//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Miscellaneous routines for low frequency tag operations. // Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x // Also routines for raw mode reading/simulating of LF waveform //----------------------------------------------------------------------------- #include "lfops.h" #include "proxmark3_arm.h" #include "cmd.h" #include "BigBuf.h" #include "fpgaloader.h" #include "ticks.h" #include "dbprint.h" #include "util.h" #include "commonutil.h" #include "crc16.h" #include "string.h" #include "printf.h" #include "lfdemod.h" #include "lfsampling.h" #include "protocols.h" #include "pmflash.h" #include "flashmem.h" // persistence on flash #include "appmain.h" // print stack /* Notes about EM4xxx timings. The timing values differs between cards, we got EM410x, EM43x5, EM445x etc. We are trying to unify and enable the Proxmark to easily detect and select correct timings automatic. The measures from datasheets doesn't always match correct the hardware features of RDV4 antenans and we still wanted to let other devices with other custom antennas still benefit from this repo. This is why its configurable and we use to set these dynamic settings in device external flash memory. // VALUES TAKEN FROM EM4x function: SendForward // START_GAP = 440; (55*8) cycles at 125kHz (8us = 1cycle) // WRITE_GAP = 128; (16*8) // WRITE_1 = 256 32*8; (32*8) // These timings work for 4469/4269/4305 (with the 55*8 above) // WRITE_0 = 23*8 , 9*8 Not about ARM TIMERS Short note about timers on Proxmark device ARM. They are a bit differently implemented and gives decent correctness. SAM7S has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz New timer implemenation in ticks.c, which is used in LFOPS.c 1 μs = 1.5 ticks 1 fc = 8 μs = 12 ticks Terms you find in different datasheets and how they match. 1 Cycle = 8 microseconds (μs) == 1 field clock (fc) Note about HITAG timing Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) T0 = TIMER_CLOCK1 / 125000 = 192 ========================================================================================================== T55x7 Timing ========================================================================================================== ATA5577 Downlink Protocol Timings. Note: All absolute times assume TC = 1 / fC = 8 μs (fC = 125 kHz) Note: These timings are from the datasheet and doesn't map the best to the features of the RVD4 LF antenna. RDV4 LF antenna has high voltage and the drop of power when turning off the rf field takes about 1-2 TC longer. ----------------------------------------------------------------------- Fixed-bit-length Protocol | Normal Downlink | Fast Downlink | ------------------------------+-----------------------------------+-----------------------------------+------ | Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit | |------------+--------+--------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Start gap | | Sgap | 8 | 15 | 50 | 8 | 15 | 50 | Tc | | Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc | |------------+--------+--------+-----------+-----------+-----------+-----------+-----------+-----------+------| | coding | 0 data | d0 | 16 | 24 | 32 | 8 | 12 | 16 | Tc | | | 1 data | d1 | 48 | 56 | 64 | 24 | 28 | 32 | Tc | ------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------- Long Leading Reference | Normal Downlink | Fast Downlink | ------------------------------+-----------------------------------+-----------------------------------+------ | Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc | | Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Write | Ref | | 152 | 160 | 168 | 140 | 144 | 148 | Tc | | data | Pulse | dref | 136 clocks + 0 data bit | 132 clocks + 0 data bit | Tc | | coding |--------+---------+-----------------------------------+-----------------------------------+------| | | 0 data | d0 |dref – 143 |dref – 136 |dref – 128 |dref – 135 |dref – 132 |dref – 124 | Tc | | | 1 data | d1 |dref – 111 |dref – 104 |dref – 96 |dref – 119 |dref – 116 |dref – 112 | Tc | ------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------- Leading-zero Reference | Normal Downlink | Fast Downlink | ------------------------------+-----------------------------------+-----------------------------------+------ | Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc | | Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Write | Ref | dref | 12 | – | 72 | 8 | – | 68 | Tc | | data | 0 data | d0 | dref – 7 | dref | dref + 8 | dref – 3 | dref | dref + 4 | Tc | | coding | 1 data | d1 | dref + 9 | dref + 16 | dref + 24 | dref + 5 | dref + 8 | dref + 12 | Tc | ------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------- 1-of-4 Coding | Normal Downlink | Fast Downlink | ------------------------------+-----------------------------------+-----------------------------------+------ | Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc | | Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc | |-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------| | Write | Ref 00 | dref | 8 | – | 68 | 12 | – | 72 | Tc | | data |00 data | d00 | dref – 7 | dref | dref + 8 | dref – 3 | dref | dref+ 4 | Tc | | coding |01 data | d01 | dref + 9 | dref + 16 | dref + 24 | dref + 5 | dref + 8 | dref + 12 | Tc | | |10 data | d10 | dref + 25 | dref + 32 | dref + 40 | dref + 13 | dref + 16 | dref + 20 | Tc | | |11 data | d11 | dref + 41 | dref + 48 | dref + 56 | dref + 21 | dref + 24 | dref + 28 | Tc | ------------------------------------------------------------------------------------------------------------- Initial values if not in flash SG = Start gap WG = Write gap RG = Read gap Explainations for array T55xx_Timing below 0 1 2 3 SG WG Bit 00 Bit 01 Bit 10 Bit 11 RG -------------------------------------------------------------------- { 29 , 17 , 15 , 47 , 0 , 0 , 15 }, // Default Fixed { 29 , 17 , 15 , 50 , 0 , 0 , 15 }, // Long Leading Ref. { 29 , 17 , 15 , 40 , 0 , 0 , 15 }, // Leading 0 { 29 , 17 , 15 , 31 , 47 , 63 , 15 } // 1 of 4 */ t55xx_configurations_t T55xx_Timing = { { #ifdef WITH_FLASH // PM3RDV4 { 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8, 0, 0 }, // Default Fixed { 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8, 0, 0 }, // Long Leading Ref. { 29 * 8, 17 * 8, 15 * 8, 40 * 8, 15 * 8, 0, 0 }, // Leading 0 { 29 * 8, 17 * 8, 15 * 8, 31 * 8, 15 * 8, 47 * 8, 63 * 8 } // 1 of 4 #else // PM3GENERIC or like official repo { 31 * 8, 20 * 8, 18 * 8, 50 * 8, 15 * 8, 0, 0 }, // Default Fixed { 31 * 8, 20 * 8, 18 * 8, 50 * 8, 15 * 8, 0, 0 }, // Long Leading Ref. { 31 * 8, 20 * 8, 18 * 8, 40 * 8, 15 * 8, 0, 0 }, // Leading 0 { 31 * 8, 20 * 8, 18 * 8, 34 * 8, 15 * 8, 50 * 8, 66 * 8 } // 1 of 4 #endif } }; // Some defines for readability #define T55XX_DLMODE_FIXED 0 // Default Mode #define T55XX_DLMODE_LLR 1 // Long Leading Reference #define T55XX_DLMODE_LEADING_ZERO 2 // Leading Zero #define T55XX_DLMODE_1OF4 3 // 1 of 4 #define T55XX_LONGLEADINGREFERENCE 4 // Value to tell Write Bit to send long reference // ATA55xx shared presets & routines static uint32_t GetT55xxClockBit(uint8_t clock) { switch (clock) { case 128: return T55x7_BITRATE_RF_128; case 100: return T55x7_BITRATE_RF_100; case 64: return T55x7_BITRATE_RF_64; case 50: return T55x7_BITRATE_RF_50; case 40: return T55x7_BITRATE_RF_40; case 32: return T55x7_BITRATE_RF_32; case 16: return T55x7_BITRATE_RF_16; case 8: return T55x7_BITRATE_RF_8; default : return 0; } } void printT55xxConfig(void) { #define PRN_NA sprintf(s + strlen(s), _RED_("N/A") " | "); DbpString(_CYAN_("LF T55XX config")); Dbprintf(" [r] [a] [b] [c] [d] [e] [f] [g]"); Dbprintf(" mode |start|write|write|write| read|write|write"); Dbprintf(" | gap | gap | 0 | 1 | gap | 2 | 3"); Dbprintf("---------------------------+-----+-----+-----+-----+-----+-----+------"); for (uint8_t i = 0; i < 4; i++) { char s[160]; memset(s, 0, sizeof(s)); switch (i) { case T55XX_DLMODE_FIXED : sprintf(s, _YELLOW_("fixed bit length") _GREEN_(" (default)") " |"); break; case T55XX_DLMODE_LLR : sprintf(s, _YELLOW_(" long leading reference") " |"); break; case T55XX_DLMODE_LEADING_ZERO : sprintf(s, _YELLOW_(" leading zero") " |"); break; case T55XX_DLMODE_1OF4 : sprintf(s, _YELLOW_(" 1 of 4 coding reference") " |"); break; default: break; } if (T55xx_Timing.m[i].start_gap != 0xFFFF) sprintf(s + strlen(s), " %3d | ", T55xx_Timing.m[i].start_gap / 8); else PRN_NA; if (T55xx_Timing.m[i].write_gap != 0xFFFF) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_gap / 8); else PRN_NA; if (T55xx_Timing.m[i].write_0 != 0xFFFF) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_0 / 8); else PRN_NA; if (T55xx_Timing.m[i].write_1 != 0xFFFF) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_1 / 8); else PRN_NA; if (T55xx_Timing.m[i].read_gap != 0xFFFF) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].read_gap / 8); else PRN_NA; if (T55xx_Timing.m[i].write_2 != 0xFFFF && i == T55XX_DLMODE_1OF4) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_2 / 8); else PRN_NA if (T55xx_Timing.m[i].write_3 != 0xFFFF && i == T55XX_DLMODE_1OF4) sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_3 / 8); else PRN_NA; // remove last space s[strlen(s)] = 0; DbpStringEx(FLAG_LOG, s, sizeof(s)); } DbpString(""); } void setT55xxConfig(uint8_t arg0, t55xx_configurations_t *c) { for (uint8_t i = 0; i < 4; i++) { if (c->m[i].start_gap != 0) T55xx_Timing.m[i].start_gap = c->m[i].start_gap; if (c->m[i].write_gap != 0) T55xx_Timing.m[i].write_gap = c->m[i].write_gap; if (c->m[i].write_0 != 0) T55xx_Timing.m[i].write_0 = c->m[i].write_0; if (c->m[i].write_1 != 0) T55xx_Timing.m[i].write_1 = c->m[i].write_1; if (i == T55XX_DLMODE_1OF4) { if (c->m[i].write_2 != 0) T55xx_Timing.m[i].write_2 = c->m[i].write_2; if (c->m[i].write_3 != 0) T55xx_Timing.m[i].write_3 = c->m[i].write_3; } else { T55xx_Timing.m[i].write_2 = 0x00; T55xx_Timing.m[i].write_3 = 0x00; } if (c->m[i].read_gap != 0) T55xx_Timing.m[i].read_gap = c->m[i].read_gap; } printT55xxConfig(); #ifdef WITH_FLASH // shall persist to flashmem if (arg0 == 0) { BigBuf_free(); return; } if (!FlashInit()) { BigBuf_free(); return; } uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN); Flash_CheckBusy(BUSY_TIMEOUT); uint16_t res = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN); if (res == 0) { FlashStop(); BigBuf_free(); return; } memcpy(buf, &T55xx_Timing, T55XX_CONFIG_LEN); // delete old configuration Flash_CheckBusy(BUSY_TIMEOUT); Flash_WriteEnable(); Flash_Erase4k(3, 0xD); // write new res = Flash_Write(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN); if (res == T55XX_CONFIG_LEN && DBGLEVEL > 1) { DbpString("T55XX Config save " _GREEN_("success")); } BigBuf_free(); #endif } t55xx_configurations_t *getT55xxConfig(void) { return &T55xx_Timing;//_FixedBit; } void loadT55xxConfig(void) { #ifdef WITH_FLASH if (!FlashInit()) { return; } uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN); Flash_CheckBusy(BUSY_TIMEOUT); uint16_t isok = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN); FlashStop(); // verify read mem is actual data. uint8_t cntA = T55XX_CONFIG_LEN, cntB = T55XX_CONFIG_LEN; for (int i = 0; i < T55XX_CONFIG_LEN; i++) { if (buf[i] == 0xFF) cntA--; if (buf[i] == 0x00) cntB--; } if (!cntA || !cntB) { BigBuf_free(); return; } if (buf[0] != 0xFF) // if not set for clear memcpy((uint8_t *)&T55xx_Timing, buf, T55XX_CONFIG_LEN); if (isok == T55XX_CONFIG_LEN) { if (DBGLEVEL > 1) DbpString("T55XX Config load success"); } #endif } /** * Function to do a modulation and then get samples. * @param delay_off * @param period_0 * @param period_1 * @param command (in binary char array) */ void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint16_t period_0, uint16_t period_1, uint8_t *symbol_extra, uint16_t *period_extra, uint8_t *command, bool verbose, uint32_t samples) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); // use lf config settings sample_config *sc = getSamplingConfig(); LFSetupFPGAForADC(sc->divisor, true); // this causes the field to turn on for uncontrolled amount of time, so we'll turn it off // Make sure the tag is reset FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // start timer StartTicks(); WaitMS(100); // clear read buffer BigBuf_Clear_keep_EM(); // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods. bool bitbang = (delay_off == 0); // now modulate the reader field // Some tags need to be interrogated very soon after activation else they enter their emulation mode // Therefore it's up to the caller to add an initial symbol of adequate duration, except for bitbang mode. if (bitbang) { TurnReadLFOn(20000); // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly... uint8_t hack_cnt = 7; if (period_0 < hack_cnt || period_1 < hack_cnt) { DbpString("[!] Warning periods cannot be less than 7us in bit bang mode"); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); reply_ng(CMD_LF_MOD_THEN_ACQ_RAW_ADC, PM3_EINVARG, NULL, 0); return; } // hack2 needed--- it appears to take about 8-16us to turn the antenna back on // leading to ~ 1 to 2 125kHz samples extra in every off period // so we should test for last 0 before next 1 and reduce period_0 by this extra amount... // but is this time different for every antenna or other hw builds??? more testing needed // prime cmd_len to save time comparing strings while modulating int cmd_len = 0; while (command[cmd_len] != '\0' && command[cmd_len] != ' ') cmd_len++; int counter = 0; bool off = false; for (counter = 0; counter < cmd_len; counter++) { // if cmd = 0 then turn field off if (command[counter] == '0') { // if field already off leave alone (affects timing otherwise) if (off == false) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); off = true; } // note we appear to take about 7us to switch over (or run the if statements/loop...) WaitUS(period_0 - hack_cnt); // else if cmd = 1 then turn field on } else { // if field already on leave alone (affects timing otherwise) if (off) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD); LED_D_ON(); off = false; } // note we appear to take about 7us to switch over (or run the if statements/loop...) WaitUS(period_1 - hack_cnt); } } } else { // old mode of cmd read using delay as off period while (*command != '\0' && *command != ' ') { LED_D_ON(); if (*command == '0') { TurnReadLFOn(period_0); } else if (*command == '1') { TurnReadLFOn(period_1); } else { for (uint8_t i = 0; i < LF_CMDREAD_MAX_EXTRA_SYMBOLS; i++) { if (*command == symbol_extra[i]) { TurnReadLFOn(period_extra[i]); break; } } } command++; LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(delay_off); } FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor); } FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD); // now do the read DoAcquisition_config(verbose, samples); // Turn off antenna FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // tell client we are done reply_ng(CMD_LF_MOD_THEN_ACQ_RAW_ADC, PM3_SUCCESS, NULL, 0); } /* blank r/w tag data stream ...0000000000000000 01111111 1010101010101010101010101010101010101010101010101010101010101010 0011010010100001 01111111 101010101010101[0]000... [5555fe852c5555555555555555fe0000] */ void ReadTItag(void) { StartTicks(); // some hardcoded initial params // when we read a TI tag we sample the zerocross line at 2MHz // TI tags modulate a 1 as 16 cycles of 123.2kHz // TI tags modulate a 0 as 16 cycles of 134.2kHz #define FSAMPLE 2000000 #define FREQLO 123200 #define FREQHI 134200 signed char *dest = (signed char *)BigBuf_get_addr(); uint16_t n = BigBuf_max_traceLen(); // 128 bit shift register [shift3:shift2:shift1:shift0] uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; int i, cycles = 0, samples = 0; // how many sample points fit in 16 cycles of each frequency uint32_t sampleslo = (FSAMPLE << 4) / FREQLO, sampleshi = (FSAMPLE << 4) / FREQHI; // when to tell if we're close enough to one freq or another uint32_t threshold = (sampleslo - sampleshi + 1) >> 1; // TI tags charge at 134.2kHz FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); for (i = 0; i < n - 1; i++) { // count cycles by looking for lo to hi zero crossings if ((dest[i] < 0) && (dest[i + 1] > 0)) { cycles++; // after 16 cycles, measure the frequency if (cycles > 15) { cycles = 0; samples = i - samples; // number of samples in these 16 cycles // TI bits are coming to us lsb first so shift them // right through our 128 bit right shift register shift0 = (shift0 >> 1) | (shift1 << 31); shift1 = (shift1 >> 1) | (shift2 << 31); shift2 = (shift2 >> 1) | (shift3 << 31); shift3 >>= 1; // check if the cycles fall close to the number // expected for either the low or high frequency if ((samples > (sampleslo - threshold)) && (samples < (sampleslo + threshold))) { // low frequency represents a 1 shift3 |= (1u << 31); } else if ((samples > (sampleshi - threshold)) && (samples < (sampleshi + threshold))) { // high frequency represents a 0 } else { // probably detected a gay waveform or noise // use this as gaydar or discard shift register and start again shift3 = shift2 = shift1 = shift0 = 0; } samples = i; // for each bit we receive, test if we've detected a valid tag // if we see 17 zeroes followed by 6 ones, we might have a tag // remember the bits are backwards if (((shift0 & 0x7fffff) == 0x7e0000)) { // if start and end bytes match, we have a tag so break out of the loop if (((shift0 >> 16) & 0xff) == ((shift3 >> 8) & 0xff)) { cycles = 0xF0B; //use this as a flag (ugly but whatever) break; } } } } } // if flag is set we have a tag if (cycles != 0xF0B) { DbpString("Info: No valid tag detected."); } else { // put 64 bit data into shift1 and shift0 shift0 = (shift0 >> 24) | (shift1 << 8); shift1 = (shift1 >> 24) | (shift2 << 8); // align 16 bit crc into lower half of shift2 shift2 = ((shift2 >> 24) | (shift3 << 8)) & 0x0ffff; // if r/w tag, check ident match if (shift3 & (1 << 15)) { DbpString("Info: TI tag is rewriteable"); // only 15 bits compare, last bit of ident is not valid if (((shift3 >> 16) ^ shift0) & 0x7fff) { DbpString("Error: Ident mismatch!"); } else { DbpString("Info: TI tag ident is valid"); } } else { DbpString("Info: TI tag is readonly"); } // WARNING the order of the bytes in which we calc