//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency Legic commands //----------------------------------------------------------------------------- #include "cmdhflegic.h" static int CmdHelp(const char *Cmd); #define SESSION_IV 0x55 #define MAX_LENGTH 1024 int usage_legic_calccrc8(void){ PrintAndLog("Calculates the legic crc8/crc16 on the input hexbytes."); PrintAndLog("There must be an even number of hexsymbols as input."); PrintAndLog("Usage: hf legic crc8 [h] b u c "); PrintAndLog("Options:"); PrintAndLog(" h : this help"); PrintAndLog(" b : hex bytes"); PrintAndLog(" u : MCC hexbyte"); PrintAndLog(" c : 8|16 bit crc size"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" hf legic crc8 b deadbeef1122"); PrintAndLog(" hf legic crc8 b deadbeef1122 u 9A c 16"); return 0; } int usage_legic_load(void){ PrintAndLog("It loads datasamples from the file `filename` to device memory"); PrintAndLog("Usage: hf legic load [h] "); PrintAndLog("Options:"); PrintAndLog(" h : this help"); PrintAndLog(" : Name of file to load"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" hf legic load filename"); return 0; } int usage_legic_read(void){ PrintAndLog("Read data from a legic tag."); PrintAndLog("Usage: hf legic read [h] "); PrintAndLog("Options:"); PrintAndLog(" h : this help"); PrintAndLog(" : offset in data array to start download from"); PrintAndLog(" : number of bytes to download"); PrintAndLog(" : (optional) Initialization vector to use (ODD and 7bits)"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" hf legic read"); PrintAndLog(" hf legic read 10 4"); return 0; } int usage_legic_sim(void){ PrintAndLog("Missing help text."); return 0; } int usage_legic_write(void){ PrintAndLog(" Write sample buffer to a legic tag. (use after load or read)"); PrintAndLog("Usage: hf legic write [h] "); PrintAndLog("Options:"); PrintAndLog(" h : this help"); PrintAndLog(" : offset in data array to start writing from"); PrintAndLog(" : number of bytes to write"); PrintAndLog(" : (optional) Initialization vector to use (ODD and 7bits)"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" hf legic write"); PrintAndLog(" hf legic write 10 4"); return 0; } int usage_legic_rawwrite(void){ PrintAndLog("Write raw data direct to a specific address on legic tag."); PrintAndLog("Usage: hf legic writeraw [h]
"); PrintAndLog("Options:"); PrintAndLog(" h : this help"); PrintAndLog("
: address to write to"); PrintAndLog(" : value to write"); PrintAndLog(" : (optional) Initialization vector to use (ODD and 7bits)"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" hf legic writeraw"); PrintAndLog(" hf legic writeraw 10 4"); return 0; } int usage_legic_fill(void){ PrintAndLog("Missing help text."); return 0; } /* * Output BigBuf and deobfuscate LEGIC RF tag data. * This is based on information given in the talk held * by Henryk Ploetz and Karsten Nohl at 26c3 */ int CmdLegicDecode(const char *Cmd) { int i = 0, k = 0, segmentNum = 0, segment_len = 0, segment_flag = 0; int crc = 0, wrp = 0, wrc = 0; uint8_t stamp_len = 0; uint8_t data_buf[1024]; // receiver buffer char token_type[5] = {0,0,0,0,0}; int dcf = 0; int bIsSegmented = 0; // copy data from proxmark into buffer GetFromBigBuf(data_buf,sizeof(data_buf),0); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){ PrintAndLog("Command execute timeout"); return 1; } // Output CDF System area (9 bytes) plus remaining header area (12 bytes) crc = data_buf[4]; uint32_t calc_crc = CRC8Legic(data_buf, 4); PrintAndLog("\nCDF: System Area"); PrintAndLog("------------------------------------------------------"); PrintAndLog("MCD: %02x, MSN: %02x %02x %02x, MCC: %02x %s", data_buf[0], data_buf[1], data_buf[2], data_buf[3], data_buf[4], (calc_crc == crc) ? "OK":"Fail" ); token_type[0] = 0; dcf = ((int)data_buf[6] << 8) | (int)data_buf[5]; // New unwritten media? if(dcf == 0xFFFF) { PrintAndLog("DCF: %d (%02x %02x), Token Type=NM (New Media)", dcf, data_buf[5], data_buf[6] ); } else if(dcf > 60000) { // Master token? int fl = 0; if(data_buf[6] == 0xec) { strncpy(token_type, "XAM", sizeof(token_type)); fl = 1; stamp_len = 0x0c - (data_buf[5] >> 4); } else { switch (data_buf[5] & 0x7f) { case 0x00 ... 0x2f: strncpy(token_type, "IAM", sizeof(token_type)); fl = (0x2f - (data_buf[5] & 0x7f)) + 1; break; case 0x30 ... 0x6f: strncpy(token_type, "SAM", sizeof(token_type)); fl = (0x6f - (data_buf[5] & 0x7f)) + 1; break; case 0x70 ... 0x7f: strncpy(token_type, "GAM", sizeof(token_type)); fl = (0x7f - (data_buf[5] & 0x7f)) + 1; break; } stamp_len = 0xfc - data_buf[6]; } PrintAndLog("DCF: %d (%02x %02x), Token Type=%s (OLE=%01u), OL=%02u, FL=%02u", dcf, data_buf[5], data_buf[6], token_type, (data_buf[5] & 0x80 )>> 7, stamp_len, fl ); } else { // Is IM(-S) type of card... if(data_buf[7] == 0x9F && data_buf[8] == 0xFF) { bIsSegmented = 1; strncpy(token_type, "IM-S", sizeof(token_type)); } else { strncpy(token_type, "IM", sizeof(token_type)); } PrintAndLog("DCF: %d (%02x %02x), Token Type=%s (OLE=%01u)", dcf, data_buf[5], data_buf[6], token_type, (data_buf[5]&0x80) >> 7 ); } // Makes no sence to show this on blank media... if(dcf != 0xFFFF) { if(bIsSegmented) { PrintAndLog("WRP=%02u, WRC=%01u, RD=%01u, SSC=%02x", data_buf[7] & 0x0f, (data_buf[7] & 0x70) >> 4, (data_buf[7] & 0x80) >> 7, data_buf[8] ); } // Header area is only available on IM-S cards, on master tokens this data is the master token data itself if(bIsSegmented || dcf > 60000) { if(dcf > 60000) { PrintAndLog("Master token data"); PrintAndLog("%s", sprint_hex(data_buf+8, 14)); } else { PrintAndLog("Remaining Header Area"); PrintAndLog("%s", sprint_hex(data_buf+9, 13)); } } } uint8_t segCrcBytes[8] = {0,0,0,0,0,0,0,0}; uint32_t segCalcCRC = 0; uint32_t segCRC = 0; // Data card? if(dcf <= 60000) { PrintAndLog("\nADF: User Area"); PrintAndLog("------------------------------------------------------"); if(bIsSegmented) { // Data start point on segmented cards i = 22; // decode segments for (segmentNum=1; segmentNum < 128; segmentNum++ ) { segment_len = ((data_buf[i+1] ^ crc) & 0x0f) * 256 + (data_buf[i] ^ crc); segment_flag = ((data_buf[i+1] ^ crc) & 0xf0) >> 4; wrp = (data_buf[i+2] ^ crc); wrc = ((data_buf[i+3] ^ crc) & 0x70) >> 4; bool hasWRC = (wrc > 0); bool hasWRP = (wrp > wrc); int wrp_len = (wrp - wrc); int remain_seg_payload_len = (segment_len - wrp - 5); // validate segment-crc segCrcBytes[0]=data_buf[0]; //uid0 segCrcBytes[1]=data_buf[1]; //uid1 segCrcBytes[2]=data_buf[2]; //uid2 segCrcBytes[3]=data_buf[3]; //uid3 segCrcBytes[4]=(data_buf[i] ^ crc); //hdr0 segCrcBytes[5]=(data_buf[i+1] ^ crc); //hdr1 segCrcBytes[6]=(data_buf[i+2] ^ crc); //hdr2 segCrcBytes[7]=(data_buf[i+3] ^ crc); //hdr3 segCalcCRC = CRC8Legic(segCrcBytes, 8); segCRC = data_buf[i+4] ^ crc; PrintAndLog("Segment %02u \nraw header | 0x%02X 0x%02X 0x%02X 0x%02X \nSegment len: %u, Flag: 0x%X (valid:%01u, last:%01u), WRP: %02u, WRC: %02u, RD: %01u, CRC: 0x%02X (%s)", segmentNum, data_buf[i] ^ crc, data_buf[i+1] ^ crc, data_buf[i+2] ^ crc, data_buf[i+3] ^ crc, segment_len, segment_flag, (segment_flag & 0x4) >> 2, (segment_flag & 0x8) >> 3, wrp, wrc, ((data_buf[i+3]^crc) & 0x80) >> 7, segCRC, ( segCRC == segCalcCRC ) ? "OK" : "fail" ); i += 5; if ( hasWRC ) { PrintAndLog("WRC protected area: (I %d | K %d| WRC %d)", i, k, wrc); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); for ( k=i; k < (i + wrc); ++k) data_buf[k] ^= crc; print_hex_break( data_buf+i, wrc, 16); i += wrc; } if ( hasWRP ) { PrintAndLog("Remaining write protected area: (I %d | K %d | WRC %d | WRP %d WRP_LEN %d)",i, k, wrc, wrp, wrp_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); for (k=i; k < (i+wrp_len); ++k) data_buf[k] ^= crc; print_hex_break( data_buf+i, wrp_len, 16); i += wrp_len; // does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...) if( wrp_len == 8 ) PrintAndLog("Card ID: %2X%02X%02X", data_buf[i-4]^crc, data_buf[i-3]^crc, data_buf[i-2]^crc); } PrintAndLog("Remaining segment payload: (I %d | K %d | Remain LEN %d)", i, k, remain_seg_payload_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); for ( k=i; k < (i+remain_seg_payload_len); ++k) data_buf[k] ^= crc; print_hex_break( data_buf+i, remain_seg_payload_len, 16); i += remain_seg_payload_len; PrintAndLog("-----+------------------------------------------------\n"); // end with last segment if (segment_flag & 0x8) return 0; } // end for loop } else { // Data start point on unsegmented cards i = 8; wrp = data_buf[7] & 0x0F; wrc = (data_buf[7] & 0x70) >> 4; bool hasWRC = (wrc > 0); bool hasWRP = (wrp > wrc); int wrp_len = (wrp - wrc); int remain_seg_payload_len = (1024 - 22 - wrp); // Any chance to get physical card size here!? PrintAndLog("Unsegmented card - WRP: %02u, WRC: %02u, RD: %01u", wrp, wrc, (data_buf[7] & 0x80) >> 7 ); if ( hasWRC ) { PrintAndLog("WRC protected area: (I %d | WRC %d)", i, wrc); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); print_hex_break( data_buf+i, wrc, 16); i += wrc; } if ( hasWRP ) { PrintAndLog("Remaining write protected area: (I %d | WRC %d | WRP %d | WRP_LEN %d)", i, wrc, wrp, wrp_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); print_hex_break( data_buf + i, wrp_len, 16); i += wrp_len; // does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...) if( wrp_len == 8 ) PrintAndLog("Card ID: %2X%02X%02X", data_buf[i-4], data_buf[i-3], data_buf[i-2]); } PrintAndLog("Remaining segment payload: (I %d | Remain LEN %d)", i, remain_seg_payload_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); print_hex_break( data_buf + i, remain_seg_payload_len, 16); i += remain_seg_payload_len; PrintAndLog("-----+------------------------------------------------\n"); } } return 0; } int CmdLegicRFRead(const char *Cmd) { // params: // offset in data // number of bytes. char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h' ) return usage_legic_read(); uint32_t offset = 0, len = 0, IV = 1; sscanf(Cmd, "%x %x %x", &offset, &len, &IV); // OUT-OF-BOUNDS check if(len + offset > MAX_LENGTH) len = MAX_LENGTH - offset; if ( (IV & 0x7F) != IV ){ IV &= 0x7F; PrintAndLog("Truncating IV to 7bits"); } if ( (IV & 1) == 0 ){ IV |= 0x01; // IV must be odd PrintAndLog("LSB of IV must be SET"); } PrintAndLog("Current IV: 0x%02x", IV); // get some prng bytes from uint8_t temp[12]; legic_prng_init(IV); for ( uint8_t j = 0; j < sizeof(temp); ++j) temp[j] = legic_prng_get_bits(8); PrintAndLog("PRNG: %s", sprint_hex(temp, sizeof(temp))); UsbCommand c = {CMD_READER_LEGIC_RF, {offset, len, IV}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { uint8_t isOK = resp.arg[0] & 0xFF; uint16_t len = resp.arg[1] & 0x3FF; if ( isOK ) { PrintAndLog("use 'hf legic decode' or"); PrintAndLog("'data hexsamples %d' to view results", len); } } else { PrintAndLog("command execution time out"); return 1; } return 0; } int CmdLegicLoad(const char *Cmd) { // iceman: potential bug, where all filepaths or filename which starts with H or h will print the helptext :) char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h' || cmdp == 0x00) return usage_legic_load(); char filename[FILE_PATH_SIZE] = {0x00}; int len = strlen(Cmd); if (len > FILE_PATH_SIZE) { PrintAndLog("Filepath too long (was %s bytes), max allowed is %s ", len, FILE_PATH_SIZE); return 0; } memcpy(filename, Cmd, len); FILE *f = fopen(filename, "r"); if(!f) { PrintAndLog("couldn't open '%s'", Cmd); return -1; } char line[80]; int offset = 0; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; int index = 0; int totalbytes = 0; while ( fgets(line, sizeof(line), f) ) { int res = sscanf(line, "%x %x %x %x %x %x %x %x", (unsigned int *)&data[index], (unsigned int *)&data[index + 1], (unsigned int *)&data[index + 2], (unsigned int *)&data[index + 3], (unsigned int *)&data[index + 4], (unsigned int *)&data[index + 5], (unsigned int *)&data[index + 6], (unsigned int *)&data[index + 7]); if(res != 8) { PrintAndLog("Error: could not read samples"); fclose(f); return -1; } index += res; if ( index == USB_CMD_DATA_SIZE ){ // PrintAndLog("sent %d | %d | %d", index, offset, totalbytes); UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}}; memcpy(c.d.asBytes, data, sizeof(data)); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){ PrintAndLog("Command execute timeout"); fclose(f); return 1; } offset += index; totalbytes += index; index = 0; } } fclose(f); // left over bytes? if ( index != 0 ) { UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}}; memcpy(c.d.asBytes, data, 8); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){ PrintAndLog("Command execute timeout"); return 1; } totalbytes += index; } PrintAndLog("loaded %u samples", totalbytes); return 0; } int CmdLegicSave(const char *Cmd) { int requested = 1024; int offset = 0; int delivered = 0; char filename[FILE_PATH_SIZE] = {0x00}; uint8_t got[1024] = {0x00}; memset(filename, 0, FILE_PATH_SIZE); sscanf(Cmd, " %s %i %i", filename, &requested, &offset); /* If no length given save entire legic read buffer */ /* round up to nearest 8 bytes so the saved data can be used with legicload */ if (requested == 0) requested = 1024; if (requested % 8 != 0) { int remainder = requested % 8; requested = requested + 8 - remainder; } if (offset + requested > sizeof(got)) { PrintAndLog("Tried to read past end of buffer, + > 1024"); return 0; } GetFromBigBuf(got, requested, offset); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){ PrintAndLog("Command execute timeout"); return 1; } FILE *f = fopen(filename, "w"); if(!f) { PrintAndLog("couldn't open '%s'", Cmd+1); return -1; } for (int j = 0; j < requested; j += 8) { fprintf(f, "%02x %02x %02x %02x %02x %02x %02x %02x\n", got[j+0], got[j+1], got[j+2], got[j+3], got[j+4], got[j+5], got[j+6], got[j+7] ); delivered += 8; if (delivered >= requested) break; } fclose(f); PrintAndLog("saved %u samples", delivered); return 0; } //TODO: write a help text (iceman) int CmdLegicRfSim(const char *Cmd) { UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {6,3,0}}; sscanf(Cmd, " %"lli" %"lli" %"lli, &c.arg[0], &c.arg[1], &c.arg[2]); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLegicRfWrite(const char *Cmd) { // params: // offset - in tag memory // length - num of bytes to be written // IV - initialisation vector char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h' ) return usage_legic_write(); uint32_t offset = 0, len = 0, IV = 0; UsbCommand c = {CMD_WRITER_LEGIC_RF, {0,0,0}}; int res = sscanf(Cmd, "%x %x %x", &offset, &len, &IV); if(res < 2) { PrintAndLog("Please specify the offset and length as two hex strings and, optionally, the IV also as an hex string"); return -1; } // OUT-OF-BOUNDS check if(len + offset > MAX_LENGTH) len = MAX_LENGTH - offset; if ( (IV & 0x7F) != IV ){ IV &= 0x7F; PrintAndLog("Truncating IV to 7bits"); } if ( (IV & 1) == 0 ){ IV |= 0x01; // IV must be odd PrintAndLog("LSB of IV must be SET"); } PrintAndLog("Current IV: 0x%02x", IV); c.arg[0] = offset; c.arg[1] = len; c.arg[2] = IV; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLegicRfRawWrite(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h' ) return usage_legic_rawwrite(); uint32_t address = 0, data = 0, IV = 0; char answer; UsbCommand c = { CMD_RAW_WRITER_LEGIC_RF, {0,0,0} }; int res = sscanf(Cmd, "%x %x %x", &address, &data, &IV); if(res < 2) return usage_legic_rawwrite(); // OUT-OF-BOUNDS check if(address > MAX_LENGTH) return usage_legic_rawwrite(); if ( (IV & 0x7F) != IV ){ IV &= 0x7F; PrintAndLog("Truncating IV to 7bits"); } if ( (IV & 1) == 0 ){ IV |= 0x01; // IV must be odd PrintAndLog("LSB of IV must be SET"); } PrintAndLog("Current IV: 0x%02x", IV); c.arg[0] = address; c.arg[1] = data; c.arg[2] = IV; if (c.arg[0] == 0x05 || c.arg[0] == 0x06) { PrintAndLog("############# DANGER !! #############"); PrintAndLog("# changing the DCF is irreversible #"); PrintAndLog("#####################################"); PrintAndLog("do youe really want to continue? y(es) n(o)"); if (scanf(" %c", &answer) > 0 && (answer == 'y' || answer == 'Y')) { SendCommand(&c); return 0; } return -1; } clearCommandBuffer(); SendCommand(&c); return 0; } //TODO: write a help text (iceman) int CmdLegicRfFill(const char *Cmd) { UsbCommand cmd = {CMD_WRITER_LEGIC_RF, {0,0,0} }; int res = sscanf(Cmd, " 0x%"llx" 0x%"llx" 0x%"llx, &cmd.arg[0], &cmd.arg[1], &cmd.arg[2]); if(res != 3) { PrintAndLog("Please specify the offset, length and value as two hex strings"); return -1; } int i; UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {0, 0, 0}}; memset(c.d.asBytes, cmd.arg[2], 48); for(i = 0; i < 22; i++) { c.arg[0] = i*48; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK, NULL); } clearCommandBuffer(); SendCommand(&cmd); return 0; } int CmdLegicCalcCrc8(const char *Cmd){ uint8_t *data = NULL; uint8_t cmdp = 0, uidcrc = 0, type=0; bool errors = false; int len = 0; int bg, en; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'b': case 'B': // peek at length of the input string so we can // figure out how many elements to malloc in "data" bg=en=0; if (param_getptr(Cmd, &bg, &en, cmdp+1)) { errors = true; break; } len = (en - bg + 1); // check that user entered even number of characters // for hex data string if (len & 1) { errors = true; break; } // it's possible for user to accidentally enter "b" parameter // more than once - we have to clean previous malloc if (data) free(data); data = malloc(len >> 1); if ( data == NULL ) { PrintAndLog("Can't allocate memory. exiting"); errors = true; break; } if (param_gethex(Cmd, cmdp+1, data, len)) { errors = true; break; } len >>= 1; cmdp += 2; break; case 'u': case 'U': uidcrc = param_get8ex(Cmd, cmdp+1, 0, 16); cmdp += 2; break; case 'c': case 'C': type = param_get8ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'h': case 'H': errors = true; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if (errors) break; } //Validations if (errors){ if (data) free(data); return usage_legic_calccrc8(); } switch (type){ case 16: PrintAndLog("LEGIC CRC16: %X", CRC16Legic(data, len, uidcrc)); break; default: PrintAndLog("LEGIC CRC8: %X", CRC8Legic(data, len) ); break; } if (data) free(data); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"decode", CmdLegicDecode, 0, "Display deobfuscated and decoded LEGIC RF tag data (use after hf legic reader)"}, {"read", CmdLegicRFRead, 0, "[offset][length] -- read bytes from a LEGIC card"}, {"save", CmdLegicSave, 0, " [] -- Store samples"}, {"load", CmdLegicLoad, 0, " -- Restore samples"}, {"sim", CmdLegicRfSim, 0, "[phase drift [frame drift [req/resp drift]]] Start tag simulator (use after load or read)"}, {"write", CmdLegicRfWrite,0, " -- Write sample buffer (user after load or read)"}, {"writeraw",CmdLegicRfRawWrite, 0, "
-- Write direct to address"}, {"fill", CmdLegicRfFill, 0, " -- Fill/Write tag with constant value"}, {"crc8", CmdLegicCalcCrc8, 1, "Calculate Legic CRC8 over given hexbytes"}, {NULL, NULL, 0, NULL} }; int CmdHFLegic(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }