cmd) { sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY); PlotGridXdefault = PlotGridX; PlotGridYdefault = PlotGridY; RepaintGraphWindow(); return 0; } int CmdSetGraphMarkers(const char *Cmd) { sscanf(Cmd, "%i %i", &CursorCPos, &CursorDPos); RepaintGraphWindow(); return 0; } int CmdHexsamples(const char *Cmd) { int i, j; int requested = 0; int offset = 0; char string_buf[25]; char* string_ptr = string_buf; uint8_t got[BIGBUF_SIZE]; sscanf(Cmd, "%i %i", &requested, &offset); /* if no args send something */ if (requested == 0) { requested = 8; } if (offset + requested > sizeof(got)) { PrintAndLogEx(NORMAL, "Tried to read past end of buffer, + > %d", BIGBUF_SIZE); return 0; } GetFromBigBuf(got,requested,offset); WaitForResponse(CMD_ACK,NULL); i = 0; for (j = 0; j < requested; j++) { i++; string_ptr += sprintf(string_ptr, "%02x ", got[j]); if (i == 8) { *(string_ptr - 1) = '\0'; // remove the trailing space PrintAndLogEx(NORMAL, "%s", string_buf); string_buf[0] = '\0'; string_ptr = string_buf; i = 0; } if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes *(string_ptr - 1) = '\0'; PrintAndLogEx(NORMAL, "%s", string_buf); string_buf[0] = '\0'; } } return 0; } int CmdHide(const char *Cmd) { HideGraphWindow(); return 0; } //zero mean GraphBuffer int CmdHpf(const char *Cmd) { int i; int accum = 0; for (i = 10; i < GraphTraceLen; ++i) accum += GraphBuffer[i]; accum /= (GraphTraceLen - 10); for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] -= accum; RepaintGraphWindow(); return 0; } bool _headBit( BitstreamOut *stream) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = (stream->position++) & 7; // mask out 00000111 return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1; } uint8_t getByte(uint8_t bits_per_sample, BitstreamOut* b) { int i; uint8_t val = 0; for(i = 0 ; i < bits_per_sample; i++) val |= (_headBit(b) << (7-i)); return val; } int getSamples(int n, bool silent) { //If we get all but the last byte in bigbuf, // we don't have to worry about remaining trash // in the last byte in case the bits-per-sample // does not line up on byte boundaries uint8_t got[BIGBUF_SIZE-1] = { 0 }; if ( n == 0 || n > sizeof(got)) n = sizeof(got); if (!silent) PrintAndLogEx(NORMAL, "Reading %d bytes from device memory\n", n); GetFromBigBuf(got, n, 0); if (!silent) PrintAndLogEx(NORMAL, "Data fetched"); UsbCommand response; if ( !WaitForResponseTimeout(CMD_ACK, &response, 10000) ) { PrintAndLogEx(NORMAL, "timeout while waiting for reply."); return 1; } uint8_t bits_per_sample = 8; //Old devices without this feature would send 0 at arg[0] if (response.arg[0] > 0) { sample_config *sc = (sample_config *) response.d.asBytes; if (!silent) PrintAndLogEx(NORMAL, "Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample, sc->decimation); bits_per_sample = sc->bits_per_sample; } if (bits_per_sample < 8) { if (!silent) PrintAndLogEx(NORMAL, "Unpacking..."); BitstreamOut bout = { got, bits_per_sample * n, 0}; int j =0; for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) { uint8_t sample = getByte(bits_per_sample, &bout); GraphBuffer[j] = ((int) sample )- 128; } GraphTraceLen = j; if (!silent) PrintAndLogEx(NORMAL, "Unpacked %d samples" , j ); } else { for (int j = 0; j < n; j++) { GraphBuffer[j] = ((int)got[j]) - 128; } GraphTraceLen = n; } //ICEMAN todo // set signal properties low/high/mean/amplitude and is_noice detection justNoise(got, n); // set signal properties low/high/mean/amplitude and isnoice detection //justNoise_int(GraphBuffer, GraphTraceLen); setClockGrid(0, 0); DemodBufferLen = 0; RepaintGraphWindow(); return 0; } int CmdSamples(const char *Cmd) { int n = strtol(Cmd, NULL, 0); return getSamples(n, false); } int CmdTuneSamples(const char *Cmd) { #define NON_VOLTAGE 1000 #define LF_UNUSABLE_V 2000 #define LF_MARGINAL_V 10000 #define HF_UNUSABLE_V 3000 #define HF_MARGINAL_V 5000 #define ANTENNA_ERROR 1.03 // current algo has 3% error margin. int timeout = 0; PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(SUCCESS, "measuring antenna characteristics, please wait..."); UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING, {0,0,0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; while (!