crc below needs checking // i'm 99% sure the crc algorithm is correct, but it may need to eat the // bytes in reverse or something // calculate CRC uint32_t crc = 0; crc = update_crc16(crc, (shift0) & 0xff); crc = update_crc16(crc, (shift0 >> 8) & 0xff); crc = update_crc16(crc, (shift0 >> 16) & 0xff); crc = update_crc16(crc, (shift0 >> 24) & 0xff); crc = update_crc16(crc, (shift1) & 0xff); crc = update_crc16(crc, (shift1 >> 8) & 0xff); crc = update_crc16(crc, (shift1 >> 16) & 0xff); crc = update_crc16(crc, (shift1 >> 24) & 0xff); Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); if (crc != (shift2 & 0xffff)) { Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); } else { DbpString("Info: CRC is good"); } } StopTicks(); } static void WriteTIbyte(uint8_t b) { int i = 0; // modulate 8 bits out to the antenna for (i = 0; i < 8; i++) { if (b & (1 << i)) { // stop modulating antenna 1ms LOW(GPIO_SSC_DOUT); WaitUS(1000); // modulate antenna 1ms HIGH(GPIO_SSC_DOUT); WaitUS(1000); } else { // stop modulating antenna 0.3ms LOW(GPIO_SSC_DOUT); WaitUS(300); // modulate antenna 1.7ms HIGH(GPIO_SSC_DOUT); WaitUS(1700); } } } void AcquireTiType(void) { int i, j, n; // tag transmission is <20ms, sampling at 2M gives us 40K samples max // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t #define TIBUFLEN 1250 // clear buffer uint32_t *buf = (uint32_t *)BigBuf_get_addr(); //clear buffer now so it does not interfere with timing later BigBuf_Clear_ext(false); // Set up the synchronous serial port AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long // 48/2 = 24 MHz clock must be divided by 12 AT91C_BASE_SSC->SSC_CMR = 12; AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; // Transmit Clock Mode Register AT91C_BASE_SSC->SSC_TCMR = 0; // Transmit Frame Mode Register AT91C_BASE_SSC->SSC_TFMR = 0; // iceman, FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER) ?? the code above? can it be replaced? LED_D_ON(); // modulate antenna HIGH(GPIO_SSC_DOUT); // Charge TI tag for 50ms. WaitMS(50); // stop modulating antenna and listen LOW(GPIO_SSC_DOUT); LED_D_OFF(); i = 0; for (;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer i++; if (i >= TIBUFLEN) break; } WDT_HIT(); } // return stolen pin to SSP AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; char *dest = (char *)BigBuf_get_addr(); n = TIBUFLEN * 32; // unpack buffer for (i = TIBUFLEN - 1; i >= 0; i--) { for (j = 0; j < 32; j++) { if (buf[i] & (1u << j)) { dest[--n] = 1; } else { dest[--n] = -1; } } } // reset SSC FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER); } // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc // if crc provided, it will be written with the data verbatim (even if bogus) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); if (crc == 0) { crc = update_crc16(crc, (idlo) & 0xff); crc = update_crc16(crc, (idlo >> 8) & 0xff); crc = update_crc16(crc, (idlo >> 16) & 0xff); crc = update_crc16(crc, (idlo >> 24) & 0xff); crc = update_crc16(crc, (idhi) & 0xff); crc = update_crc16(crc, (idhi >> 8) & 0xff); crc = update_crc16(crc, (idhi >> 16) & 0xff); crc = update_crc16(crc, (idhi >> 24) & 0xff); } Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc); // TI tags charge at 134.2kHz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz // Place FPGA in passthrough mode, in this mode the CROSS_LO line // connects to SSP_DIN and the SSP_DOUT logic level controls // whether we're modulating the antenna (high) // or listening to the antenna (low) FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); StartTicks(); LED_A_ON(); // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // writing algorithm: // a high bit consists of a field off for 1ms and field on for 1ms // a low bit consists of a field off for 0.3ms and field on for 1.7ms // initiate a charge time of 50ms (field on) then immediately start writing bits // start by writing 0xBB (keyword) and 0xEB (password) // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) // finally end with 0x0300 (write frame) // all data is sent lsb first // finish with 50ms programming time // modulate antenna HIGH(GPIO_SSC_DOUT); WaitMS(50); // charge time WriteTIbyte(0xbb); // keyword WriteTIbyte(0xeb); // password WriteTIbyte((idlo) & 0xff); WriteTIbyte((idlo >> 8) & 0xff); WriteTIbyte((idlo >> 16) & 0xff); WriteTIbyte((idlo >> 24) & 0xff); WriteTIbyte((idhi) & 0xff); WriteTIbyte((idhi >> 8) & 0xff); WriteTIbyte((idhi >> 16) & 0xff); WriteTIbyte((idhi >> 24) & 0xff); // data hi to lo WriteTIbyte((crc) & 0xff); // crc lo WriteTIbyte((crc >> 8) & 0xff); // crc hi WriteTIbyte(0x00); // write frame lo WriteTIbyte(0x03); // write frame hi HIGH(GPIO_SSC_DOUT); WaitMS(50); // programming time LED_A_OFF(); // get TI tag data into the buffer AcquireTiType(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); DbpString("Now use `lf ti reader` to check"); StopTicks(); } // note: a call to FpgaDownloadAndGo(FPGA_BITSTREAM_LF) must be done before, but // this may destroy the bigbuf so be sure this is called before calling SimulateTagLowFrequencyEx void SimulateTagLowFrequencyEx(int period, int gap, bool ledcontrol, int numcycles) { // start us timer StartTicks(); //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE ); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); WaitMS(20); int i = 0, x = 0; uint8_t *buf = BigBuf_get_addr(); // set frequency, get values from 'lf config' command sample_config *sc = getSamplingConfig(); if ((sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255)) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz else if (sc->divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor); AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; uint16_t check = 0; for (;;) { if (numcycles > -1) { if (x != numcycles) { ++x; } else { // exit without turning off field return; } } if (ledcontrol) LED_D_ON(); // wait until SSC_CLK goes HIGH // used as a simple detection of a reader field? while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { WDT_HIT(); if (check == 1000) { if (data_available() || BUTTON_PRESS()) goto OUT; check = 0; } ++check; } if (ledcontrol) LED_D_OFF(); if (buf[i]) OPEN_COIL(); else SHORT_COIL(); check = 0; //wait until SSC_CLK goes LOW while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { WDT_HIT(); if (check == 2000) { if (BUTTON_PRESS() || data_available()) goto OUT; check = 0; } ++check; } i++; if (i == period) { i = 0; if (gap) { SHORT_COIL(); WaitUS(gap); } } } OUT: StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); } void SimulateTagLowFrequency(int period, int gap, bool ledcontrol) { SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1); } #define DEBUG_FRAME_CONTENTS 1 void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen) { } // compose fc/X fc/Y waveform (FSKx) static void fcAll(uint8_t fc, int *n, uint8_t clock, int16_t *remainder) { uint8_t *dest = BigBuf_get_addr(); uint8_t halfFC = fc >> 1; uint8_t wavesPerClock = (clock + *remainder) / fc; // loop through clock - step field clock for (uint8_t idx = 0; idx < wavesPerClock; idx++) { // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here memset(dest + (*n) + (fc - halfFC), 1, halfFC); *n += fc; } *remainder = (clock + *remainder) % fc; // if we've room for more than a half wave, add a full wave and use negative remainder if (*remainder > halfFC) { memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here memset(dest + (*n) + (fc - halfFC), 1, halfFC); *n += fc; *remainder -= fc; } } // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed void CmdHIDsimTAGEx(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, bool ledcontrol, int numcycles) { /* HID tag bitstream format The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits A 1 bit is represented as 6 fc8 and 5 fc10 patterns (manchester 10) during 2 clock periods. (1bit = 1clock period) A 0 bit is represented as 5 fc10 and 6 fc8 patterns (manchester 01) A fc8 is inserted before every 4 bits A special start of frame pattern is used consisting a0b0 where a and b are neither 0 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) FSK2a bit 1 = fc10 bit 0 = fc8 */ // special start of frame marker containing invalid Manchester bit sequences uint8_t bits[8 + 8 * 2 + 84 * 2] = { 0, 0, 0, 1, 1, 1, 0, 1 }; uint8_t bitlen = 0; uint16_t n = 8; if (longFMT) { // Ensure no more than 84 bits supplied if (hi2 > 0xFFFFF) { DbpString("Tags can only have 84 bits."); return; } bitlen = 8 + 8 * 2 + 84 * 2; hi2 |= 0x9E00000; // 9E: long format identifier manchesterEncodeUint32(hi2, 16 + 12, bits, &n); manchesterEncodeUint32(hi, 32, bits, &n); manchesterEncodeUint32(lo, 32, bits, &n); } else { if (hi > 0xFFF) { DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags"); return; } bitlen = 8 + 44 * 2; manchesterEncodeUint32(hi, 12, bits, &n); manchesterEncodeUint32(lo, 32, bits, &n); } CmdFSKsimTAGEx(10, 8, 0, 50, bitlen, bits, ledcontrol, numcycles); } void CmdHIDsimTAG(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, bool ledcontrol) { CmdHIDsimTAGEx(hi2, hi, lo, longFMT, ledcontrol, -1); reply_ng(CMD_LF_HID_SIMULATE, PM3_EOPABORTED, NULL, 0); } // prepare a waveform pattern in the buffer based on the ID given then // simulate a FSK tag until the button is pressed // arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock void CmdFSKsimTAGEx(uint8_t fchigh, uint8_t fclow, uint8_t separator, uint8_t clk, uint16_t bitslen, uint8_t *bits, bool ledcontrol, int numcycles) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(false); int n = 0, i = 0; int16_t remainder = 0; if (separator) { //int fsktype = ( fchigh == 8 && fclow == 5) ? 1 : 2; //fcSTT(&n); } for (i = 0; i < bitslen; i++) { if (bits[i]) fcAll(fchigh, &n, clk, &remainder); else fcAll(fclow, &n, clk, &remainder); } WDT_HIT(); Dbprintf("FSK simulating with rf/%d, fc high %d, fc low %d, STT %d, n %d", clk, fchigh, fclow, separator, n); if (ledcontrol) LED_A_ON(); SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles); if (ledcontrol) LED_A_OFF(); } // prepare a waveform pattern in the buffer based on the ID given then // simulate a FSK tag until the button is pressed // arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock void CmdFSKsimTAG(uint8_t fchigh, uint8_t fclow, uint8_t separator, uint8_t clk, uint16_t bitslen, uint8_t *bits, bool ledcontrol) { CmdFSKsimTAGEx(fchigh, fclow, separator, clk, bitslen, bits, ledcontrol, -1); reply_ng(CMD_LF_FSK_SIMULATE, PM3_EOPABORTED, NULL, 0); } // compose ask waveform for one bit(ASK) static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) { uint8_t *dest = BigBuf_get_addr(); uint8_t halfClk = clock / 2; // c = current bit 1 or 0 if (manchester == 1) { memset(dest + (*n), c, halfClk); memset(dest + (*n) + halfClk, c ^ 1, halfClk); } else { memset(dest + (*n), c, clock); } *n += clock; } static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) { uint8_t *dest = BigBuf_get_addr(); uint8_t halfClk = clock / 2; if (c) { memset(dest + (*n), c ^ 1 ^ *phase, halfClk); memset(dest + (*n) + halfClk, c ^ *phase, halfClk); } else { memset(dest + (*n), c ^ *phase, clock); *phase ^= 1; } *n += clock; } static void stAskSimBit(int *n, uint8_t clock) { uint8_t *dest = BigBuf_get_addr(); uint8_t halfClk = clock / 2; //ST = .5 high .5 low 1.5 high .5 low 1 high memset(dest + (*n), 1, halfClk); memset(dest + (*n) + halfClk, 0, halfClk); memset(dest + (*n) + clock, 1, clock + halfClk); memset(dest + (*n) + clock * 2 + halfClk, 0, halfClk); memset(dest + (*n) + clock * 3, 1, clock); *n += clock * 4; } static void leadingZeroAskSimBits(int *n, uint8_t clock) { uint8_t *dest = BigBuf_get_addr(); memset(dest + (*n), 0, clock * 8); *n += clock * 8; } /* static void leadingZeroBiphaseSimBits(int *n, uint8_t clock, uint8_t *phase) { uint8_t *dest = BigBuf_get_addr(); for (uint8_t i = 0; i < 8; i++) { memset(dest + (*n), 0 ^ *phase, clock); *phase ^= 1; *n += clock; } } */ // args clock, ask/man or askraw, invert, transmission separator void CmdASKsimTAG(uint8_t encoding, uint8_t invert, uint8_t separator, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); set_tracing(false); int n = 0, i = 0; if (encoding == 2) { //biphase uint8_t phase = 0; // iceman, if I add this, the demod includes these extra zero and detection fails. // now, I only need to figure out just to add carrier without modulation // the old bug, with adding ask zeros messed up the phase variable and deteion failed because of it in LF FDX // leadingZeroBiphaseSimBits(&n, clk, &phase); for (i = 0; i < size; i++) { biphaseSimBit(bits[i] ^ invert, &n, clk, &phase); } if (phase == 1) { //run a second set inverted to keep phase in check for (i = 0; i < size; i++) { biphaseSimBit(bits[i] ^ invert, &n, clk, &phase); } } } else { // ask/manchester || ask/raw leadingZeroAskSimBits(&n, clk); for (i = 0; i < size; i++) { askSimBit(bits[i] ^ invert, &n, clk, encoding); } if (encoding == 0 && bits[0] == bits[size - 1]) { //run a second set inverted (for ask/raw || biphase phase) for (i = 0; i < size; i++) { askSimBit(bits[i] ^ invert ^ 1, &n, clk, encoding); } } } if (separator == 1 && encoding == 1) stAskSimBit(&n, clk); else if (separator == 1) Dbprintf("sorry but separator option not yet available"); WDT_HIT(); Dbprintf("ASK simulating with rf/%d, invert %d, encoding %s (%d), separator %d, n %d" , clk , invert , (encoding == 2) ? "ASK/BI" : (encoding == 1) ? "ASK/MAN" : "RAW/MAN" , encoding , separator , n ); if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); reply_ng(CMD_LF_ASK_SIMULATE, PM3_EOPABORTED, NULL, 0); } //carrier can be 2,4 or 8 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) { uint8_t *dest = BigBuf_get_addr(); uint8_t halfWave = waveLen / 2; //uint8_t idx; int i = 0; if (phaseChg) { // write phase change memset(dest + (*n), *curPhase ^ 1, halfWave); memset(dest + (*n) + halfWave, *curPhase, halfWave); *n += waveLen; *curPhase ^= 1; i += waveLen; } //write each normal clock wave for the clock duration for (; i < clk; i += waveLen) { memset(dest + (*n), *curPhase, halfWave); memset(dest + (*n) + halfWave, *curPhase ^ 1, halfWave); *n += waveLen; } } // args clock, carrier, invert, void CmdPSKsimTAG(uint8_t carrier, uint8_t invert, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); set_tracing(false); int n = 0, i = 0; uint8_t curPhase = 0; for (i = 0; i < size; i++) { if (bits[i] == curPhase) { pskSimBit(carrier, &n, clk, &curPhase, false); } else { pskSimBit(carrier, &n, clk, &curPhase, true); } } WDT_HIT(); Dbprintf("PSK simulating with rf/%d, fc/%d, invert %d, n %d", clk, carrier, invert, n); if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); reply_ng(CMD_LF_PSK_SIMULATE, PM3_EOPABORTED, NULL, 0); } // compose nrz waveform for one bit(NRZ) static void nrzSimBit(uint8_t c, int *n, uint8_t clock) { uint8_t *dest = BigBuf_get_addr(); // uint8_t halfClk = clock / 2; // c = current bit 1 or 0 memset(dest + (*n), c, clock); *n += clock; } // args clock, void CmdNRZsimTAG(uint8_t invert, uint8_t separator, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); set_tracing(false); int n = 0, i = 0; // NRZ leadingZeroAskSimBits(&n, clk); for (i = 0; i < size; i++) { nrzSimBit(bits[i] ^ invert, &n, clk); } if (bits[0] == bits[size - 1]) { for (i = 0; i < size; i++) { nrzSimBit(bits[i] ^ invert ^ 1, &n, clk); } } if (separator == 1) Dbprintf("sorry but separator option not yet available"); WDT_HIT(); Dbprintf("NRZ simulating with rf/%d, invert %d, separator %d, n %d" , clk , invert , separator , n ); if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); reply_ng(CMD_LF_NRZ_SIMULATE, PM3_EOPABORTED, NULL, 0); } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int lf_hid_watch(int findone, uint32_t *high, uint32_t *low) { size_t size; uint32_t hi2 = 0, hi = 0, lo = 0; int dummyIdx = 0; // Configure to go in 125kHz listen mode LFSetupFPGAForADC(LF_DIVISOR_125, true); uint8_t *dest = BigBuf_get_addr(); BigBuf_Clear_keep_EM(); clear_trace(); set_tracing(false); //clear read buffer BigBuf_Clear_keep_EM(); int res = PM3_SUCCESS; for (;;) { WDT_HIT(); if (data_available() || BUTTON_PRESS()) { res = PM3_EOPABORTED; break; } DoAcquisition_default(-1, false); // FSK demodulator // 50 * 128 * 2 - big enough to catch 2 sequences of largest format size = MIN(12800, BigBuf_max_traceLen()); int idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx); if (idx < 0) continue; if (idx > 0 && lo > 0 && (size == 96 || size == 192)) { // go over previously decoded manchester data and decode into usable tag ID if (hi2 != 0) { //extra large HID tags 88/192 bits Dbprintf("TAG ID: " _GREEN_("%x%08x%08x") " (%d)", hi2, hi, lo, (lo >> 1) & 0xFFFF ); } else { //standard HID tags 44/96 bits uint8_t bitlen = 0; uint32_t fac = 0; uint32_t cardnum = 0; if (((hi >> 5) & 1) == 1) { //if bit 38 is set then < 37 bit format is used uint32_t lo2 = 0; lo2 = (((hi & 31) << 12) | (lo >> 20)); //get bits 21-37 to check for format len bit uint8_t idx3 = 1; while (lo2 > 1) { //find last bit set to 1 (format len bit) lo2 >>= 1; idx3++; } bitlen = idx3 + 19; fac = 0; cardnum = 0; if (bitlen == 26) { cardnum = (lo >> 1) & 0xFFFF; fac = (lo >> 17) & 0xFF; } if (bitlen == 37) { cardnum = (lo >> 1) & 0x7FFFF; fac = ((hi & 0xF) << 12) | (lo >> 20); } if (bitlen == 34) { cardnum = (lo >> 1) & 0xFFFF; fac = ((hi & 1) << 15) | (lo >> 17); } if (bitlen == 35) { cardnum = (lo >> 1) & 0xFFFFF; fac = ((hi & 1) << 11) | (lo >> 21); } } else { //if bit 38 is not set then 37 bit format is used bitlen = 37; cardnum = (lo >> 1) & 0x7FFFF; fac = ((hi & 0xF) << 12) | (lo >> 20); } Dbprintf("TAG ID: " _GREEN_("%x%08x (%d)") " - Format Len: " _GREEN_("%d") " bit - FC: " _GREEN_("%d") " - Card: "_GREEN_("%d"), hi, lo, (lo >> 1) & 0xFFFF, bitlen, fac, cardnum ); } if (findone) { *high = hi; *low = lo; break; } // reset } hi2 = hi = lo = idx = 0; } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); LEDsoff(); return res; } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int lf_awid_watch(int findone, uint32_t *high, uint32_t *low) { size_t size; int dummyIdx = 0; uint8_t *dest = BigBuf_get_addr(); BigBuf_Clear_keep_EM(); clear_trace(); set_tracing(false); LFSetupFPGAForADC(LF_DIVISOR_125, true); int res = PM3_SUCCESS; for (;;) { WDT_HIT(); if (data_available() || BUTTON_PRESS()) { res = PM3_EOPABORTED; break; } DoAcquisition_default(-1, false); // FSK demodulator size = MIN(12800, BigBuf_max_traceLen()); //askdemod and manchester decode int idx = detectAWID(dest, &size, &dummyIdx); if (idx <= 0 || size != 96) continue; // Index map // 0 10 20 30 40 50 60 // | | | | | | | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 // ----------------------------------------------------------------------------- // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 // |---26 bit---| |-----117----||-------------142-------------| // b = format bit len, o = odd parity of last 3 bits // f = facility code, c = card number // w = wiegand parity // (26 bit format shown) //get raw ID before removing parities uint32_t rawLo = bytebits_to_byte(dest + idx + 64, 32); uint32_t rawHi = bytebits_to_byte(dest + idx + 32, 32); uint32_t rawHi2 = bytebits_to_byte(dest + idx, 32); size = removeParity(dest, idx + 8, 4, 1, 88); if (size != 66) continue; // ok valid card found! // Index map // 0 10 20 30 40 50 60 // | | | | | | | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 // ----------------------------------------------------------------------------- // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // |26 bit| |-117--| |-----142------| // b = format bit len, o = odd parity of last 3 bits // f = facility code, c = card number // w = wiegand parity // (26 bit format shown) uint8_t fmtLen = bytebits_to_byte(dest, 8); if (fmtLen == 26) { uint32_t fac = bytebits_to_byte(dest + 9, 8); uint32_t cardnum = bytebits_to_byte(dest + 17, 16); uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen); Dbprintf("AWID Found - Bit length: " _GREEN_("%d") ", FC: " _GREEN_("%d") ", Card: " _GREEN_("%d") " - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fac, cardnum, code1, rawHi2, rawHi, rawLo); } else { uint32_t cardnum = bytebits_to_byte(dest + 8 + (fmtLen - 17), 16); if (fmtLen > 32) { uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen - 32); uint32_t code2 = bytebits_to_byte(dest + 8 + (fmtLen - 32), 32); Dbprintf("AWID Found - Bit length: " _GREEN_("%d") " -unknown bit length- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); } else { uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen); Dbprintf("AWID Found - Bit length: " _GREEN_("%d") " -unknown bit length- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); } } if (findone) { *high = rawHi; *low = rawLo; break; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); LEDsoff(); return res; } int lf_em410x_watch(int findone, uint32_t *high, uint64_t *low) { size_t size, idx = 0; int clk = 0, invert = 0, maxErr = 20; uint32_t hi = 0; uint64_t lo = 0; uint8_t *dest = BigBuf_get_addr(); clear_trace(); set_tracing(false); BigBuf_Clear_keep_EM(); LFSetupFPGAForADC(LF_DIVISOR_125, true); int res = PM3_SUCCESS; for (;;) { WDT_HIT(); if (data_available() || BUTTON_PRESS()) { res = PM3_EOPABORTED; break; } DoAcquisition_default(-1, false); size = MIN(16385, BigBuf_max_traceLen()); //askdemod and manchester decode int errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); if (errCnt > 50) continue; WDT_HIT(); errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); if (errCnt == 1) { if (size == 128) { Dbprintf("EM XL TAG ID: " _GREEN_("%06x%08x%08x") " - ( %05d_%03d_%08d )", hi, (uint32_t)(lo >> 32), (uint32_t)lo, (uint32_t)(lo & 0xFFFF), (uint32_t)((lo >> 16LL) & 0xFF), (uint32_t)(lo & 0xFFFFFF)); } else { Dbprintf("EM TAG ID: " _GREEN_("%02x%08x") " - ( %05d_%03d_%08d )", (uint32_t)(lo >> 32), (uint32_t)lo, (uint32_t)(lo & 0xFFFF), (uint32_t)((lo >> 16LL) & 0xFF), (uint32_t)(lo & 0xFFFFFF)); } if (findone) { *high = hi; *low = lo; break; } } hi = lo = size = idx = 0; clk = invert = 0; } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); LEDsoff(); return res; } int lf_io_watch(int findone, uint32_t *high, uint32_t *low) { int dummyIdx = 0; uint32_t code = 0, code2 = 0; uint8_t version = 0, facilitycode = 0; uint16_t number = 0; uint8_t *dest = BigBuf_get_addr(); BigBuf_Clear_keep_EM(); clear_trace(); set_tracing(false); // Configure to go in 125kHz listen mode LFSetupFPGAForADC(LF_DIVISOR_125, true); int res = PM3_SUCCESS; for (;;) { WDT_HIT(); if (data_available() || BUTTON_PRESS()) { res = PM3_EOPABORTED; break; } DoAcquisition_default(-1, false); size_t size = MIN(12000, BigBuf_max_traceLen()); //fskdemod and get start index int idx = detectIOProx(dest, &size, &dummyIdx); if (idx < 0) continue; //valid tag found //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 // //Checksum: //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 //preamble F0 E0 01 03 B6 75 // How to calc checksum, // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 // F0 + E0 + 01 + 03 + B6 = 28A // 28A & FF = 8A // FF - 8A = 75 // Checksum: 0x75 //XSF(version)facility:codeone+codetwo //Handle the data // if(findone){ //only print binary if we are doing one // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); // } code = bytebits_to_byte(dest + idx, 32); code2 = bytebits_to_byte(dest + idx + 32, 32); version = bytebits_to_byte(dest + idx + 27, 8); //14,4 facilitycode = bytebits_to_byte(dest + idx + 18, 8); number = (bytebits_to_byte(dest + idx + 36, 8) << 8) | (bytebits_to_byte(dest + idx + 45, 8)); //36,9 Dbprintf("IO Prox " _GREEN_("XSF(%02d)%02x:%05d") " (%08x%08x) (%s)", version, facilitycode, number, code, code2); if (findone) { *high = code; *low = code2; break; } code = code2 = 0; version = facilitycode = 0; number = 0; } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); LEDsoff(); return res; } /*------------------------------ * T5555/T5557/T5567/T5577 routines *------------------------------ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h * * Relevant communication times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. * Q5 tags seems to have issues when these values changes. */ void TurnReadLFOn(uint32_t delay) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD); // measure antenna strength. //int adcval = ((MAX_ADC_LF_VOLTAGE * (SumAdc(ADC_CHAN_LF, 32) >> 1)) >> 14); WaitUS(delay); } static void TurnReadLF_off(uint32_t delay) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(delay); } // Macro for code readability #define BITSTREAM_BYTE(x) ((x) >> 3) // iceman note: isn't this NIBBLE??? #define BITSTREAM_BIT(x) ((x) & 7) #define T55_LLR_REF (136 * 8) // Write one bit to chip static void T55xxWriteBit(uint8_t bit, uint8_t downlink_idx) { switch (bit) { case 0 : // send bit 0/00 TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_0); break; case 1 : // send bit 1/01 TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_1); break; case 2 : // send bits 10 (1 of 4) TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_2); break; case 3 : // send bits 11 (1 of 4) TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_3); break; case 4 : // send Long Leading Reference TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_0 + T55_LLR_REF); break; } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(T55xx_Timing.m[downlink_idx].write_gap); } // Function to abstract an Arbitrary length byte array to store bit pattern. // bit_array - Array to hold data/bit pattern // start_offset - bit location to start storing new bits. // data - upto 32 bits of data to store // num_bits - how many bits (low x bits of data) Max 32 bits at a time // max_len - how many bytes can the bit_array hold (ensure no buffer overflow) // returns "Next" bit offset / bits stored (for next store) static uint8_t T55xx_SetBits(uint8_t *bs, uint8_t start_offset, uint32_t data, uint8_t num_bits, uint8_t max_len) { int8_t next_offset = start_offset; // Check if data will fit. if ((start_offset + num_bits) <= (max_len * 8)) { // Loop through the data and store for (int8_t offset = (num_bits - 1); offset >= 0; offset--) { if ((data >> offset) & 1) bs[BITSTREAM_BYTE(next_offset)] |= (1 << BITSTREAM_BIT(next_offset)); // Set 1 else bs[BITSTREAM_BYTE(next_offset)] &= (0xff ^ (1 << BITSTREAM_BIT(next_offset))); // Set 0 next_offset++; } } else { // Note: This should never happen unless some code changes cause it. // So short message for coders when testing. Dbprintf(_RED_("T55 too many bits")); } return next_offset; } // Send one downlink command to the card static void T55xx_SendCMD(uint32_t data, uint32_t pwd, uint16_t arg) { /* arg bits xxxx xxxxxxx1 0x001 password mode (Y/N) xxxx xxxxxx1x 0x002 page (0|1) xxxx xxxxx1xx 0x004 test mode (Y/N) xxxx xxx11xxx 0x018 selected downlink mode (0|1|2|3|) xxxx xx1xxxxx 0x020 !reg_readmode (ICEMAN ?? Why use negative in the bool ??) xxxx x1xxxxxx 0x040 called for a read, so no data packet (Y/N) xxxx 1xxxxxxx 0x080 reset (Y/N) xxx1 xxxxxxxx 0x100 brute force (Y/N) 111x xxxxxxxx 0xE00 block to write (0-7) */ bool t55_send_pwdmode = (arg & 0x1); bool t55_send_page = ((arg >> 1) & 0x1); bool t55_send_testmode = ((arg >> 2) & 0x1); bool t55_send_regreadmode = ((arg >> 5) & 0x1); bool t55_send_readcmd = ((arg >> 6) & 0x1); bool t55_send_reset = ((arg >> 7) & 0x1); bool t55_brute_mem = ((arg >> 8) & 0x1); uint8_t downlink_mode = (arg >> 3) & 0x03; uint8_t block_no = (arg >> 9) & 0x07; // no startup delay when in bruteforce command uint8_t start_wait = (t55_brute_mem) ? 0 : 4; // Max Downlink Command size ~74 bits, so 10 bytes (80 bits) uint8_t bs[10]; memset(bs, 0x00, sizeof(bs)); uint8_t len = 0; // build bit stream to send. // add Leading 0 if (downlink_mode == T55XX_DLMODE_LEADING_ZERO) len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs)); // add 1 of 4 reference bit if (downlink_mode == T55XX_DLMODE_1OF4) { len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs)); // add extra zero len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs)); } // add Opcode if (t55_send_reset) { // reset : r*) 00 len = T55xx_SetBits(bs, len, 0, 2, sizeof(bs)); } else { if (t55_send_testmode) Dbprintf(_YELLOW_("Using Test Mode")); len = T55xx_SetBits(bs, len, t55_send_testmode ? 0 : 1, 1, sizeof(bs)); len = T55xx_SetBits(bs, len, t55_send_testmode ? 1 : t55_send_page, 1, sizeof(bs)); if (t55_send_pwdmode) { // Leading 0 and 1 of 4 00 fixed bits if passsword used if ((downlink_mode == T55XX_DLMODE_LEADING_ZERO) || (downlink_mode == T55XX_DLMODE_1OF4)) { len = T55xx_SetBits(bs, len, 0, 2, sizeof(bs)); } len = T55xx_SetBits(bs, len, pwd, 32, sizeof(bs)); } // Add Lock bit 0 if (t55_send_regreadmode == false) len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs)); // Add Data if a write command if (t55_send_readcmd == false) len = T55xx_SetBits(bs, len, data, 32, sizeof(bs)); // Add Address if (t55_send_regreadmode == false) len = T55xx_SetBits(bs, len, block_no, 3, sizeof(bs)); } // Send Bits to T55xx // Set up FPGA, 125kHz LFSetupFPGAForADC(LF_DIVISOR_125, true); // make sure tag is fully powered up... WaitMS(start_wait); // Trigger T55x7 in mode. FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(T55xx_Timing.m[downlink_mode].start_gap); // If long leading 0 send long reference pulse if (downlink_mode == T55XX_DLMODE_LLR) T55xxWriteBit(T55XX_LONGLEADINGREFERENCE, downlink_mode);//Timing); // Send Long Leading Start Reference uint8_t sendbits; if ((downlink_mode == T55XX_DLMODE_1OF4) && (len > 0)) { // 1 of 4 need to send 2 bits at a time for (uint8_t i = 0; i < len - 1; i += 2) { sendbits = (bs[BITSTREAM_BYTE(i)] >> (BITSTREAM_BIT(i)) & 1) << 1; // Bit i sendbits += (bs[BITSTREAM_BYTE(i + 1)] >> (BITSTREAM_BIT(i + 1)) & 1); // Bit i+1; T55xxWriteBit(sendbits & 3, downlink_mode); } } else { for (uint8_t i = 0; i < len; i++) { sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i)); T55xxWriteBit(sendbits & 1, downlink_mode); } } } // Send T5577 reset command then read stream (see if we can identify the start of the stream) void T55xxResetRead(uint8_t flags) { uint8_t downlink_mode = ((flags >> 3) & 3); uint8_t arg = 0x80 | downlink_mode; LED_A_ON(); //clear buffer now so it does not interfere with timing later BigBuf_Clear_keep_EM(); T55xx_SendCMD(0, 0, arg); TurnReadLFOn(T55xx_Timing.m[downlink_mode].read_gap); // Acquisition DoPartialAcquisition(0, false, BigBuf_max_traceLen(), 0); // Turn the field off FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_T55XX_RESET_READ, PM3_SUCCESS, NULL, 0); LED_A_OFF(); } void T55xxDangerousRawTest(uint8_t *data) { // supports only default downlink mode t55xx_test_block_t *c = (t55xx_test_block_t *)data; uint8_t start_wait = 4; uint8_t bs[128 / 8]; memset(bs, 0x00, sizeof(bs)); uint8_t len = 0; if (c->bitlen == 0 || c->bitlen > 128 || c->time == 0) reply_ng(CMD_LF_T55XX_DANGERRAW, PM3_EINVARG, NULL, 0); for (uint8_t i = 0; i < c->bitlen; i++) len = T55xx_SetBits(bs, len, c->data[i], 1, sizeof(bs)); if (DBGLEVEL > 1) { Dbprintf("LEN %i, TIMING %i", len, c->time); for (uint8_t i = 0; i < len; i++) { uint8_t sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i)); Dbprintf("%02i: %i", i, sendbits & 1); } } LED_A_ON(); LFSetupFPGAForADC(LF_DIVISOR_125, true); // make sure tag is fully powered up... WaitMS(start_wait); // Trigger T55x7 in mode. FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(T55xx_Timing.m[0].start_gap); uint8_t sendbits; for (uint8_t i = 0; i < len; i++) { sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i)); T55xxWriteBit(sendbits & 1, 0); } TurnReadLFOn(c->time); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_T55XX_DANGERRAW, PM3_SUCCESS, NULL, 0); LED_A_OFF(); } // Write one card block in page 0, no lock //void T55xxWriteBlockExt(uint32_t data, uint8_t blockno, uint32_t pwd, uint8_t flags) { void T55xxWriteBlock(uint8_t *data) { /* flag bits xxxxxxx1 0x01 PwdMode xxxxxx1x 0x02 Page xxxxx1xx 0x04 testMode xxx11xxx 0x18 downlink mode xx1xxxxx 0x20 !reg_readmode x1xxxxxx 0x40 called for a read, so no data packet 1xxxxxxx 0x80 reset */ t55xx_write_block_t *c = (t55xx_write_block_t *)data; // c->data, c->blockno, c->pwd, c->flags bool testMode = ((c->flags & 0x04) == 0x04); c->flags &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0 LED_A_ON(); T55xx_SendCMD(c->data, c->pwd, c->flags | (c->blockno << 9)); // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) // "there is a clock delay before programming" // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567 // so we should wait 1 clock + 5.6ms then read response? // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow... if (testMode) { //TESTMODE TIMING TESTS: // <566us does nothing // 566-568 switches between wiping to 0s and doing nothing // 5184 wipes and allows 1 block to be programmed. // indefinite power on wipes and then programs all blocks with bitshifted data sent. TurnReadLFOn(5184); } else { TurnReadLFOn(20 * 1000); //could attempt to do a read to confirm write took // as the tag should repeat back the new block // until it is reset, but to confirm it we would // need to know the current block 0 config mode for // modulation clock an other details to demod the response... // response should be (for t55x7) a 0 bit then (ST if on) // block data written in on repeat until reset. //DoPartialAcquisition(20, false, 12000); } // turn field off FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_T55XX_WRITEBL, PM3_SUCCESS, NULL, 0); LED_A_OFF(); } /* // uses NG format void T55xxWriteBlock(uint8_t *data) { t55xx_write_block_t *c = (t55xx_write_block_t *)data; T55xxWriteBlockExt(c->data, c->blockno, c->pwd, c->flags); // reply_ng(CMD_LF_T55XX_WRITEBL, PM3_SUCCESS, NULL, 0); } */ /* // Read one card block in page [page] void T55xxReadBlockExt(uint16_t flags, uint8_t block, uint32_t pwd) { / * flag bits xxxx xxxxxxx1 0x0001 PwdMode xxxx xxxxxx1x 0x0002 Page xxxx xxxxx1xx 0x0004 testMode xxxx xxx11xxx 0x0018 downlink mode xxxx xx1xxxxx 0x0020 !reg_readmode xxxx x1xxxxxx 0x0040 called for a read, so no data packet xxxx 1xxxxxxx 0x0080 reset xxx1 xxxxxxxx 0x0100 brute / leave field on * / size_t samples = 12000; bool brute_mem = (flags & 0x0100) >> 8; LED_A_ON(); if (brute_mem) samples = 1024; // Set Read Flag to ensure SendCMD does not add "data" to the packet flags |= 0x40; // RegRead Mode true block = 0xff, so read without an address if (block == 0xff) flags |= 0x20; //make sure block is at max 7 block &= 0x7; //clear buffer now so it does not interfere with timing later BigBuf_Clear_keep_EM(); T55xx_SendCMD(0, pwd, flags | (block << 9)); //, true); // Turn field on to read the response // 137*8 seems to get to the start of data pretty well... // but we want to go past the start and let the repeating data settle in... // TurnReadLFOn(210*8); // issues with block 1 reads so dropping down seemed to help TurnReadLFOn(137 * 8); // Acquisition // Now do the acquisition DoPartialAcquisition(0, false, samples, 0); // Turn the field off if (!brute_mem) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_T55XX_READBL, PM3_SUCCESS, NULL, 0); LED_A_OFF(); } } */ // Read one card block in page [page] void T55xxReadBlock(uint8_t page, bool pwd_mode, bool brute_mem, uint8_t block, uint32_t pwd, uint8_t downlink_mode) { /* flag bits xxxx xxxxxxx1 0x0001 PwdMode xxxx xxxxxx1x 0x0002 Page xxxx xxxxx1xx 0x0004 testMode xxxx xxx11xxx 0x0018 downlink mode xxxx xx1xxxxx 0x0020 !reg_readmode xxxx x1xxxxxx 0x0040 called for a read, so no data packet xxxx 1xxxxxxx 0x0080 reset xxx1 xxxxxxxx 0x0100 brute / leave field on */ uint16_t flags = 0x0040; // read packet if (pwd_mode) flags |= 0x0001; if (page) flags |= 0x0002; flags |= (downlink_mode & 3) << 3; if (brute_mem) flags |= 0x0100; size_t samples = 12000; LED_A_ON(); if (brute_mem) samples = 2048; //-- Set Read Flag to ensure SendCMD does not add "data" to the packet //-- flags |= 0x40; // RegRead Mode true block = 0xff, so read without an address if (block == 0xff) flags |= 0x20; //make sure block is at max 7 block &= 0x7; //clear buffer now so it does not interfere with timing later BigBuf_Clear_keep_EM(); T55xx_SendCMD(0, pwd, flags | (block << 9)); //, true); // Turn field on to read the response // 137*8 seems to get to the start of data pretty well... // but we want to go past the start and let the repeating data settle in... // TurnReadLFOn(210*8); // issues with block 1 reads so dropping down seemed to help TurnReadLFOn(137 * 8); // Acquisition // Now do the acquisition DoPartialAcquisition(0, false, samples, 1000); // Turn the field off if (brute_mem == false) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_T55XX_READBL, PM3_SUCCESS, NULL, 0); LED_A_OFF(); } } void T55xx_ChkPwds(uint8_t flags) { #define CHK_SAMPLES_SIGNAL 2048 #ifdef WITH_FLASH DbpString(_CYAN_("T55XX Check pwds using flashmemory starting")); #else DbpString(_CYAN_("T55XX Check pwds starting")); #endif // First get baseline and setup LF mode. uint8_t *buf = BigBuf_get_addr(); uint8_t downlink_mode = (flags >> 3) & 0x03; uint64_t b1, baseline_faulty = 0; DbpString("Determine baseline..."); // collect baseline for failed attempt ( should give me block1 ) uint8_t x = 32; while (x--) { b1 = 0; T55xxReadBlock(0, 0, true, 0, 0, downlink_mode); for (uint16_t j = 0; j < CHK_SAMPLES_SIGNAL; ++j) { b1 += (buf[j] * buf[j]); } b1 *= b1; b1 >>= 8; baseline_faulty += b1; } baseline_faulty >>= 5; if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Baseline " _YELLOW_("%llu"), baseline_faulty); uint8_t *pwds = BigBuf_get_EM_addr(); uint16_t pwd_count = 0; struct p { bool found; uint32_t candidate; } PACKED payload; payload.found = false; payload.candidate = 0; #ifdef WITH_FLASH BigBuf_Clear_EM(); uint16_t isok = 0; uint8_t counter[2] = {0x00, 0x00}; isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET, counter, sizeof(counter)); if (isok != sizeof(counter)) goto OUT; pwd_count = (uint16_t)(counter[1] << 8 | counter[0]); if (pwd_count == 0) goto OUT; // since flash can report way too many pwds, we need to limit it. // bigbuff EM size is determined by CARD_MEMORY_SIZE // a password is 4bytes. uint16_t pwd_size_available = MIN(CARD_MEMORY_SIZE, pwd_count * 4); // adjust available pwd_count pwd_count = pwd_size_available / 4; isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET + 2, pwds, pwd_size_available); if (isok != pwd_size_available) goto OUT; Dbprintf("Password dictionary count " _YELLOW_("%d"), pwd_count); #endif uint64_t curr, prev = 0; int32_t idx = -1; for (uint32_t i = 0; i < pwd_count; i++) { uint32_t pwd = bytes_to_num(pwds + (i * 4), 4); T55xxReadBlock(0, true, true, 0, pwd, downlink_mode); uint64_t sum = 0; for (uint16_t j = 0; j < CHK_SAMPLES_SIGNAL; ++j) { sum += (buf[j] * buf[j]); } sum *= sum; sum >>= 8; int64_t tmp_dist = (baseline_faulty - sum); curr = ABS(tmp_dist); if (DBGLEVEL >= DBG_DEBUG) Dbprintf("%08x has distance " _YELLOW_("%llu"), pwd, curr); if (curr > prev) { idx = i; prev = curr; } } if (idx != -1) { payload.found = true; payload.candidate = bytes_to_num(pwds + (idx * 4), 4); } #ifdef WITH_FLASH OUT: #endif FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); reply_ng(CMD_LF_T55XX_CHK_PWDS, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload)); BigBuf_free(); } void T55xxWakeUp(uint32_t pwd, uint8_t flags) { flags |= 0x01 | 0x40 | 0x20; //Password | Read Call (no data) | reg_read no block LED_B_ON(); T55xx_SendCMD(0, pwd, flags); //-- Turn and leave field on to let the begin repeating transmission TurnReadLFOn(20 * 1000); reply_ng(CMD_LF_T55XX_WAKEUP, PM3_SUCCESS, NULL, 0); } /*-------------- Cloning routines -----------*/ static void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { t55xx_write_block_t cmd; cmd.pwd = 0; cmd.flags = 0; for (uint8_t i = numblocks + startblock; i > startblock; i--) { cmd.data = blockdata[i - 1]; cmd.blockno = i - 1; T55xxWriteBlock((uint8_t *)&cmd); } } /* disabled until verified. static void WriteEM4x05(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { for (uint8_t i = numblocks + startblock; i > startblock; i--) { EM4xWriteWord(i - 1, blockdata[i - 1], 0, false); } } */ // Copy HID id to card and setup block 0 config void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, bool q5, bool em) { uint32_t data[] = {0, 0, 0, 0, 0, 0, 0}; uint8_t last_block = 0; if (longFMT) { // Ensure no more than 84 bits supplied if (hi2 > 0xFFFFF) { DbpString("Tags can only have 84 bits."); return; } // Build the 6 data blocks for supplied 84bit ID last_block = 6; // load preamble (1D) & long format identifier (9E manchester encoded) data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); // load raw id from hi2, hi, lo to data blocks (manchester encoded) data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); data[3] = manchesterEncode2Bytes(hi >> 16); data[4] = manchesterEncode2Bytes(hi & 0xFFFF); data[5] = manchesterEncode2Bytes(lo >> 16); data[6] = manchesterEncode2Bytes(lo & 0xFFFF); } else { // Ensure no more than 44 bits supplied if (hi > 0xFFF) { DbpString("Tags can only have 44 bits."); return; } // Build the 3 data blocks for supplied 44bit ID last_block = 3; // load preamble data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); data[2] = manchesterEncode2Bytes(lo >> 16); data[3] = manchesterEncode2Bytes(lo & 0xFFFF); } // load chip config block data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; //TODO add selection of chip for Q5 or T55x7 if (q5) { data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; } else if (em) { data[0] = (EM4x05_SET_BITRATE(50) | EM4x05_MODULATION_FSK2 | EM4x05_INVERT | EM4x05_SET_NUM_BLOCKS(last_block)); } LED_D_ON(); if (em) { Dbprintf("Clone HID Prox to EM4x05 is untested and disabled until verified"); //WriteEM4x05(data, 0, last_block + 1); } else { WriteT55xx(data, 0, last_block + 1); } LED_D_OFF(); reply_ng(CMD_LF_HID_CLONE, PM3_SUCCESS, NULL, 0); } // clone viking tag to T55xx void CopyVikingtoT55xx(uint8_t *blocks, bool q5, bool em) { uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), 0, 0}; if (q5) { data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; } else if (em) { data[0] = (EM4x05_SET_BITRATE(32) | EM4x05_MODULATION_MANCHESTER | EM4x05_SET_NUM_BLOCKS(2)); } data[1] = bytes_to_num(blocks, 4); data[2] = bytes_to_num(blocks + 4, 4); // Program the data blocks for supplied ID and the block 0 config if (em) { Dbprintf("Clone Viking to EM4x05 is untested and disabled until verified"); //WriteEM4x05(data, 0, 3); } else { WriteT55xx(data, 0, 3); } LED_D_OFF(); reply_ng(CMD_LF_VIKING_CLONE, PM3_SUCCESS, NULL, 0); } int copy_em410x_to_t55xx(uint8_t card, uint8_t clock, uint32_t id_hi, uint32_t id_lo) { // Define 9bit header for EM410x tags #define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 uint32_t clockbits = 0; if (card == 1) { //t55x7 clockbits = GetT55xxClockBit(clock); if (clockbits == 0) { Dbprintf("Invalid clock rate: %d", clock); return PM3_EINVARG; } } int i; uint64_t id = EM410X_HEADER; uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { if (i < 32) { rev_id = (rev_id << 1) | (id_lo & 1); id_lo >>= 1; } else { rev_id = (rev_id << 1) | (id_hi & 1); id_hi >>= 1; } } for (i = 0; i < EM410X_ID_LENGTH; ++i) { int id_bit = rev_id & 1; if (i % 4 == 0) { // Don't write row parity bit at start of parsing if (i) id = (id << 1) | r_parity; // Start counting parity for new row r_parity = id_bit; } else { // Count row parity r_parity ^= id_bit; } // First elements in column? if (i < 4) // Fill out first elements c_parity[i] = id_bit; else // Count column parity c_parity[i % 4] ^= id_bit; // Insert ID bit id = (id << 1) | id_bit; rev_id >>= 1; } // Insert parity bit of last row id = (id << 1) | r_parity; // Fill out column parity at the end of tag for (i = 0; i < 4; ++i) id = (id << 1) | c_parity[i]; // Add stop bit id <<= 1; LED_D_ON(); // Write EM410x ID uint32_t data[] = {0, (uint32_t)(id >> 32), (uint32_t)(id & 0xFFFFFFFF)}; // default to 64 clock = (clock == 0) ? 64 : clock; Dbprintf("Clock rate: %d", clock); if (card == 1) { // T55x7 data[0] = clockbits | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); } else { // T5555 (Q5) data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); } WriteT55xx(data, 0, 3); LEDsoff(); Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7" : "T5555", (uint32_t)(id >> 32), (uint32_t)id); return PM3_SUCCESS; } //----------------------------------- // EM4469 / EM4305 routines //----------------------------------- // Below given command set. // Commands are including the even parity, binary mirrored #define FWD_CMD_LOGIN 0xC #define FWD_CMD_WRITE 0xA #define FWD_CMD_READ 0x9 #define FWD_CMD_PROTECT 0x3 #define FWD_CMD_DISABLE 0x5 static uint8_t forwardLink_data[64]; //array of forwarded bits static uint8_t *forward_ptr; //ptr for forward message preparation static uint8_t fwd_bit_sz; //forwardlink bit counter static uint8_t *fwd_write_ptr; //forwardlink bit pointer //==================================================================== // prepares command bits // see EM4469 spec //==================================================================== //-------------------------------------------------------------------- // VALUES TAKEN FROM EM4x function: SendForward // START_GAP = 440; (55*8) cycles at 125kHz (8us = 1cycle) // WRITE_GAP = 128; (16*8) // WRITE_1 = 256 32*8; (32*8) // These timings work for 4469/4269/4305 (with the 55*8 above) // WRITE_0 = 23*8 , 9*8 static uint8_t Prepare_Cmd(uint8_t cmd) { *forward_ptr++ = 0; //start bit *forward_ptr++ = 0; //second pause for 4050 code *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; cmd >>= 1; *forward_ptr++ = cmd; return 6; //return number of emited bits } //==================================================================== // prepares address bits // see EM4469 spec //==================================================================== static uint8_t Prepare_Addr(uint8_t addr) { register uint8_t line_parity; uint8_t i; line_parity = 0; for (i = 0; i < 6; i++) { *forward_ptr++ = addr; line_parity ^= addr; addr >>= 1; } *forward_ptr++ = (line_parity & 1); return 7; //return number of emited bits } //==================================================================== // prepares data bits intreleaved with parity bits // see EM4469 spec //==================================================================== static uint8_t Prepare_Data(uint16_t data_low, uint16_t data_hi) { register uint8_t column_parity; register uint8_t i, j; register uint16_t data; data = data_low; column_parity = 0; for (i = 0; i < 4; i++) { register uint8_t line_parity = 0; for (j = 0; j < 8; j++) { line_parity ^= data; column_parity ^= (data & 1) << j; *forward_ptr++ = data; data >>= 1; } *forward_ptr++ = line_parity; if (i == 1) data = data_hi; } for (j = 0; j < 8; j++) { *forward_ptr++ = column_parity; column_parity >>= 1; } *forward_ptr = 0; return 45; //return number of emited bits } //==================================================================== // Forward Link send function // Requires: forwarLink_data filled with valid bits (1 bit per byte) // fwd_bit_count set with number of bits to be sent //==================================================================== static void SendForward(uint8_t fwd_bit_count, bool fast) { // iceman, 21.3us increments for the USclock verification. // 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead // 32FC * 8us == 256us / 21.3 == 12.018 steps. ok // 16FC * 8us == 128us / 21.3 == 6.009 steps. ok #ifndef EM_START_GAP #define EM_START_GAP 55*8 #endif fwd_write_ptr = forwardLink_data; fwd_bit_sz = fwd_bit_count; if (! fast) { // Set up FPGA, 125kHz or 95 divisor LFSetupFPGAForADC(LF_DIVISOR_125, true); } // force 1st mod pulse (start gap must be longer for 4305) fwd_bit_sz--; //prepare next bit modulation fwd_write_ptr++; TurnReadLF_off(EM_START_GAP); TurnReadLFOn(18 * 8); // now start writing with bitbanging the antenna. (each bit should be 32*8 total length) while (fwd_bit_sz-- > 0) { //prepare next bit modulation if (((*fwd_write_ptr++) & 1) == 1) { WaitUS(32 * 8); } else { TurnReadLF_off(23 * 8); TurnReadLFOn(18 * 8); } } } static void EM4xLoginEx(uint32_t pwd) { forward_ptr = forwardLink_data; uint8_t len = Prepare_Cmd(FWD_CMD_LOGIN); len += Prepare_Data(pwd & 0xFFFF, pwd >> 16); SendForward(len, false); //WaitUS(20); // no wait for login command. // should receive // 0000 1010 ok // 0000 0001 fail } void EM4xBruteforce(uint32_t start_pwd, uint32_t n) { // With current timing, 18.6 ms per test = 53.8 pwds/s reply_ng(CMD_LF_EM4X_BF, PM3_SUCCESS, NULL, 0); StartTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitMS(20); LED_A_ON(); LFSetupFPGAForADC(LF_DIVISOR_125, true); uint32_t candidates_found = 0; for (uint32_t pwd = start_pwd; pwd < 0xFFFFFFFF; pwd++) { if (((pwd - start_pwd) & 0x3F) == 0x00) { WDT_HIT(); if (BUTTON_PRESS() || data_available()) { Dbprintf("EM4x05 Bruteforce Interrupted"); break; } } // Report progress every 256 attempts if (((pwd - start_pwd) & 0xFF) == 0x00) { Dbprintf("Trying: %06Xxx", pwd >> 8); } clear_trace(); forward_ptr = forwardLink_data; uint8_t len = Prepare_Cmd(FWD_CMD_LOGIN); len += Prepare_Data(pwd & 0xFFFF, pwd >> 16); SendForward(len, true); WaitUS(400); DoPartialAcquisition(0, false, 350, 1000); uint8_t *mem = BigBuf_get_addr(); if (mem[334] < 128) { candidates_found++; Dbprintf("Password candidate: " _GREEN_("%08X"), pwd); if ((n != 0) && (candidates_found == n)) { Dbprintf("EM4x05 Bruteforce Stopped. %i candidate%s found", candidates_found, candidates_found > 1 ? "s" : ""); break; } } // Beware: if smaller, tag might not have time to be back in listening state yet WaitMS(1); } StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } void EM4xLogin(uint32_t pwd) { StartTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitMS(20); LED_A_ON(); // clear buffer now so it does not interfere with timing later BigBuf_Clear_ext(false); EM4xLoginEx(pwd); WaitUS(400); // We need to acquire more than needed, to help demodulators finding the proper modulation DoPartialAcquisition(0, false, 6000, 1000); StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_EM4X_LOGIN, PM3_SUCCESS, NULL, 0); LEDsoff(); } void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) { StartTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitMS(20); LED_A_ON(); // clear buffer now so it does not interfere with timing later BigBuf_Clear_ext(false); /* should we read answer from Logincommand? * * should receive * 0000 1010 ok * 0000 0001 fail **/ if (usepwd) EM4xLoginEx(pwd); forward_ptr = forwardLink_data; uint8_t len = Prepare_Cmd(FWD_CMD_READ); len += Prepare_Addr(addr); SendForward(len, false); WaitUS(400); DoPartialAcquisition(0, false, 6000, 1000); StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_EM4X_READWORD, PM3_SUCCESS, NULL, 0); LEDsoff(); } void EM4xWriteWord(uint8_t addr, uint32_t data, uint32_t pwd, uint8_t usepwd) { StartTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitMS(50); LED_A_ON(); // clear buffer now so it does not interfere with timing later BigBuf_Clear_ext(false); /* should we read answer from Logincommand? * * should receive * 0000 1010 ok. * 0000 0001 fail **/ if (usepwd) EM4xLoginEx(pwd); forward_ptr = forwardLink_data; uint8_t len = Prepare_Cmd(FWD_CMD_WRITE); len += Prepare_Addr(addr); len += Prepare_Data(data & 0xFFFF, data >> 16); SendForward(len, false); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred StopTicks(); reply_ng(CMD_LF_EM4X_WRITEWORD, PM3_ETEAROFF, NULL, 0); } else { // Wait 20ms for write to complete? // No, when write is denied, err preamble comes much sooner //WaitUS(10820); // tPC+tWEE DoPartialAcquisition(0, false, 6000, 1000); StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_EM4X_WRITEWORD, PM3_SUCCESS, NULL, 0); } LEDsoff(); } void EM4xProtectWord(uint32_t data, uint32_t pwd, uint8_t usepwd) { StartTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitMS(50); LED_A_ON(); // clear buffer now so it does not interfere with timing later BigBuf_Clear_ext(false); /* should we read answer from Logincommand? * * should receive * 0000 1010 ok. * 0000 0001 fail **/ if (usepwd) EM4xLoginEx(pwd); forward_ptr = forwardLink_data; uint8_t len = Prepare_Cmd(FWD_CMD_PROTECT); len += Prepare_Data(data & 0xFFFF, data >> 16); SendForward(len, false); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred StopTicks(); reply_ng(CMD_LF_EM4X_PROTECTWORD, PM3_ETEAROFF, NULL, 0); } else { // Wait 20ms for write to complete? // No, when write is denied, err preamble comes much sooner //WaitUS(13640); // tPC+tPR DoPartialAcquisition(0, false, 6000, 1000); StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); reply_ng(CMD_LF_EM4X_PROTECTWORD, PM3_SUCCESS, NULL, 0); } LEDsoff(); } /* Reading COTAG. COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. because of this, we can "sample" the data signal but we interpreate it to Manchester direct. This behavior looks very similar to old ancient Motorola Flexpass ----------------------------------------------------------------------- According to patent EP0040544B1: Operating freq reader 132 kHz tag 66 kHz Divide by 384 counter PULSE repetition 5.82ms LOW 2.91 ms HIGH 2.91 ms Also references to a half-bit format and leading zero. ----------------------------------------------------------------------- READER START SEQUENCE: burst 800 us gap 2.2 ms burst 3.6 ms gap 2.2 ms burst 800 us gap 2.2 ms pulse 3.6 ms This triggers COTAG tag to response */ void Cotag(uint32_t arg0) { #ifndef OFF # define OFF(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS((x)); } #endif #ifndef ON # define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } #endif uint8_t rawsignal = arg0 & 0xF; LED_A_ON(); LFSetupFPGAForADC(LF_FREQ2DIV(132), true); //132 //clear buffer now so it does not interfere with timing later BigBuf_free(); BigBuf_Clear_ext(false); // send COTAG start pulse // http://www.proxmark.org/forum/viewtopic.php?id=4455 /* ON(740) OFF(2035) ON(3330) OFF(2035) ON(740) OFF(2035) ON(2000) */ ON(800) OFF(2200) ON(3600) OFF(2200) ON(800) OFF(2200) ON(2000) // ON(3400) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_FREQ2DIV(66)); // 66kHz switch (rawsignal) { case 0: { doCotagAcquisition(); reply_ng(CMD_LF_COTAG_READ, PM3_SUCCESS, NULL, 0); break; } case 1: { uint8_t *dest = BigBuf_malloc(COTAG_BITS); uint16_t bits = doCotagAcquisitionManchester(dest, COTAG_BITS); reply_ng(CMD_LF_COTAG_READ, PM3_SUCCESS, dest, bits); break; } case 2: { DoAcquisition_config(false, 0); reply_ng(CMD_LF_COTAG_READ, PM3_SUCCESS, NULL, 0); break; } default: { reply_ng(CMD_LF_COTAG_READ, PM3_SUCCESS, NULL, 0); break; } } // Turn the field off FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } /* * EM4305 support */