//----------------------------------------------------------------------------- // Copyright (C) 2020 tharexde // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x50 commands //----------------------------------------------------------------------------- #include "fpgaloader.h" #include "ticks.h" #include "dbprint.h" #include "lfsampling.h" #include "lfadc.h" #include "lfdemod.h" #include "commonutil.h" #include "em4x50.h" #include "BigBuf.h" #include "spiffs.h" #include "appmain.h" // tear // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz // EM4x50 units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) // T0 = TIMER_CLOCK1 / 125000 = 192 #ifndef T0 #define T0 192 #endif #define EM4X50_T_TAG_QUARTER_PERIOD 16 #define EM4X50_T_TAG_HALF_PERIOD 32 #define EM4X50_T_TAG_THREE_QUARTER_PERIOD 48 #define EM4X50_T_TAG_FULL_PERIOD 64 #define EM4X50_T_TAG_TPP 64 #define EM4X50_T_TAG_TWA 64 #define EM4X50_T_TAG_TINIT 2112 #define EM4X50_T_TAG_TWEE 3200 #define EM4X50_T_TAG_WAITING_FOR_SIGNAL 75 #define EM4X50_T_WAITING_FOR_DBLLIW 1550 #define EM4X50_T_WAITING_FOR_ACK 4 // the following value seems to be critical; if it's too low (e.g. < 120) // some cards are no longer readable although they're ok #define EM4X50_T_WAITING_FOR_SNGLLIW 140 #define EM4X50_TAG_TOLERANCE 8 #define EM4X50_TAG_WORD 45 #define EM4X50_TAG_MAX_NO_BYTES 136 #define EM4X50_COMMAND_LOGIN 0x01 #define EM4X50_COMMAND_RESET 0x80 #define EM4X50_COMMAND_WRITE 0x12 #define EM4X50_COMMAND_WRITE_PASSWORD 0x11 #define EM4X50_COMMAND_SELECTIVE_READ 0x0A int gHigh = 190; int gLow = 60; // a global parameter is needed to indicate whether a previous login was // successful, so operations that require authentication may be performed bool gLogin = 0; // additionally a global variable to identify the WritePassword process bool gWritePasswordProcess = 0; int gcount = 0; int gcycles = 0; int rm = 0; static bool em4x50_sim_send_listen_window(uint32_t *tag); static void em4x50_sim_handle_command(uint8_t command, uint32_t *tag); void catch_samples(void); // do nothing for using timer0 static void wait_timer(uint32_t period) { AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; while (AT91C_BASE_TC0->TC_CV < period); } void catch_samples(void) { uint8_t sample = 0; if (EM4X50_MAX_NO_SAMPLES > CARD_MEMORY_SIZE) { Dbprintf("exeeded emulator memory size"); return; } uint8_t *em4x50_sample_buffer = BigBuf_get_addr(); memcpy(em4x50_sample_buffer, &gHigh, 1); memcpy(em4x50_sample_buffer + 1, &gLow, 1); for (int i = 2; i < EM4X50_MAX_NO_SAMPLES + 2; i++) { sample = AT91C_BASE_SSC->SSC_RHR; memcpy(em4x50_sample_buffer + i, &sample, 1); wait_timer(T0); // 8µs delay } } // extract and check parities // return result of parity check and extracted plain data static bool extract_parities(uint64_t word, uint32_t *data) { uint8_t row_parities = 0x0, col_parities = 0x0; uint8_t row_parities_calculated = 0x0, col_parities_calculated = 0x0; *data = 0x0; // extract plain data (32 bits) from raw word (45 bits) for (int i = 0; i < 4; i++) { *data <<= 8; *data |= (word >> ((4 - i) * 9 + 1)) & 0xFF; } // extract row parities (4 bits + stop bit) from raw word (45 bits) for (int i = 0; i < 5; i++) { row_parities <<= 1; row_parities |= (word >> ((4 - i) * 9)) & 0x1; } // extract col_parities (8 bits, no stop bit) from raw word (45 bits) col_parities = (word >> 1) & 0xFF; // check extracted parities against extracted data // calculate row parities from data for (int i = 0; i < 4; i++) { row_parities_calculated <<= 1; for (int j = 0; j < 8; j++) { row_parities_calculated ^= (*data >> ((3 - i) * 8 + (7 - j))) & 0x1; } } // add stop bit (always zero) row_parities_calculated <<= 1; // calculate column parities from data for (int i = 0; i < 8; i++) { col_parities_calculated <<= 1; for (int j = 0; j < 4; j++) { col_parities_calculated ^= (*data >> ((3 - j) * 8 + (7 - i))) & 0x1; } } if ((row_parities == row_parities_calculated) && (col_parities == col_parities_calculated)) return true; return false; } static void em4x50_setup_read(void) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // 50ms for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Steal this pin from the SSP (SPI communication channel with fpga) and // use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // Disable modulation at default, which means enable the field LOW(GPIO_SSC_DOUT); // Enable Peripheral Clock for // TIMER_CLOCK0, used to measure exact timing before answering AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0);// | (1 << AT91C_ID_TC1); AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; // Disable timer during configuration AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK; // TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers // Enable and reset counters AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // synchronized startup procedure while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC1 returned to zero // Watchdog hit WDT_HIT(); } static void