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING, &resp, 2000)) { timeout++; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(WARNING, "no response from Proxmark. Aborting..."); return 1; } } PrintAndLogEx(NORMAL, "\n"); uint32_t v_lf125 = resp.arg[0]; uint32_t v_lf134 = resp.arg[0] >> 32; uint32_t v_hf = resp.arg[1]; uint32_t peakf = resp.arg[2]; uint32_t peakv = resp.arg[2] >> 32; if ( v_lf125 > NON_VOLTAGE ) PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 125.00 kHz", (v_lf125 * ANTENNA_ERROR)/1000.0); if ( v_lf134 > NON_VOLTAGE ) PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 134.00 kHz", (v_lf134 * ANTENNA_ERROR)/1000.0); if ( peakv > NON_VOLTAGE && peakf > 0 ) PrintAndLogEx(SUCCESS, "LF optimal: %5.2f V - %6.2f kHz", (peakv * ANTENNA_ERROR)/1000.0, 12000.0/(peakf+1)); char judgement[10]; memset(judgement, 0, sizeof(judgement)); // LF evaluation if (peakv < LF_UNUSABLE_V) sprintf(judgement, "UNUSABLE"); else if (peakv < LF_MARGINAL_V) sprintf(judgement, "MARGINAL"); else sprintf(judgement, "OK"); PrintAndLogEx(NORMAL, "[%c] LF antenna is %s \n" , (peakv < LF_UNUSABLE_V) ? '!' : '+' , judgement ); // HF evaluation if ( v_hf > NON_VOLTAGE ) PrintAndLogEx(SUCCESS, "HF antenna: %5.2f V - 13.56 MHz", (v_hf * ANTENNA_ERROR)/1000.0); memset(judgement, 0, sizeof(judgement)); if (v_hf < HF_UNUSABLE_V) sprintf(judgement, "UNUSABLE"); else if (v_hf < HF_MARGINAL_V) sprintf(judgement, "MARGINAL"); else sprintf(judgement, "OK"); PrintAndLogEx(NORMAL, "[%c] HF antenna is %s" , (v_hf < HF_UNUSABLE_V) ? '!' : '+' , judgement ); // graph LF measurements // even here, these values has 3% error. uint16_t test = 0; for (int i = 0; i < 256; i++) { GraphBuffer[i] = resp.d.asBytes[i] - 128; test += resp.d.asBytes[i]; } if ( test > 0 ) { PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(SUCCESS, " Displaying LF tuning graph. Divisor 89 is 134khz, 95 is 125khz.\n\n"); GraphTraceLen = 256; ShowGraphWindow(); RepaintGraphWindow(); } else { PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(FAILED, "Not showing LF tuning graph since all values is zero.\n\n"); } return 0; } int CmdLoad(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "r"); if (!f) { PrintAndLogEx(WARNING, "couldn't open '%s'", filename); return 0; } GraphTraceLen = 0; char line[80]; while (fgets(line, sizeof (line), f)) { GraphBuffer[GraphTraceLen] = atoi(line); GraphTraceLen++; } if (f) fclose(f); PrintAndLogEx(SUCCESS, "loaded %d samples", GraphTraceLen); setClockGrid(0,0); DemodBufferLen = 0; RepaintGraphWindow(); // set signal properties low/high/mean/amplitude and isnoice detection justNoise_int(GraphBuffer, GraphTraceLen); return 0; } int CmdLtrim(const char *Cmd) { if (GraphTraceLen <= 0) return 0; int ds = atoi(Cmd); for (int i = ds; i < GraphTraceLen; ++i) GraphBuffer[i-ds] = GraphBuffer[i]; GraphTraceLen -= ds; RepaintGraphWindow(); return 0; } // trim graph to input argument length int CmdRtrim(const char *Cmd) { int ds = atoi(Cmd); GraphTraceLen = ds; RepaintGraphWindow(); return 0; } // trim graph (middle) piece int CmdMtrim(const char *Cmd) { int start = 0, stop = 0; sscanf(Cmd, "%i %i", &start, &stop); if (start > GraphTraceLen || stop > GraphTraceLen || start > stop) return 0; start++; //leave start position sample GraphTraceLen = stop - start; for (int i = 0; i < GraphTraceLen; i++) { GraphBuffer[i] = GraphBuffer[start+i]; } return 0; } int CmdNorm(const char *Cmd) { int i; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { for (i = 0; i < GraphTraceLen; ++i) { GraphBuffer[i] = ((long)(GraphBuffer[i] - ((max + min) / 2)) * 256) / (max - min); //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work } } RepaintGraphWindow(); return 0; } int CmdPlot(const char *Cmd) { ShowGraphWindow(); return 0; } int CmdSave(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "w"); if(!f) { PrintAndLogEx(NORMAL, "couldn't open '%s'", filename); return 0; } for (int i = 0; i < GraphTraceLen; i++) fprintf(f, "%d\n", GraphBuffer[i]); if (f) fclose(f); PrintAndLogEx(NORMAL, "saved to '%s'", Cmd); return 0; } int CmdScale(const char *Cmd) { CursorScaleFactor = atoi(Cmd); if (CursorScaleFactor == 0) { PrintAndLogEx(FAILED, "bad, can't have zero scale"); CursorScaleFactor = 1; } RepaintGraphWindow(); return 0; } int directionalThreshold(const int* in, int *out, size_t len, int8_t up, int8_t down) { int lastValue = in[0]; out[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in. for (size_t i = 1; i < len; ++i) { // Apply first threshold to samples heading up if (in[i] >= up && in[i] > lastValue) { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = 1; } // Apply second threshold to samples heading down else if (in[i] <= down && in[i] < lastValue) { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = -1; } else { lastValue = out[i]; // Buffer last value as we overwrite it. out[i] = out[i-1]; } } out[0] = out[1]; // Align with first edited sample. return 0; } int CmdDirectionalThreshold(const char *Cmd) { int8_t upThres = param_get8(Cmd, 0); int8_t downThres = param_get8(Cmd, 1); PrintAndLogEx(NORMAL, "Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres); directionalThreshold(GraphBuffer, GraphBuffer,GraphTraceLen, upThres, downThres); RepaintGraphWindow(); return 0; } int CmdZerocrossings(const char *Cmd) { // Zero-crossings aren't meaningful unless the signal is zero-mean. CmdHpf(""); int sign = 1; int zc = 0; int lastZc = 0; for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] * sign >= 0) { // No change in sign, reproduce the previous sample count. zc++; GraphBuffer[i] = lastZc; } else { // Change in sign, reset the sample count. sign = -sign; GraphBuffer[i] = lastZc; if (sign > 0) { lastZc = zc; zc = 0; } } } RepaintGraphWindow(); return 0; } /** * @brief Utility for conversion via cmdline. * @param Cmd * @return */ int Cmdbin2hex(const char *Cmd) { int bg =0, en =0; if(param_getptr(Cmd, &bg, &en, 0)) return usage_data_bin2hex(); //Number of digits supplied as argument size_t length = en - bg +1; size_t bytelen = (length+7) / 8; uint8_t* arr = (uint8_t *) malloc(bytelen); memset(arr, 0, bytelen); BitstreamOut bout = { arr, 0, 0 }; for (; bg <= en ;bg++) { char c = Cmd[bg]; if( c == '1') pushBit(&bout, 1); else if( c == '0') pushBit(&bout, 0); else PrintAndLogEx(NORMAL, "Ignoring '%c'", c); } if (bout.numbits % 8 != 0) PrintAndLogEx(NORMAL, "[padded with %d zeroes]\n", 8-(bout.numbits % 8)); //Uses printf instead of PrintAndLog since the latter // adds linebreaks to each printout - this way was more convenient since we don't have to // allocate a string and write to that first... for(size_t x = 0; x < bytelen ; x++) PrintAndLogEx(NORMAL, "%02X", arr[x]); PrintAndLogEx(NORMAL, "\n"); free(arr); return 0; } int Cmdhex2bin(const char *Cmd) { int bg =0, en =0; if(param_getptr(Cmd, &bg, &en, 0)) return usage_data_hex2bin(); while (bg <= en ) { char x = Cmd[bg++]; // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else continue; //Uses printf instead of PrintAndLog since the latter // adds linebreaks to each printout - this way was more convenient since we don't have to // allocate a string and write to that first... for(int i= 0 ; i < 4 ; ++i) PrintAndLogEx(NORMAL, "%d",(x >> (3 - i)) & 1); } PrintAndLogEx(NORMAL, "\n"); return 0; } /* // example of FSK2 RF/50 Tones static const int LowTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 }; static const int HighTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, // note one extra 1 to padd due to 50/8 remainder (1/2 the remainder) 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, // note one extra -1 to padd due to 50/8 remainder }; */ void GetHiLoTone(int *LowTone, int *HighTone, int clk, int LowToneFC, int HighToneFC) { int