em4x50_setup_sim(void) { StopTicks(); FpgaDownloadAndGo(FPGA_BITSTREAM_LF); sample_config *sc = getSamplingConfig(); sc->decimation = 1; sc->averaging = 0; sc->divisor = LF_DIVISOR_125; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0); AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK; AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // Watchdog hit WDT_HIT(); } // calculate signal properties (mean amplitudes) from measured data: // 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow static bool get_signalproperties(void) { bool signal_found = false; int no_periods = 32, pct = 75, noise = 140; uint8_t sample_ref = 127; uint8_t sample_max_mean = 0; uint8_t sample_max[no_periods]; uint32_t sample_max_sum = 0; memset(sample_max, 0x00, sizeof(sample_max)); LED_A_ON(); // wait until signal/noise > 1 (max. 32 periods) for (int i = 0; i < EM4X50_T_TAG_WAITING_FOR_SIGNAL; i++) { if (BUTTON_PRESS()) return false; // about 2 samples per bit period wait_timer(T0 * EM4X50_T_TAG_HALF_PERIOD); // ignore first samples if ((i > SIGNAL_IGNORE_FIRST_SAMPLES) && (AT91C_BASE_SSC->SSC_RHR > noise)) { signal_found = true; break; } } if (signal_found == false) { LED_A_OFF(); return false; } // calculate mean maximum value of 32 periods, each period has a length of // 3 single "full periods" to eliminate the influence of a listen window for (int i = 0; i < no_periods; i++) { AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) { if (BUTTON_PRESS()) return false; volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if (sample > sample_max[i]) sample_max[i] = sample; } sample_max_sum += sample_max[i]; } sample_max_mean = sample_max_sum / no_periods; // set global envelope variables gHigh = sample_ref + pct * (sample_max_mean - sample_ref) / 100; gLow = sample_ref - pct * (sample_max_mean - sample_ref) / 100; LED_A_OFF(); return true; } // returns true if bit is undefined by evaluating a single sample within // a bit period (given there is no LIW, ACK or NAK) // This function is used for identifying a listen window in functions // "find_double_listen_window" and "check_ack" static bool invalid_bit(void) { // get sample at 3/4 of bit period wait_timer(T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD); uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // wait until end of bit period wait_timer(T0 * EM4X50_T_TAG_QUARTER_PERIOD); // bit in "undefined" state? if (sample <= gHigh && sample >= gLow) return true; return false; } static uint32_t get_pulse_length(void) { int32_t timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD); // iterates pulse length (low -> high -> low) volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; while (sample > gLow && (timeout--)) sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if (timeout == 0) return 0; AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD); while (sample < gHigh && (timeout--)) sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if (timeout == 0) return 0; timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD); while (sample > gLow && (timeout--)) sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if (timeout == 0) return 0; return (uint32_t)AT91C_BASE_TC0->TC_CV; } // check if pulse length corresponds to given length static bool check_pulse_length(uint32_t pl, int length) { return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE))); } // send single bit according to EM4x50 application note and datasheet static void em4x50_reader_send_bit(int bit) { // reset clock for the next bit AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; if (bit == 0) { // disable modulation (activate the field) for 7 cycles of carrier // period (Opt64) LOW(GPIO_SSC_DOUT); while (AT91C_BASE_TC0->TC_CV < T0 * 7); // enable modulation (drop the field) for remaining first // half of bit period HIGH(GPIO_SSC_DOUT); while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD); // disable modulation for second half of bit period LOW(GPIO_SSC_DOUT); while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD); } else { // bit = "1" means disable modulation for full bit period LOW(GPIO_SSC_DOUT); while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD); } } // send byte (without parity) static void em4x50_reader_send_byte(uint8_t byte) { for (int i = 0; i < 8; i++) { em4x50_reader_send_bit((byte >> (7 - i)) & 1); } } // send byte followed by its (equal) parity bit static void em4x50_reader_send_byte_with_parity(uint8_t byte) { int parity = 0, bit = 0; for (int i = 0; i < 8; i++) { bit = (byte >> (7 - i)) & 1; em4x50_reader_send_bit(bit); parity ^= bit; } em4x50_reader_send_bit(parity); } // send 32 bit word with parity bits according to EM4x50 datasheet // word hast be sent in msb notation static void em4x50_reader_send_word(const uint32_t word) { uint8_t bytes[4] = {0x0, 0x0, 0x0, 0x0}; for (int i = 0; i < 4; i++) { bytes[i] = (word >> (24 - (8 * i))) & 0xFF; em4x50_reader_send_byte_with_parity(bytes[i]); } // send column parities em4x50_reader_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]); // send final stop bit (always "0") em4x50_reader_send_bit(0); } // find single listen window static bool find_single_listen_window(void) { int cnt_pulses = 0; LED_B_ON(); while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) { // identification of listen window is done via evaluation of // pulse lengths if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) { if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) { // found listen window LED_B_OFF(); return true; } } cnt_pulses++; } LED_B_OFF(); return false; } // find two successive listen windows that indicate the beginning of // data transmission // double listen window to be detected within 1600 pulses -> worst case // reason: first detectable double listen window after 34 words // -> 34 words + 34 single listen windows -> about 1600 pulses static int find_double_listen_window(bool bcommand) { int cnt_pulses = 0; LED_B_ON(); while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) { if (BUTTON_PRESS()) return PM3_EOPABORTED; // identification of listen window is done via evaluation of // pulse lengths if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) { if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) { // first listen window found if (bcommand) { // data transmission from card has to be stopped, because // a commamd shall be issued // unfortunately the position in listen window (where // command request has to be sent) has gone, so if a // second window follows - sync on this to issue a command // skip the next bit... wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD); // ...and check if the following bit does make sense // (if not it is the correct position within the second // listen window) if (invalid_bit()) { // send RM for request mode em4x50_reader_send_bit(0); em4x50_reader_send_bit(0); LED_B_OFF(); return PM3_SUCCESS; } } if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) { LED_B_OFF(); // return although second listen window consists of one // more bit period but this period is necessary for // evaluating further pulse lengths return PM3_SUCCESS; } } } cnt_pulses++; } LED_B_OFF(); return PM3_EFAILED; } // function is used to check wether a tag on the proxmark is an // EM4x50 tag or not -> speed up "lf search" process static bool find_em4x50_tag(void) { return find_single_listen_window(); } // To issue a command we have to find a listen window first. // Because identification and synchronization at the same time is not // possible when using pulse lengths a double listen window is used. static int request_receive_mode(void) { return find_double_listen_window(true); } // returns true if signal structue corresponds to ACK, anything else is // counted as NAK (-> false) // Only relevant for pasword writing function: // If is true then within the single listen window right after the // ack signal a RM request has to be sent. static bool check_ack(bool bliw) { int count_cycles = 0; while (count_cycles < EM4X50_T_WAITING_FOR_ACK) { if (BUTTON_PRESS()) return false; if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) { //catch_samples(); // The received signal is either ACK or NAK. if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) { // Now the signal must be ACK. if (!bliw) { return true; } else { // send RM request after ack signal // wait for 2 bits (remaining "bit" of ACK signal + first // "bit" of listen window) wait_timer(T0 * 2 * EM4X50_T_TAG_FULL_PERIOD); // check for listen window (if first bit cannot be interpreted // as a valid bit it must belong to a listen window) if (invalid_bit()) { // send RM for request mode em4x50_reader_send_bit(0); em4x50_reader_send_bit(0); return true; } } } else { // It's NAK -> stop searching break; } } count_cycles++; } return false; } // decodes one word by evaluating pulse lengths and previous bit; // word must have 45 bits in total: // 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit static int get_word_from_bitstream(uint32_t *data) { bool bitchange = false; int cnt = 0; uint32_t pl = 0; uint64_t word = 0x0; LED_C_ON(); *data = 0x0; // initial bit value depends on last pulse length of listen window pl = get_pulse_length(); if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) { // pulse length = 1.5 word = 0x1; } else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) { // pulse length = 2 bitchange = true; } else { // pulse length = 2.5 word = 0x1; cnt++; } // identify remaining bits based on pulse lengths // between two listen windows only pulse lengths of 1, 1.5 and 2 are possible while (BUTTON_PRESS() == false) { cnt++; word <<= 1; pl = get_pulse_length(); if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) { // pulse length = 1 -> keep former bit value word |= (word >> 1) & 0x1; } else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) { // pulse length = 1.5 -> decision on bit change if (bitchange) { // if number of pulse lengths with 1.5 periods is even -> add bit word |= (word >> 1) & 0x1; word <<= 1; // pulse length of 1.5 changes bit value word |= ((word >> 1) & 0x1) ^ 0x1; cnt++; // next time add only one bit bitchange = false; } else { word |= ((word >> 1) & 0x1) ^ 0x1; // next time two bits have to be added bitchange = true; } } else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) { // pulse length of 2 means: adding 2 bits "01" cnt++; word <<= 1; word |= 0x1; } else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) { LED_C_OFF(); // pulse length of 3 indicates listen window -> clear last // bit (= 0) and return (without parities) word >>= 2; return (extract_parities(word, data)) ? --cnt : 0; } } LED_C_OFF(); return PM3_EOPABORTED; } static bool em4x50_sim_send_bit(uint8_t bit) { uint16_t check = 0; for (int t = 0; t < EM4X50_T_TAG_FULL_PERIOD; t++) { // wait until SSC_CLK goes HIGH // used as a simple detection of a reader field? while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { WDT_HIT(); if (check == 1000) { if (BUTTON_PRESS()) return false; check = 0; } ++check; } if (bit) OPEN_COIL(); else SHORT_COIL(); check = 0; //wait until SSC_CLK goes LOW while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { WDT_HIT(); if (check == 1000) { if (BUTTON_PRESS()) return false; check = 0; } ++check; } if (t == EM4X50_T_TAG_HALF_PERIOD) bit ^= 1; } return true; } static bool em4x50_sim_send_byte(uint8_t byte) { // send byte for (int i = 0; i < 8; i++) if (!em4x50_sim_send_bit((byte >> (7 - i)) & 1)) return false; return true; } static bool em4x50_sim_send_byte_with_parity(uint8_t byte) { uint8_t parity = 0x0; // send byte with parity (even) for (int i = 0; i < 8; i++) parity ^= (byte >> i) & 1; if (em4x50_sim_send_byte(byte) == false) return false;; if (em4x50_sim_send_bit(parity) == false) return false; return true; } static bool em4x50_sim_send_word(uint32_t word) { uint8_t cparity = 0x00; // word has tobe sent in msb, not lsb word = reflect32(word); // 4 bytes each with even row parity bit for (int i = 0; i < 4; i++) { if (em4x50_sim_send_byte_with_parity((word >> ((3 - i) * 8)) & 0xFF) == false) { return false; } } // column parity for (int i = 0; i < 8; i++) { cparity <<= 1; for (int j = 0; j < 4; j++) { cparity ^= (((word >> ((3 - j) * 8)) & 0xFF) >> (7 - i)) & 1; } } if (em4x50_sim_send_byte(cparity) == false) return false; // stop bit if (em4x50_sim_send_bit(0) == false) return false; return true; } static int wait_cycles(int maxperiods) { int period = 0; while (period < maxperiods) { while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); period++; } return PM3_SUCCESS; } static int get_cycles(void) { int cycles = 0; AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD) { while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // check again to minimize desynchronization if (AT91C_BASE_TC0->TC_CV >= T0 * EM4X50_T_TAG_FULL_PERIOD) break; while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); cycles++; } return cycles; } static uint8_t em4x50_sim_read_bit(void) { int cond = EM4X50_T_TAG_FULL_PERIOD - EM4X50_TAG_TOLERANCE; return (get_cycles() < cond) ? 0 : 1; } static uint8_t em4x50_sim_read_byte(void) { uint8_t byte = 0; for (int i = 0; i < 8; i++) { byte <<= 1; byte |= em4x50_sim_read_bit(); } return byte; } static uint8_t em4x50_sim_read_byte_with_parity_check(void) { uint8_t byte = 0, parity = 0, pval = 0; for (int i = 0; i < 8; i++) { byte <<= 1; byte |= em4x50_sim_read_bit(); parity ^= (byte & 1); } pval = em4x50_sim_read_bit(); return (parity == pval) ? byte : 0; } static bool em4x50_sim_read_word(uint32_t *word) { uint8_t parities = 0, parities_calculated = 0, stop_bit = 0; uint8_t bytes[4] = {0}; // read plain data for (int i = 0; i < 4; i++) { bytes[i] = em4x50_sim_read_byte_with_parity_check(); } // read column parities and stop bit parities = em4x50_sim_read_byte(); stop_bit = em4x50_sim_read_bit(); // calculate column parities from data for (int i = 0; i < 8; i++) { parities_calculated <<= 1; for (int j = 0; j < 4; j++) { parities_calculated ^= (bytes[j] >> (7 - i)) & 1; } } // check parities if ((parities == parities_calculated) && (stop_bit == 0)) { *word = BYTES2UINT32(bytes); return true; } return false; } static void em4x50_sim_send_ack(void) { SHORT_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(3 * EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(3 * EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); } static void em4x50_sim_send_nak(void) { SHORT_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(3 * EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(EM4X50_T_TAG_FULL_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); } /* static bool em4x50_sim_send_listen_window(void) { uint16_t check = 0; for (int t = 0; t < 5 * EM4X50_T_TAG_FULL_PERIOD; t++) { // wait until SSC_CLK goes HIGH while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { WDT_HIT(); if (check == 1000) { if (BUTTON_PRESS()) return false; check = 0; } ++check; } if (t >= 4 * EM4X50_T_TAG_FULL_PERIOD) SHORT_COIL(); else if (t >= 3 * EM4X50_T_TAG_FULL_PERIOD) OPEN_COIL(); else if (t >= EM4X50_T_TAG_FULL_PERIOD) SHORT_COIL(); else if (t >= EM4X50_T_TAG_HALF_PERIOD) OPEN_COIL(); else SHORT_COIL(); check = 0; // wait until SSC_CLK goes LOW while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { WDT_HIT(); if (check == 1000) { if (BUTTON_PRESS()) return false; check = 0; } ++check; } } return true; } */ static void em4x50_sim_handle_login_command(uint32_t *tag) { // read password uint32_t password = 0; bool pwd_ok = em4x50_sim_read_word(&password); // processing pause time (corresponds to a "1" bit) em4x50_sim_send_bit(1); // empirically determined delay (to be examined seperately) wait_cycles(1); if (pwd_ok && (password == reflect32(tag[EM4X50_DEVICE_PASSWORD]))) { em4x50_sim_send_ack(); gLogin = true; } else { em4x50_sim_send_nak(); gLogin = false; } // continue with standard read mode em4x50_sim_handle_command(0, tag); } static void em4x50_sim_handle_reset_command(uint32_t *tag) { // processing pause time (corresponds to a "1" bit) em4x50_sim_send_bit(1); // send ACK em4x50_sim_send_ack(); gLogin = false; // wait for tinit wait_cycles(EM4X50_T_TAG_TINIT); // continue with standard read mode em4x50_sim_handle_command(0, tag); } static void em4x50_sim_handle_write_command(uint32_t *tag) { // read address uint8_t address = 0; address = em4x50_sim_read_byte_with_parity_check(); // read data uint32_t data = 0; bool word_ok = em4x50_sim_read_word(&data); // write access time wait_cycles(EM4X50_T_TAG_TWA); if (word_ok == false) { em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); } // extract necessary control data bool raw = (tag[EM4X50_CONTROL] >> CONFIG_BLOCK) & READ_AFTER_WRITE; // extract protection data: // first word write protected int fwwp = reflect8((tag[EM4X50_PROTECTION] >> 24) & 0xFF); // last word write protected int lwwp = reflect8((tag[EM4X50_PROTECTION] >> 16) & 0xFF); switch (address) { case EM4X50_DEVICE_PASSWORD: em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); break; case EM4X50_PROTECTION: if (gLogin) { tag[address] = reflect32(data); em4x50_sim_send_ack(); } else { em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); } break; case EM4X50_CONTROL: if (gLogin) { tag[address] = reflect32(data); em4x50_sim_send_ack(); } else { em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); } break; case EM4X50_DEVICE_SERIAL: em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); break; case EM4X50_DEVICE_ID: em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); break; default: if ((address >= fwwp) && (address <= lwwp) && (gLogin == false)) { em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); } else { tag[address] = reflect32(data); em4x50_sim_send_ack(); } break; } // EEPROM write time wait_cycles(EM4X50_T_TAG_TWEE); // strange: need some sort of 'waveform correction', otherwise ack signal // will not be detected; sending a single "1" seems to solve the problem em4x50_sim_send_bit(1); em4x50_sim_send_ack(); // if "read after write" (raw) bit is set, send written data once if (raw) { em4x50_sim_send_listen_window(tag); em4x50_sim_send_listen_window(tag); em4x50_sim_send_word(tag[address]); } // continue with standard read mode em4x50_sim_handle_command(0, tag); } static void em4x50_sim_handle_writepwd_command(uint32_t *tag) { bool pwd_ok = false; if (gWritePasswordProcess == false) { gWritePasswordProcess = true; // read password uint32_t act_password = 0; pwd_ok = em4x50_sim_read_word(&act_password); // processing pause time (corresponds to a "1" bit) em4x50_sim_send_bit(1); if (pwd_ok && (act_password == reflect32(tag[EM4X50_DEVICE_PASSWORD]))) { em4x50_sim_send_ack(); gLogin = true; } else { em4x50_sim_send_nak(); gLogin = false; em4x50_sim_handle_command(0, tag); } em4x50_sim_send_listen_window(tag); } else { gWritePasswordProcess = false; // read new password uint32_t new_password = 0; pwd_ok = em4x50_sim_read_word(&new_password); // write access time wait_cycles(EM4X50_T_TAG_TWA); if (pwd_ok) { em4x50_sim_send_ack(); tag[EM4X50_DEVICE_PASSWORD] = reflect32(new_password); } else { em4x50_sim_send_ack(); em4x50_sim_handle_command(0, tag); } // EEPROM write time wait_cycles(EM4X50_T_TAG_TWEE); // strange: need some sort of 'waveform correction', otherwise ack signal // will not be detected; sending a single "1" seems to solve the problem em4x50_sim_send_bit(1); em4x50_sim_send_ack(); // continue with standard read mode em4x50_sim_handle_command(0, tag); } } static void em4x50_sim_handle_selective_read_command(uint32_t *tag) { // read password uint32_t address = 0; bool addr_ok = em4x50_sim_read_word(&address); // processing pause time (corresponds to a "1" bit) em4x50_sim_send_bit(1); if (addr_ok) { em4x50_sim_send_ack(); } else { em4x50_sim_send_nak(); em4x50_sim_handle_command(0, tag); } // extract control data int fwr = address & 0xFF; // first word read int lwr = (address >> 8) & 0xFF; // last word read // extract protection data: // first word read protected int fwrp = reflect32(tag[EM4X50_PROTECTION]) & 0xFF; // last word read protected int lwrp = (reflect32(tag[EM4X50_PROTECTION]) >> 8) & 0xFF; // iceman, will need a usb cmd check to break as well while (BUTTON_PRESS() == false) { WDT_HIT(); em4x50_sim_send_listen_window(tag); for (int i = fwr; i <= lwr; i++) { em4x50_sim_send_listen_window(tag); // if not authenticated do not send read protected words if ((gLogin == false) && (i >= fwrp) && (i <= lwrp)) { em4x50_sim_send_word(0x00); } else { em4x50_sim_send_word(reflect32(tag[i])); } } } } static void em4x50_sim_handle_standard_read_command(uint32_t *tag) { // extract control data int fwr = reflect32(tag[EM4X50_CONTROL]) & 0xFF; // first word read int lwr = (reflect32(tag[EM4X50_CONTROL]) >> 8) & 0xFF; // last word read // extract protection data: // first word read protected int fwrp = reflect32(tag[EM4X50_PROTECTION]) & 0xFF; // last word read protected int lwrp = (reflect32(tag[EM4X50_PROTECTION]) >> 8) & 0xFF; // iceman, will need a usb cmd check to break as well while (BUTTON_PRESS() == false) { WDT_HIT(); em4x50_sim_send_listen_window(tag); for (int i = fwr; i <= lwr; i++) { em4x50_sim_send_listen_window(tag); if ((i >= fwrp) && (i <= lwrp)) { em4x50_sim_send_word(0x00); } else { em4x50_sim_send_word(reflect32(tag[i])); } } } } static void em4x50_sim_handle_command(uint8_t command, uint32_t *tag) { switch (command) { case EM4X50_COMMAND_LOGIN: em4x50_sim_handle_login_command(tag); break; case EM4X50_COMMAND_RESET: em4x50_sim_handle_reset_command(tag); break; case EM4X50_COMMAND_WRITE: em4x50_sim_handle_write_command(tag); break; case EM4X50_COMMAND_WRITE_PASSWORD: em4x50_sim_handle_writepwd_command(tag); break; case EM4X50_COMMAND_SELECTIVE_READ: em4x50_sim_handle_selective_read_command(tag); break; default: em4x50_sim_handle_standard_read_command(tag); break; } } // reader requests receive mode (rm) by sending two zeros static void check_rm_request(uint32_t *tag) { int cond = EM4X50_T_TAG_FULL_PERIOD - EM4X50_TAG_TOLERANCE; // look for first zero if (get_cycles() < cond) { // look for second zero if (get_cycles() < cond) { // if command before was EM4X50_COMMAND_WRITE_PASSWORD // switch to separate process if (gWritePasswordProcess) { em4x50_sim_handle_command(EM4X50_COMMAND_WRITE_PASSWORD, tag); } else { // read mode request detected, get command from reader uint8_t command = em4x50_sim_read_byte_with_parity_check(); em4x50_sim_handle_command(command, tag); } } } } static bool em4x50_sim_send_listen_window(uint32_t *tag) { SHORT_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); OPEN_COIL(); wait_cycles(EM4X50_T_TAG_HALF_PERIOD); SHORT_COIL(); wait_cycles(2 * EM4X50_T_TAG_FULL_PERIOD); OPEN_COIL(); check_rm_request(tag); SHORT_COIL(); wait_cycles(EM4X50_T_TAG_FULL_PERIOD); return true; } // simple login to EM4x50, // used in operations that require authentication static bool login(uint32_t password) { if (request_receive_mode() == PM3_SUCCESS) { // send login command em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_LOGIN); // send password em4x50_reader_send_word(password); wait_timer(T0 * (EM4X50_T_TAG_TPP)); // check if ACK is returned if (check_ack(false)) { return PM3_SUCCESS; } } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("error in command request"); } return PM3_EFAILED; } // searching for password in given range static bool brute(uint32_t start, uint32_t stop, uint32_t *pwd) { bool pwd_found = false; int cnt = 0; for (*pwd = start; *pwd <= stop; (*pwd)++) { if (login(*pwd) == PM3_SUCCESS) { pwd_found = true; // to be safe login 5 more times for (int i = 0; i < 5; i++) { if (login(*pwd) != PM3_SUCCESS) { pwd_found = false; break; } } if (pwd_found) break; } // print password every 500 iterations if ((++cnt % 500) == 0) { // print header if (cnt == 500) { Dbprintf("|---------+------------+------------|"); Dbprintf("| no. | pwd (msb) | pwd (lsb) |"); Dbprintf("|---------+------------+------------|"); } // print data Dbprintf("|%8i | 0x%08x | 0x%08x |", cnt, reflect32(*pwd), *pwd); } if (BUTTON_PRESS()) break; } // print footer if (cnt >= 500) Dbprintf("|---------+------------+------------|"); return pwd_found; } // login into EM4x50 void em4x50_login(uint32_t *password) { em4x50_setup_read(); uint8_t status = PM3_EFAILED; if (get_signalproperties() && find_em4x50_tag()) status = login(*password); lf_finalize(); reply_ng(CMD_LF_EM4X50_LOGIN, status, NULL, 0); } // envoke password search void em4x50_brute(em4x50_data_t *etd) { em4x50_setup_read(); bool bsuccess = false; uint32_t pwd = 0x0; if (get_signalproperties() && find_em4x50_tag()) bsuccess = brute(etd->password1, etd->password2, &pwd); lf_finalize(); reply_ng(CMD_LF_EM4X50_BRUTE, bsuccess ? PM3_SUCCESS : PM3_EFAILED, (uint8_t *)(&pwd), sizeof(pwd)); } // check passwords from dictionary content in flash memory void em4x50_chk(uint8_t *filename) { int status = PM3_EFAILED; uint32_t pwd = 0x0; #ifdef WITH_FLASH BigBuf_free(); int changed = rdv40_spiffs_lazy_mount(); uint16_t pwd_count = 0; uint32_t size = size_in_spiffs((char *)filename); pwd_count = size / 4; uint8_t *pwds = BigBuf_malloc(size); rdv40_spiffs_read_as_filetype((char *)filename, pwds, size, RDV40_SPIFFS_SAFETY_SAFE); if (changed) rdv40_spiffs_lazy_unmount(); em4x50_setup_read(); // set gHigh and gLow if (get_signalproperties() && find_em4x50_tag()) { // try to login with current password for (int i = 0; i < pwd_count; i++) { // manual interruption if (BUTTON_PRESS()) { status = PM3_EOPABORTED; break; } // get next password pwd = 0x0; for (int j = 0; j < 4; j++) pwd |= (*(pwds + 4 * i + j)) << ((3 - j) * 8); if ((status = login(pwd)) == PM3_SUCCESS) break; } } BigBuf_free(); #endif lf_finalize(); reply_ng(CMD_LF_EM4X50_CHK, status, (uint8_t *)&pwd, sizeof(pwd)); } // resets EM4x50 tag (used by write function) static int reset(void) { if (request_receive_mode() == PM3_SUCCESS) { // send reset command em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_RESET); if (check_ack(false)) return PM3_SUCCESS; } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("error in command request"); } return PM3_EFAILED; } // reads data that tag transmits when exposed to reader field // (standard read mode); number of read words is saved in static int standard_read(int *now, uint32_t *words) { int fwr = *now, res = PM3_EFAILED; // start with the identification of two successive listening windows if ((res = find_double_listen_window(false)) == PM3_SUCCESS) { // read and save words until following double listen window is detected while ((res = get_word_from_bitstream(&words[*now])) == EM4X50_TAG_WORD) (*now)++; // number of detected words *now -= fwr; } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("didn't find a listen window"); } return res; } // reads from "first word read" (fwr) to "last word read" (lwr) // result is verified by "standard read mode" static int selective_read(uint32_t addresses, uint32_t *words) { int status = PM3_EFAILED; uint8_t fwr = addresses & 0xFF; // first word read (first byte) uint8_t lwr = (addresses >> 8) & 0xFF; // last word read (second byte) int now = fwr; // number of words if (request_receive_mode() == PM3_SUCCESS) { // send selective read command em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_SELECTIVE_READ); // send address data em4x50_reader_send_word(addresses); // look for ACK sequence if (check_ack(false)) // save and verify via standard read mode (compare number of words) if ((status = standard_read(&now, words)) == PM3_SUCCESS) if (now == (lwr - fwr + 1)) return status; } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("error in command request"); } return status; } // reads by using "selective read mode" -> bidirectional communication void em4x50_read(em4x50_data_t *etd) { bool blogin = true; int status = PM3_EFAILED; uint32_t words[EM4X50_NO_WORDS] = {0x0}; em4x50_setup_read(); // set gHigh and gLow if (get_signalproperties() && find_em4x50_tag()) { // try to login with given password if (etd->pwd_given) blogin = (login(etd->password1) == PM3_SUCCESS); // only one word has to be read -> first word read = last word read if (blogin) status = selective_read(etd->addresses, words); } LOW(GPIO_SSC_DOUT); lf_finalize(); reply_ng(CMD_LF_EM4X50_READ, status, (uint8_t *)words, EM4X50_TAG_MAX_NO_BYTES); } // collects as much information as possible via selective read mode void em4x50_info(em4x50_data_t *etd) { bool blogin = true; int status = PM3_EFAILED; uint32_t addresses = 0x00002100; // read from fwr = 0 to lwr = 33 (0x21) uint32_t words[EM4X50_NO_WORDS] = {0x0}; gcount = 0; em4x50_setup_read(); if (get_signalproperties() && find_em4x50_tag()) { // login with given password if (etd->pwd_given) blogin = (login(etd->password1) == PM3_SUCCESS); if (blogin) status = selective_read(addresses, words); } lf_finalize(); reply_ng(CMD_LF_EM4X50_INFO, status, (uint8_t *)words, EM4X50_TAG_MAX_NO_BYTES); } // reads data that tag transmits "voluntarily" -> standard read mode void em4x50_reader(void) { int now = 0; uint32_t words[EM4X50_NO_WORDS] = {0x0}; em4x50_setup_read(); if (get_signalproperties() && find_em4x50_tag()) standard_read(&now, words); LOW(GPIO_SSC_DOUT); lf_finalize(); reply_ng(CMD_LF_EM4X50_READER, now, (uint8_t *)words, 4 * now); } // writes to specified static int write(uint32_t word, uint32_t addresses) { if (request_receive_mode() == PM3_SUCCESS) { // send write command em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_WRITE); // send address data em4x50_reader_send_byte_with_parity(addresses & 0xFF); // send data em4x50_reader_send_word(word); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0); return PM3_ETEAROFF; } else { // wait for T0 * EM4X50_T_TAG_TWA (write access time) wait_timer(T0 * EM4X50_T_TAG_TWA); // look for ACK sequence if (check_ack(false)) { // now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time) // for saving data and should return with ACK for (int i = 0; i < 50; i++) { wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD); } if (check_ack(false)) { return PM3_SUCCESS; } } } } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("error in command request"); } return PM3_EFAILED; } // changes password from to static int write_password(uint32_t password, uint32_t new_password) { if (request_receive_mode() == PM3_SUCCESS) { // send write password command em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_WRITE_PASSWORD); // send address data em4x50_reader_send_word(password); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0); return PM3_ETEAROFF; } else { // wait for T0 * EM4x50_T_TAG_TPP (processing pause time) wait_timer(T0 * EM4X50_T_TAG_TPP); // look for ACK sequence and send rm request // during following listen window if (check_ack(true)) { // send new password em4x50_reader_send_word(new_password); // wait for T0 * EM4X50_T_TAG_TWA (write access time) wait_timer(T0 * EM4X50_T_TAG_TWA); if (check_ack(false)) { //Dbprintf("zweites ack"); if (check_ack(false)) { return PM3_SUCCESS; } } } } } else { if (DBGLEVEL >= DBG_DEBUG) Dbprintf("error in command request"); } return PM3_EFAILED; } // write operation process for EM4x50 tag, // single word is written to given address, verified by selective read operation // wrong password -> return with PM3_EFAILED void em4x50_write(em4x50_data_t *etd) { int status = PM3_EFAILED; uint32_t words[EM4X50_NO_WORDS] = {0x0}; em4x50_setup_read(); if (get_signalproperties() && find_em4x50_tag()) { // if password is given try to login first status = PM3_SUCCESS; if (etd->pwd_given) status = login(etd->password1); if (status == PM3_SUCCESS) { // write word to given address status = write(etd->word, etd->addresses); if (status == PM3_ETEAROFF) { lf_finalize(); return; } if (status == PM3_SUCCESS) { // to verify result reset EM4x50 status = reset(); if (status == PM3_SUCCESS) { // if password is given renew login after reset if (etd->pwd_given) status = login(etd->password1); if (status == PM3_SUCCESS) { // call a selective read status = selective_read(etd->addresses, words); if (status == PM3_SUCCESS) { // compare result with given word if (words[etd->addresses & 0xFF] != reflect32(etd->word)) status = PM3_EFAILED; } } } } } } lf_finalize(); reply_ng(CMD_LF_EM4X50_WRITE, status, (uint8_t *)words, EM4X50_TAG_MAX_NO_BYTES); } // simple change of password void em4x50_writepwd(em4x50_data_t *etd) { int status = PM3_EFAILED; em4x50_setup_read(); if (get_signalproperties() && find_em4x50_tag()) { // login and change password if (login(etd->password1) == PM3_SUCCESS) { status = write_password(etd->password1, etd->password2); if (status == PM3_ETEAROFF) { lf_finalize(); return; } } } lf_finalize(); reply_ng(CMD_LF_EM4X50_WRITEPWD, status, NULL, 0); } // simulate uploaded data in emulator memory void em4x50_sim(uint32_t *password) { int status = PM3_SUCCESS; uint8_t *em4x50_mem = BigBuf_get_EM_addr(); uint32_t tag[EM4X50_NO_WORDS] = {0x0}; for (int i = 0; i < EM4X50_NO_WORDS; i++) tag[i] = bytes_to_num(em4x50_mem + (i * 4), 4); // via eload uploaded dump usually does not contain a password if (tag[EM4X50_DEVICE_PASSWORD] == 0) { tag[EM4X50_DEVICE_PASSWORD] = reflect32(*password); } // only if valid em4x50 data (e.g. uid == serial) if (tag[EM4X50_DEVICE_SERIAL] != tag[EM4X50_DEVICE_ID]) { // init em4x50_setup_sim(); gLogin = false; // start with inital command = standard read mode (= 0) em4x50_sim_handle_command(0, tag); } else { status = PM3_ENODATA; } BigBuf_free(); lf_finalize(); reply_ng(CMD_LF_EM4X50_SIM, status, NULL, 0); } void em4x50_test(em4x50_test_t *ett) { int status = 0; // set field on or off if (ett->field != -1) { em4x50_setup_read(); if (ett->field == 1) { LED_A_ON(); } else { HIGH(GPIO_SSC_DOUT); LED_A_OFF(); } status = ett->field; } // check field status if (ett->check_field) { em4x50_setup_sim(); bool field_on = false; while (BUTTON_PRESS() == false) { if (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { if (field_on == false) { Dbprintf("field on"); field_on = true; } } else if (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK){ if (field_on == true) { Dbprintf("field off"); field_on = false; } } } status = 1; } // timing values if (ett->cycles != 0) { uint32_t tval = 0; uint32_t tvalhigh[ett->cycles]; uint32_t tvallow[ett->cycles]; em4x50_setup_sim(); while (AT91C_BASE_TC0->TC_CV > 0); for (int t = 0; t < ett->cycles; t++) { // field on -> high value AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; tval = AT91C_BASE_TC0->TC_CV; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); tvalhigh[t] = AT91C_BASE_TC0->TC_CV - tval; // filed off -> zero value AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; tval = AT91C_BASE_TC0->TC_CV; while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); tvallow[t] = AT91C_BASE_TC0->TC_CV - tval; } for (int t = 0; t < ett->cycles; t++) { Dbprintf("%03i %li %li", t, tvallow[t], tvalhigh[t]); } } // perform reset if (ett->reset) { em4x50_setup_read(); status = PM3_EFAILED; if (get_signalproperties() && find_em4x50_tag()) { if (reset() == PM3_SUCCESS) { status = 1; } } lf_finalize(); } reply_ng(CMD_LF_EM4X50_TEST, status, NULL, 0); }