i,j=0; int Left_Modifier = ((clk % LowToneFC) % 2) + ((clk % LowToneFC)/2); int Right_Modifier = (clk % LowToneFC) / 2; //int HighToneMod = clk mod HighToneFC; int LeftHalfFCCnt = (LowToneFC % 2) + (LowToneFC/2); //truncate int FCs_per_clk = clk/LowToneFC; // need to correctly split up the clock to field clocks. // First attempt uses modifiers on each end to make up for when FCs don't evenly divide into Clk // start with LowTone // set extra 1 modifiers to make up for when FC doesn't divide evenly into Clk for (i = 0; i < Left_Modifier; i++) { LowTone[i] = 1; } // loop # of field clocks inside the main clock for (i = 0; i < (FCs_per_clk); i++) { // loop # of samples per field clock for (j = 0; j < LowToneFC; j++) { LowTone[(i*LowToneFC)+Left_Modifier+j] = ( j < LeftHalfFCCnt ) ? 1 : -1; } } int k; // add last -1 modifiers for (k = 0; k < Right_Modifier; k++) { LowTone[((i-1)*LowToneFC)+Left_Modifier+j+k] = -1; } // now do hightone Left_Modifier = ((clk % HighToneFC) % 2) + ((clk % HighToneFC)/2); Right_Modifier = (clk % HighToneFC) / 2; LeftHalfFCCnt = (HighToneFC % 2) + (HighToneFC/2); //truncate FCs_per_clk = clk/HighToneFC; for (i = 0; i < Left_Modifier; i++) { HighTone[i] = 1; } // loop # of field clocks inside the main clock for (i = 0; i < (FCs_per_clk); i++) { // loop # of samples per field clock for (j = 0; j < HighToneFC; j++) { HighTone[(i*HighToneFC)+Left_Modifier+j] = ( j < LeftHalfFCCnt ) ? 1 : -1; } } // add last -1 modifiers for (k = 0; k < Right_Modifier; k++) { PrintAndLogEx(NORMAL, "(i-1)*HighToneFC+lm+j+k %i",((i-1)*HighToneFC)+Left_Modifier+j+k); HighTone[((i-1)*HighToneFC)+Left_Modifier+j+k] = -1; } if (g_debugMode == 2) { for ( i = 0; i < clk; i++) { PrintAndLogEx(NORMAL, "Low: %i, High: %i",LowTone[i],HighTone[i]); } } } //old CmdFSKdemod adapted by marshmellow //converts FSK to clear NRZ style wave. (or demodulates) int FSKToNRZ(int *data, int *dataLen, int clk, int LowToneFC, int HighToneFC) { uint8_t ans=0; if (clk == 0 || LowToneFC == 0 || HighToneFC == 0) { int firstClockEdge=0; ans = fskClocks((uint8_t *) &LowToneFC, (uint8_t *) &HighToneFC, (uint8_t *) &clk, &firstClockEdge); if (g_debugMode > 1) { PrintAndLog ("DEBUG FSKtoNRZ: detected clocks: fc_low %i, fc_high %i, clk %i, firstClockEdge %i, ans %u", LowToneFC, HighToneFC, clk, firstClockEdge, ans); } } // currently only know fsk modulations with field clocks < 10 samples and > 4 samples. filter out to remove false positives (and possibly destroying ask/psk modulated waves...) if (ans == 0 || clk == 0 || LowToneFC == 0 || HighToneFC == 0 || LowToneFC > 10 || HighToneFC < 4) { if (g_debugMode > 1) { PrintAndLog ("DEBUG FSKtoNRZ: no fsk clocks found"); } return 0; } int LowTone[clk]; int HighTone[clk]; GetHiLoTone(LowTone, HighTone, clk, LowToneFC, HighToneFC); int i, j; // loop through ([all samples] - clk) for (i = 0; i < *dataLen - clk; ++i) { int lowSum = 0, highSum = 0; // sum all samples together starting from this sample for [clk] samples for each tone (multiply tone value with sample data) for (j = 0; j < clk; ++j) { lowSum += LowTone[j] * data[i+j]; highSum += HighTone[j] * data[i + j]; } // get abs( [average sample value per clk] * 100 ) (or a rolling average of sorts) lowSum = abs(100 * lowSum / clk); highSum = abs(100 * highSum / clk); // save these back to buffer for later use data[i] = (highSum << 16) | lowSum; } // now we have the abs( [average sample value per clk] * 100 ) for each tone // loop through again [all samples] - clk - 16 // note why 16??? is 16 the largest FC? changed to LowToneFC as that should be the > fc for(i = 0; i < *dataLen - clk - LowToneFC; ++i) { int lowTot = 0, highTot = 0; // sum a field clock width of abs( [average sample values per clk] * 100) for each tone for (j = 0; j < LowToneFC; ++j) { //10 for fsk2 lowTot += (data[i + j] & 0xffff); } for (j = 0; j < HighToneFC; j++) { //8 for fsk2 highTot += (data[i + j] >> 16); } // subtract the sum of lowTone averages by the sum of highTone averages as it // and write back the new graph value data[i] = lowTot - highTot; } // update dataLen to what we put back to the data sample buffer *dataLen -= (clk + LowToneFC); return 0; } int CmdFSKToNRZ(const char *Cmd) { // take clk, fc_low, fc_high // blank = auto; bool errors = false; int clk = 0; char cmdp = 0; int fc_low = 10, fc_high = 8; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_data_fsktonrz(); case 'C': case 'c': clk = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'F': case 'f': fc_high = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'L': case 'l': fc_low = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_data_fsktonrz(); setClockGrid(0,0); DemodBufferLen = 0; int ans = FSKToNRZ(GraphBuffer, &GraphTraceLen, clk, fc_low, fc_high); CmdNorm(""); RepaintGraphWindow(); return ans; } int CmdDataIIR(const char *Cmd){ uint8_t k = param_get8(Cmd,0); //iceIIR_Butterworth(GraphBuffer, GraphTraceLen); iceSimple_Filter(GraphBuffer, GraphTraceLen, k); RepaintGraphWindow(); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ASK demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"}, {"autocorr", CmdAutoCorr, 1, "[window length] [g] -- Autocorrelation over window - g to save back to GraphBuffer (overwrite)"}, {"biphaserawdecode",CmdBiphaseDecodeRaw,1, "[offset] [invert<0|1>] [maxErr] -- Biphase decode bin stream in DemodBuffer (offset = 0|1 bits to shift the decode start)"}, {"bin2hex", Cmdbin2hex, 1, " -- Converts binary to hexadecimal"}, {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"}, {"buffclear", CmdBuffClear, 1, "Clears bigbuff on deviceside and graph window"}, {"dec", CmdDec, 1, "Decimate samples"}, {"detectclock", CmdDetectClockRate, 1, "[] Detect ASK, FSK, NRZ, PSK clock rate of wave in GraphBuffer"}, {"fsktonrz", CmdFSKToNRZ, 1, "Convert fsk2 to nrz wave for alternate fsk demodulating (for weak fsk)"}, {"getbitstream", CmdGetBitStream, 1, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"}, {"grid", CmdGrid, 1, " -- overlay grid on graph window, use zero value to turn off either"}, {"hexsamples", CmdHexsamples, 0, " [] -- Dump big buffer as hex bytes"}, {"hex2bin", Cmdhex2bin, 1, " -- Converts hexadecimal to binary"}, {"hide", CmdHide, 1, "Hide graph window"}, {"hpf", CmdHpf, 1, "Remove DC offset from trace"}, {"load", CmdLoad, 1, " -- Load trace (to graph window"}, {"ltrim", CmdLtrim, 1, " -- Trim samples from left of trace"}, {"rtrim", CmdRtrim, 1, " -- Trim samples from right of trace"}, {"mtrim", CmdMtrim, 1, " -- Trim out samples from the specified start to the specified stop"}, {"manrawdecode", Cmdmandecoderaw, 1, "[invert] [maxErr] -- Manchester decode binary stream in DemodBuffer"}, {"norm", CmdNorm, 1, "Normalize max/min to +/-128"}, {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"}, {"printdemodbuffer",CmdPrintDemodBuff, 1, "[x] [o] [l] -- print the data in the DemodBuffer - 'x' for hex output"}, {"rawdemod", CmdRawDemod, 1, "[modulation] ... -see help (h option) -- Demodulate the data in the GraphBuffer and output binary"}, {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"}, {"save", CmdSave, 1, " -- Save trace (from graph window)"}, {"setgraphmarkers", CmdSetGraphMarkers, 1, "[orange_marker] [blue_marker] (in graph window)"}, {"scale", CmdScale, 1, " -- Set cursor display scale"}, {"setdebugmode", CmdSetDebugMode, 1, "<0|1|2> -- Turn on or off Debugging Level for lf demods"}, {"shiftgraphzero", CmdGraphShiftZero, 1, " -- Shift 0 for Graphed wave + or - shift value"}, {"dirthreshold", CmdDirectionalThreshold, 1, " -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."}, {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"}, {"undec", CmdUndec, 1, "Un-decimate samples by 2"}, {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"}, {"iir", CmdDataIIR, 0, "apply IIR buttersworth filter on plotdata"}, {NULL, NULL, 0, NULL} }; int CmdData(const char *Cmd){ clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }