//----------------------------------------------------------------------------- // Copyright (C) 2020 A. Ozkal // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency Electronic Machine Readable Travel Document commands //----------------------------------------------------------------------------- // This code is heavily based on mrpkey.py of RFIDIOt #include "cmdhfemrtd.h" #include #include "fileutils.h" // saveFile #include "cmdparser.h" // command_t #include "cmdtrace.h" // CmdTraceList #include "cliparser.h" // CLIParserContext etc #include "cmdhf14a.h" // ExchangeAPDU14a #include "protocols.h" // definitions of ISO14A/7816 protocol #include "emv/apduinfo.h" // GetAPDUCodeDescription #include "sha1.h" // KSeed calculation etc #include "mifare/desfire_crypto.h" // des_encrypt/des_decrypt #include "des.h" // mbedtls_des_key_set_parity #include "cmdhf14b.h" // exchange_14b_apdu #include "iso14b.h" // ISO14B_CONNECT etc #include "crapto1/crapto1.h" // prng_successor #include "commonutil.h" // num_to_bytes #include "util_posix.h" // msclock // Max file size in bytes. Used in several places. // Average EF_DG2 seems to be around 20-25kB or so, but ICAO doesn't set an upper limit // Iris data seems to be suggested to be around 35kB per eye (Presumably bumping up the file size to around 70kB) // but as we cannot read that until we implement PACE, 35k seems to be a safe point. #define EMRTD_MAX_FILE_SIZE 35000 // ISO7816 commands #define EMRTD_SELECT "A4" #define EMRTD_EXTERNAL_AUTHENTICATE "82" #define EMRTD_GET_CHALLENGE "84" #define EMRTD_READ_BINARY "B0" #define EMRTD_P1_SELECT_BY_EF "02" #define EMRTD_P1_SELECT_BY_NAME "04" #define EMRTD_P2_PROPRIETARY "0C" // File IDs #define EMRTD_EF_CARDACCESS "011C" #define EMRTD_EF_COM "011E" #define EMRTD_EF_DG1 "0101" #define EMRTD_EF_DG2 "0102" #define EMRTD_EF_DG3 "0103" #define EMRTD_EF_DG4 "0104" #define EMRTD_EF_DG5 "0105" #define EMRTD_EF_DG6 "0106" #define EMRTD_EF_DG7 "0107" #define EMRTD_EF_DG8 "0108" #define EMRTD_EF_DG9 "0109" #define EMRTD_EF_DG10 "010A" #define EMRTD_EF_DG11 "010B" #define EMRTD_EF_DG12 "010C" #define EMRTD_EF_DG13 "010D" #define EMRTD_EF_DG14 "010E" #define EMRTD_EF_DG15 "010F" #define EMRTD_EF_DG16 "0110" #define EMRTD_EF_SOD "011D" // App IDs #define EMRTD_AID_MRTD "A0000002471001" // DESKey Types const uint8_t KENC_type[4] = {0x00, 0x00, 0x00, 0x01}; const uint8_t KMAC_type[4] = {0x00, 0x00, 0x00, 0x02}; static int CmdHelp(const char *Cmd); static uint16_t get_sw(uint8_t *d, uint8_t n) { if (n < 2) return 0; n -= 2; return d[n] * 0x0100 + d[n + 1]; } static bool emrtd_exchange_commands(const char *cmd, uint8_t *dataout, int *dataoutlen, bool activate_field, bool keep_field_on, bool use_14b) { uint8_t response[PM3_CMD_DATA_SIZE]; int resplen = 0; PrintAndLogEx(DEBUG, "Sending: %s", cmd); uint8_t aCMD[PM3_CMD_DATA_SIZE]; int aCMD_n = 0; param_gethex_to_eol(cmd, 0, aCMD, sizeof(aCMD), &aCMD_n); int res; if (use_14b) { res = exchange_14b_apdu(aCMD, aCMD_n, activate_field, keep_field_on, response, sizeof(response), &resplen); } else { res = ExchangeAPDU14a(aCMD, aCMD_n, activate_field, keep_field_on, response, sizeof(response), &resplen); } if (res) { DropField(); return false; } if (resplen < 2) { return false; } PrintAndLogEx(DEBUG, "Response: %s", sprint_hex(response, resplen)); // drop sw memcpy(dataout, &response, resplen - 2); *dataoutlen = (resplen - 2); uint16_t sw = get_sw(response, resplen); if (sw != 0x9000) { PrintAndLogEx(DEBUG, "Command %s failed (%04x - %s).", cmd, sw, GetAPDUCodeDescription(sw >> 8, sw & 0xff)); return false; } return true; } static int emrtd_exchange_commands_noout(const char *cmd, bool activate_field, bool keep_field_on, bool use_14b) { uint8_t response[PM3_CMD_DATA_SIZE]; int resplen = 0; return emrtd_exchange_commands(cmd, response, &resplen, activate_field, keep_field_on, use_14b); } static char emrtd_calculate_check_digit(char *data) { int mrz_weight[] = {7, 3, 1}; int cd = 0; int value = 0; char d; for (int i = 0; i < strlen(data); i++) { d = data[i]; if ('A' <= d && d <= 'Z') { value = d - 55; } else if ('a' <= d && d <= 'z') { value = d - 87; } else if (d == '<') { value = 0; } else { // Numbers value = d - 48; } cd += value * mrz_weight[i % 3]; } return cd % 10; } static int emrtd_get_asn1_data_length(uint8_t *datain, int datainlen, int offset) { PrintAndLogEx(DEBUG, "asn1datalength, datain: %s", sprint_hex_inrow(datain, datainlen)); int lenfield = (int) * (datain + offset); PrintAndLogEx(DEBUG, "asn1datalength, lenfield: %i", lenfield); if (lenfield <= 0x7f) { return lenfield; } else if (lenfield == 0x81) { return ((int) * (datain + offset + 1)); } else if (lenfield == 0x82) { return ((int) * (datain + offset + 1) << 8) | ((int) * (datain + offset + 2)); } else if (lenfield == 0x83) { return (((int) * (datain + offset + 1) << 16) | ((int) * (datain + offset + 2)) << 8) | ((int) * (datain + offset + 3)); } return false; } static int emrtd_get_asn1_field_length(uint8_t *datain, int datainlen, int offset) { PrintAndLogEx(DEBUG, "asn1fieldlength, datain: %s", sprint_hex_inrow(datain, datainlen)); int lenfield = (int) * (datain + offset); PrintAndLogEx(DEBUG, "asn1fieldlength, thing: %i", lenfield); if (lenfield <= 0x7f) { return 1; } else if (lenfield == 0x81) { return 2; } else if (lenfield == 0x82) { return 3; } else if (lenfield == 0x83) { return 4; } return false; } static void des_encrypt_ecb(uint8_t *key, uint8_t *input, uint8_t *output) { mbedtls_des_context ctx_enc; mbedtls_des_setkey_enc(&ctx_enc, key); mbedtls_des_crypt_ecb(&ctx_enc, input, output); mbedtls_des_free(&ctx_enc); } static void des_decrypt_ecb(uint8_t *key, uint8_t *input, uint8_t *output) { mbedtls_des_context ctx_dec; mbedtls_des_setkey_dec(&ctx_dec, key); mbedtls_des_crypt_ecb(&ctx_dec, input, output); mbedtls_des_free(&ctx_dec); } static void des3_encrypt_cbc(uint8_t *iv, uint8_t *key, uint8_t *input, int inputlen, uint8_t *output) { mbedtls_des3_context ctx; mbedtls_des3_set2key_enc(&ctx, key); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_ENCRYPT // int mode , inputlen // length , iv // iv[8] , input // input , output // output ); mbedtls_des3_free(&ctx); } static void des3_decrypt_cbc(uint8_t *iv, uint8_t *key, uint8_t *input, int inputlen, uint8_t *output) { mbedtls_des3_context ctx; mbedtls_des3_set2key_dec(&ctx, key); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_DECRYPT // int mode , inputlen // length , iv // iv[8] , input // input , output // output ); mbedtls_des3_free(&ctx); } static int pad_block(uint8_t *input, int inputlen, uint8_t *output) { uint8_t padding[8] = {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; memcpy(output, input, inputlen); int to_pad = (8 - (inputlen % 8)); for (int i = 0; i < to_pad; i++) { output[inputlen + i] = padding[i]; } return inputlen + to_pad; } static void retail_mac(uint8_t *key, uint8_t *input, int inputlen, uint8_t *output) { // This code assumes blocklength (n) = 8, and input len of up to 240 or so chars // This code takes inspirations from https://github.com/devinvenable/iso9797algorithm3 uint8_t k0[8]; uint8_t k1[8]; uint8_t intermediate[8] = {0x00}; uint8_t intermediate_des[256]; uint8_t block[8]; uint8_t message[256]; // Populate keys memcpy(k0, key, 8); memcpy(k1, key + 8, 8); // Prepare message int blocksize = pad_block(input, inputlen, message); // Do chaining and encryption for (int i = 0; i < (blocksize / 8); i++) { memcpy(block, message + (i * 8), 8); // XOR for (int x = 0; x < 8; x++) { intermediate[x] = intermediate[x] ^ block[x]; } des_encrypt_ecb(k0, intermediate, intermediate_des); memcpy(intermediate, intermediate_des, 8); } des_decrypt_ecb(k1, intermediate, intermediate_des); memcpy(intermediate, intermediate_des, 8); des_encrypt_ecb(k0, intermediate, intermediate_des); memcpy(output, intermediate_des, 8); } static void emrtd_deskey(uint8_t *seed, const uint8_t *type, int length, uint8_t *dataout) { PrintAndLogEx(DEBUG, "seed.............. %s", sprint_hex_inrow(seed, 16)); // combine seed and type uint8_t data[50]; memcpy(data, seed, length); memcpy(data + length, type, 4); PrintAndLogEx(DEBUG, "data.............. %s", sprint_hex_inrow(data, length + 4)); // SHA1 the key unsigned char key[64]; mbedtls_sha1(data, length + 4, key); PrintAndLogEx(DEBUG, "key............... %s", sprint_hex_inrow(key, length + 4)); // Set parity bits for (int i = 0; i < ((length + 4) / 8); i++) { mbedtls_des_key_set_parity(key + (i * 8)); } PrintAndLogEx(DEBUG, "post-parity key... %s", sprint_hex_inrow(key, 20)); memcpy(dataout, &key, length); } static int emrtd_select_file(const char *select_by, const char *file_id, bool use_14b) { int file_id_len = strlen(file_id) / 2; char cmd[50]; sprintf(cmd, "00%s%s0C%02X%s", EMRTD_SELECT, select_by, file_id_len, file_id); return emrtd_exchange_commands_noout(cmd, false, true, use_14b); } static int emrtd_get_challenge(int length, uint8_t *dataout, int *dataoutlen, bool use_14b) { char cmd[50]; sprintf(cmd, "00%s0000%02X", EMRTD_GET_CHALLENGE, length); return emrtd_exchange_commands(cmd, dataout, dataoutlen, false, true, use_14b); } static int emrtd_external_authenticate(uint8_t *data, int length, uint8_t *dataout, int *dataoutlen, bool use_14b) { char cmd[100]; sprintf(cmd, "00%s0000%02X%s%02X", EMRTD_EXTERNAL_AUTHENTICATE, length, sprint_hex_inrow(data, length), length); return emrtd_exchange_commands(cmd, dataout, dataoutlen, false, true, use_14b); } static int _emrtd_read_binary(int offset, int bytes_to_read, uint8_t *dataout, int *dataoutlen, bool use_14b) { char cmd[50]; sprintf(cmd, "00%s%04i%02i", EMRTD_READ_BINARY, offset, bytes_to_read); return emrtd_exchange_commands(cmd, dataout, dataoutlen, false, true, use_14b); } static void emrtd_bump_ssc(uint8_t *ssc) { PrintAndLogEx(DEBUG, "ssc-b: %s", sprint_hex_inrow(ssc, 8)); for (int i = 7; i > 0; i--) { if ((*(ssc + i)) == 0xFF) { // Set anything already FF to 0, we'll do + 1 on num to left anyways (*(ssc + i)) = 0; continue; } (*(ssc + i)) += 1; PrintAndLogEx(DEBUG, "ssc-a: %s", sprint_hex_inrow(ssc, 8)); return; } } static bool emrtd_check_cc(uint8_t *ssc, uint8_t *key, uint8_t *rapdu, int rapdulength) { // https://elixi.re/i/clarkson.png uint8_t k[500]; uint8_t cc[500]; emrtd_bump_ssc(ssc); memcpy(k, ssc, 8); int length = 0; int length2 = 0; if (*(rapdu) == 0x87) { length += 2 + (*(rapdu + 1)); memcpy(k + 8, rapdu, length); PrintAndLogEx(DEBUG, "len1: %i", length); } if ((*(rapdu + length)) == 0x99) { length2 += 2 + (*(rapdu + (length + 1))); memcpy(k + length + 8, rapdu + length, length2); PrintAndLogEx(DEBUG, "len2: %i", length2); } int klength = length + length2 + 8; retail_mac(key, k, klength, cc); PrintAndLogEx(DEBUG, "cc: %s", sprint_hex_inrow(cc, 8)); PrintAndLogEx(DEBUG, "rapdu: %s", sprint_hex_inrow(rapdu, rapdulength)); PrintAndLogEx(DEBUG, "rapdu cut: %s", sprint_hex_inrow(rapdu + (rapdulength - 8), 8)); PrintAndLogEx(DEBUG, "k: %s", sprint_hex_inrow(k, klength)); return memcmp(cc, rapdu + (rapdulength - 8), 8) == 0; } static void _emrtd_convert_filename(const char *file, uint8_t *dataout) { char temp[3] = {0x00}; memcpy(temp, file, 2); dataout[0] = (int)strtol(temp, NULL, 16); memcpy(temp, file + 2, 2); dataout[1] = (int)strtol(temp, NULL, 16); } static bool emrtd_secure_select_file(uint8_t *kenc, uint8_t *kmac, uint8_t *ssc, const char *select_by, const char *file, bool use_14b) { uint8_t response[PM3_CMD_DATA_SIZE]; int resplen = 0; // convert filename of string to bytes uint8_t file_id[2]; _emrtd_convert_filename(file, file_id); uint8_t iv[8] = { 0x00 }; char command[PM3_CMD_DATA_SIZE]; uint8_t cmd[8]; uint8_t data[21]; uint8_t temp[8] = {0x0c, 0xa4, strtol(select_by, NULL, 16), 0x0c}; int cmdlen = pad_block(temp, 4, cmd); int datalen = pad_block(file_id, 2, data); PrintAndLogEx(DEBUG, "cmd: %s", sprint_hex_inrow(cmd, cmdlen)); PrintAndLogEx(DEBUG, "data: %s", sprint_hex_inrow(data, datalen)); des3_encrypt_cbc(iv, kenc, data, datalen, temp); PrintAndLogEx(DEBUG, "temp: %s", sprint_hex_inrow(temp, datalen)); uint8_t do87[11] = {0x87, 0x09, 0x01}; memcpy(do87 + 3, temp, datalen); PrintAndLogEx(DEBUG, "do87: %s", sprint_hex_inrow(do87, datalen + 3)); uint8_t m[19]; memcpy(m, cmd, cmdlen); memcpy(m + cmdlen, do87, (datalen + 3)); PrintAndLogEx(DEBUG, "m: %s", sprint_hex_inrow(m, datalen + cmdlen + 3)); emrtd_bump_ssc(ssc); uint8_t n[27]; memcpy(n, ssc, 8); memcpy(n + 8, m, (cmdlen + datalen + 3)); PrintAndLogEx(DEBUG, "n: %s", sprint_hex_inrow(n, (cmdlen + datalen + 11))); uint8_t cc[8]; retail_mac(kmac, n, (cmdlen + datalen + 11), cc); PrintAndLogEx(DEBUG, "cc: %s", sprint_hex_inrow(cc, 8)); uint8_t do8e[10] = {0x8E, 0x08}; memcpy(do8e + 2, cc, 8); PrintAndLogEx(DEBUG, "do8e: %s", sprint_hex_inrow(do8e, 10)); int lc = datalen + 3 + 10; PrintAndLogEx(DEBUG, "lc: %i", lc); memcpy(data, do87, datalen + 3); memcpy(data + (datalen + 3), do8e, 10); PrintAndLogEx(DEBUG, "data: %s", sprint_hex_inrow(data, lc)); sprintf(command, "0C%s%s0C%02X%s00", EMRTD_SELECT, select_by, lc, sprint_hex_inrow(data, lc)); PrintAndLogEx(DEBUG, "command: %s", command); if (emrtd_exchange_commands(command, response, &resplen, false, true, use_14b) == false) { return false; } return emrtd_check_cc(ssc, kmac, response, resplen); } static bool _emrtd_secure_read_binary(uint8_t *kmac, uint8_t *ssc, int offset, int bytes_to_read, uint8_t *dataout, int *dataoutlen, bool use_14b) { char command[54]; uint8_t cmd[8]; uint8_t data[21]; uint8_t temp[8] = {0x0c, 0xb0}; PrintAndLogEx(DEBUG, "kmac: %s", sprint_hex_inrow(kmac, 20)); // Set p1 and p2 temp[2] = (uint8_t)(offset >> 8); temp[3] = (uint8_t)(offset >> 0); int cmdlen = pad_block(temp, 4, cmd); PrintAndLogEx(DEBUG, "cmd: %s", sprint_hex_inrow(cmd, cmdlen)); uint8_t do97[3] = {0x97, 0x01, bytes_to_read}; uint8_t m[11]; memcpy(m, cmd, 8); memcpy(m + 8, do97, 3); emrtd_bump_ssc(ssc); uint8_t n[19]; memcpy(n, ssc, 8); memcpy(n + 8, m, 11); PrintAndLogEx(DEBUG, "n: %s", sprint_hex_inrow(n, 19)); uint8_t cc[8]; retail_mac(kmac, n, 19, cc); PrintAndLogEx(DEBUG, "cc: %s", sprint_hex_inrow(cc, 8)); uint8_t do8e[10] = {0x8E, 0x08}; memcpy(do8e + 2, cc, 8); PrintAndLogEx(DEBUG, "do8e: %s", sprint_hex_inrow(do8e, 10)); int lc = 13; PrintAndLogEx(DEBUG, "lc: %i", lc); memcpy(data, do97, 3); memcpy(data + 3, do8e, 10); PrintAndLogEx(DEBUG, "data: %s", sprint_hex_inrow(data, lc)); sprintf(command, "0C%s%04X%02X%s00", EMRTD_READ_BINARY, offset, lc, sprint_hex_inrow(data, lc)); PrintAndLogEx(DEBUG, "command: %s", command); if (emrtd_exchange_commands(command, dataout, dataoutlen, false, true, use_14b) == false) { return false; } return emrtd_check_cc(ssc, kmac, dataout, *dataoutlen); } static bool _emrtd_secure_read_binary_decrypt(uint8_t *kenc, uint8_t *kmac, uint8_t *ssc, int offset, int bytes_to_read, uint8_t *dataout, int *dataoutlen, bool use_14b) { uint8_t response[500]; uint8_t temp[500]; int resplen, cutat = 0; uint8_t iv[8] = { 0x00 }; if (_emrtd_secure_read_binary(kmac, ssc, offset, bytes_to_read, response, &resplen, use_14b) == false) { return false; } PrintAndLogEx(DEBUG, "secreadbindec, offset %i on read %i: encrypted: %s", offset, bytes_to_read, sprint_hex_inrow(response, resplen)); cutat = ((int) response[1]) - 1; des3_decrypt_cbc(iv, kenc, response + 3, cutat, temp); memcpy(dataout, temp, bytes_to_read); PrintAndLogEx(DEBUG, "secreadbindec, offset %i on read %i: decrypted: %s", offset, bytes_to_read, sprint_hex_inrow(temp, cutat)); PrintAndLogEx(DEBUG, "secreadbindec, offset %i on read %i: decrypted and cut: %s", offset, bytes_to_read, sprint_hex_inrow(dataout, bytes_to_read)); *dataoutlen = bytes_to_read; return true; } static int emrtd_read_file(uint8_t *dataout, int *dataoutlen, uint8_t *kenc, uint8_t *kmac, uint8_t *ssc, bool use_secure, bool use_14b) { uint8_t response[EMRTD_MAX_FILE_SIZE]; int resplen = 0; uint8_t tempresponse[500]; int tempresplen = 0; int toread = 4; int offset = 0; if (use_secure == true) { if (_emrtd_secure_read_binary_decrypt(kenc, kmac, ssc, offset, toread, response, &resplen, use_14b) == false) { return false; } } else { if (_emrtd_read_binary(offset, toread, response, &resplen, use_14b) == false) { return false; } } int datalen = emrtd_get_asn1_data_length(response, resplen, 1); int readlen = datalen - (3 - emrtd_get_asn1_field_length(response, resplen, 1)); offset = 4; while (readlen > 0) { toread = readlen; if (readlen > 118) { toread = 118; } if (kenc == NULL) { if (_emrtd_read_binary(offset, toread, tempresponse, &tempresplen, use_14b) == false) { return false; } } else { if (_emrtd_secure_read_binary_decrypt(kenc, kmac, ssc, offset, toread, tempresponse, &tempresplen, use_14b) == false) { return false; } } memcpy(response + resplen, tempresponse, tempresplen); offset += toread; readlen -= toread; resplen += tempresplen; } memcpy(dataout, &response, resplen); *dataoutlen = resplen; return true; } static bool emrtd_lds_get_data_by_tag(uint8_t *datain, int *datainlen, uint8_t *dataout, int *dataoutlen, int tag1, int tag2, bool twobytetag) { int offset = 2; int elementidlen = 0; int elementlen = 0; while (offset < *datainlen) { PrintAndLogEx(DEBUG, "emrtd_lds_get_data_by_tag, offset: %i, data: %X", offset, *(datain + offset)); // Determine element ID length to set as offset on asn1datalength if ((*(datain + offset) == 0x5f) || (*(datain + offset) == 0x7f)) { elementidlen = 2; } else { elementidlen = 1; } // Get the length of the element elementlen = emrtd_get_asn1_data_length(datain + offset, *datainlen - offset, elementidlen); // If the element is what we're looking for, get the data and return true if (*(datain + offset) == tag1 && (!twobytetag || *(datain + offset + 1) == tag2)) { *dataoutlen = elementlen; memcpy(dataout, datain + offset + elementidlen + 1, elementlen); return true; } offset += elementidlen + elementlen + 1; } // Return false if we can't find the relevant element return false; } static bool emrtd_file_tag_to_file_id(uint8_t *datain, char *filenameout, char *dataout) { // imagine bothering with a hashmap or writing good code // couldn't be me switch (*datain) { case 0x60: memcpy(dataout, EMRTD_EF_COM, 4); memcpy(filenameout, "EF_COM", 6); break; case 0x61: memcpy(dataout, EMRTD_EF_DG1, 4); memcpy(filenameout, "EF_DG1", 6); break; case 0x75: memcpy(dataout, EMRTD_EF_DG2, 4); memcpy(filenameout, "EF_DG2", 6); break; // These cases are commented out as they require PACE // case 0x63: // memcpy(dataout, EMRTD_EF_DG3, 4); // memcpy(filenameout, "EF_DG3", 6); // break; // case 0x76: // memcpy(dataout, EMRTD_EF_DG4, 4); // memcpy(filenameout, "EF_DG4", 6); // break; case 0x65: memcpy(dataout, EMRTD_EF_DG5, 4); memcpy(filenameout, "EF_DG5", 6); break; case 0x66: memcpy(dataout, EMRTD_EF_DG6, 4); memcpy(filenameout, "EF_DG6", 6); break; case 0x67: memcpy(dataout, EMRTD_EF_DG7, 4); memcpy(filenameout, "EF_DG7", 6); break; case 0x68: memcpy(dataout, EMRTD_EF_DG8, 4); memcpy(filenameout, "EF_DG8", 6); break; case 0x69: memcpy(dataout, EMRTD_EF_DG9, 4); memcpy(filenameout, "EF_DG9", 6); break; case 0x6a: memcpy(dataout, EMRTD_EF_DG10, 4); memcpy(filenameout, "EF_DG10", 7); break; case 0x6b: memcpy(dataout, EMRTD_EF_DG11, 4); memcpy(filenameout, "EF_DG11", 7); break; case 0x6c: memcpy(dataout, EMRTD_EF_DG12, 4); memcpy(filenameout, "EF_DG12", 7); break; case 0x6d: memcpy(dataout, EMRTD_EF_DG13, 4); memcpy(filenameout, "EF_DG13", 7); break; case 0x6e: memcpy(dataout, EMRTD_EF_DG14, 4); memcpy(filenameout, "EF_DG14", 7); break; case 0x6f: memcpy(dataout, EMRTD_EF_DG15, 4); memcpy(filenameout, "EF_DG15", 7); break; case 0x70: memcpy(dataout, EMRTD_EF_DG16, 4); memcpy(filenameout, "EF_DG16", 7); break; case 0x77: memcpy(dataout, EMRTD_EF_SOD, 4); memcpy(filenameout, "EF_SOD", 6); break; default: return false; } return true; } static bool emrtd_select_and_read(uint8_t *dataout, int *dataoutlen, const char *file, uint8_t *ks_enc, uint8_t *ks_mac, uint8_t *ssc, bool use_secure, bool use_14b) { if (use_secure == true) { if (emrtd_secure_select_file(ks_enc, ks_mac, ssc, EMRTD_P1_SELECT_BY_EF, file, use_14b) == false) { PrintAndLogEx(ERR, "Failed to secure select %s.", file); return false; } } else { if (emrtd_select_file(EMRTD_P1_SELECT_BY_EF, file, use_14b) == false) { PrintAndLogEx(ERR, "Failed to select %s.", file); return false; } } if (emrtd_read_file(dataout, dataoutlen, ks_enc, ks_mac, ssc, use_secure, use_14b) == false) { PrintAndLogEx(ERR, "Failed to read %s.", file); return false; } return true; } static bool emrtd_dump_file(uint8_t *ks_enc, uint8_t *ks_mac, uint8_t *ssc, const char *file, const char *name, bool use_secure, bool use_14b) { uint8_t response[EMRTD_MAX_FILE_SIZE]; int resplen = 0; if (emrtd_select_and_read(response, &resplen, file, ks_enc, ks_mac, ssc, use_secure, use_14b) == false) { return false; } PrintAndLogEx(INFO, "Read %s, len: %i.", name, resplen); PrintAndLogEx(DEBUG, "Contents (may be incomplete over 2k chars): %s", sprint_hex_inrow(response, resplen)); saveFile(name, ".BIN", response, resplen); return true; } static void rng(int length, uint8_t *dataout) { // Do very very secure prng operations //for (int i = 0; i < (length / 4); i++) { // num_to_bytes(prng_successor(msclock() + i, 32), 4, &dataout[i * 4]); //} memset(dataout, 0x00, length); } static bool emrtd_do_bac(char *documentnumber, char *dob, char *expiry, uint8_t *ssc, uint8_t *ks_enc, uint8_t *ks_mac, bool use_14b) { uint8_t response[EMRTD_MAX_FILE_SIZE] = { 0x00 }; int resplen = 0; uint8_t rnd_ic[8] = { 0x00 }; uint8_t kenc[50] = { 0x00 }; uint8_t kmac[50] = { 0x00 }; uint8_t k_icc[16] = { 0x00 }; uint8_t S[32] = { 0x00 }; uint8_t rnd_ifd[8], k_ifd[16]; rng(8, rnd_ifd); rng(16, k_ifd); PrintAndLogEx(DEBUG, "doc............... " _GREEN_("%s"), documentnumber); PrintAndLogEx(DEBUG, "dob............... " _GREEN_("%s"), dob); PrintAndLogEx(DEBUG, "exp............... " _GREEN_("%s"), expiry); char documentnumbercd = emrtd_calculate_check_digit(documentnumber); char dobcd = emrtd_calculate_check_digit(dob); char expirycd = emrtd_calculate_check_digit(expiry); char kmrz[25]; sprintf(kmrz, "%s%i%s%i%s%i", documentnumber, documentnumbercd, dob, dobcd, expiry, expirycd); PrintAndLogEx(DEBUG, "kmrz.............. " _GREEN_("%s"), kmrz); uint8_t kseed[16] = { 0x00 }; mbedtls_sha1((unsigned char *)kmrz, strlen(kmrz), kseed); PrintAndLogEx(DEBUG, "kseed (sha1)...... %s ", sprint_hex_inrow(kseed, 16)); emrtd_deskey(kseed, KENC_type, 16, kenc); emrtd_deskey(kseed, KMAC_type, 16, kmac); PrintAndLogEx(DEBUG, "kenc.............. %s", sprint_hex_inrow(kenc, 16)); PrintAndLogEx(DEBUG, "kmac.............. %s", sprint_hex_inrow(kmac, 16)); // Get Challenge if (emrtd_get_challenge(8, rnd_ic, &resplen, use_14b) == false) { PrintAndLogEx(ERR, "Couldn't get challenge."); return false; } PrintAndLogEx(DEBUG, "rnd_ic............ %s", sprint_hex_inrow(rnd_ic, 8)); memcpy(S, rnd_ifd, 8); memcpy(S + 8, rnd_ic, 8); memcpy(S + 16, k_ifd, 16); PrintAndLogEx(DEBUG, "S................. %s", sprint_hex_inrow(S, 32)); uint8_t iv[8] = { 0x00 }; uint8_t e_ifd[32] = { 0x00 }; des3_encrypt_cbc(iv, kenc, S, sizeof(S), e_ifd); PrintAndLogEx(DEBUG, "e_ifd............. %s", sprint_hex_inrow(e_ifd, 32)); uint8_t m_ifd[8] = { 0x00 }; retail_mac(kmac, e_ifd, 32, m_ifd); PrintAndLogEx(DEBUG, "m_ifd............. %s", sprint_hex_inrow(m_ifd, 8)); uint8_t cmd_data[40]; memcpy(cmd_data, e_ifd, 32); memcpy(cmd_data + 32, m_ifd, 8); // Do external authentication if (emrtd_external_authenticate(cmd_data, sizeof(cmd_data), response, &resplen, use_14b) == false) { PrintAndLogEx(ERR, "Couldn't do external authentication. Did you supply the correct MRZ info?"); return false; } PrintAndLogEx(INFO, "External authentication with BAC successful."); uint8_t dec_output[32] = { 0x00 }; des3_decrypt_cbc(iv, kenc, response, 32, dec_output); PrintAndLogEx(DEBUG, "dec_output........ %s", sprint_hex_inrow(dec_output, 32)); if (memcmp(rnd_ifd, dec_output + 8, 8) != 0) { PrintAndLogEx(ERR, "Challenge failed, rnd_ifd does not match."); return false; } memcpy(k_icc, dec_output + 16, 16); // Calculate session keys for (int x = 0; x < 16; x++) { kseed[x] = k_ifd[x] ^ k_icc[x]; } PrintAndLogEx(DEBUG, "kseed............ %s", sprint_hex_inrow(kseed, 16)); emrtd_deskey(kseed, KENC_type, 16, ks_enc); emrtd_deskey(kseed, KMAC_type, 16, ks_mac); PrintAndLogEx(DEBUG, "ks_enc........ %s", sprint_hex_inrow(ks_enc, 16)); PrintAndLogEx(DEBUG, "ks_mac........ %s", sprint_hex_inrow(ks_mac, 16)); memcpy(ssc, rnd_ic + 4, 4); memcpy(ssc + 4, rnd_ifd + 4, 4); PrintAndLogEx(DEBUG, "ssc........... %s", sprint_hex_inrow(ssc, 8)); return true; } static bool emrtd_connect(bool *use_14b) { // Try to 14a SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0, NULL, 0); PacketResponseNG resp; bool failed_14a = false; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { DropField(); failed_14a = true; } if (failed_14a || resp.oldarg[0] == 0) { PrintAndLogEx(INFO, "No eMRTD spotted with 14a, trying 14b."); // If not 14a, try to 14b SendCommandMIX(CMD_HF_ISO14443B_COMMAND, ISO14B_CONNECT | ISO14B_SELECT_STD, 0, 0, NULL, 0); if (!WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2500)) { PrintAndLogEx(INFO, "No eMRTD spotted with 14b, exiting."); return false; } if (resp.oldarg[0] != 0) { PrintAndLogEx(INFO, "No eMRTD spotted with 14b, exiting."); return false; } *use_14b = true; } return true; } static bool emrtd_do_auth(char *documentnumber, char *dob, char *expiry, bool BAC_available, bool *BAC, uint8_t *ssc, uint8_t *ks_enc, uint8_t *ks_mac, bool *use_14b) { uint8_t response[EMRTD_MAX_FILE_SIZE] = { 0x00 }; int resplen = 0; // Select and read EF_CardAccess if (emrtd_select_file(EMRTD_P1_SELECT_BY_EF, EMRTD_EF_CARDACCESS, *use_14b)) { emrtd_read_file(response, &resplen, NULL, NULL, NULL, false, *use_14b); PrintAndLogEx(INFO, "Read EF_CardAccess, len: %i.", resplen); PrintAndLogEx(DEBUG, "Contents (may be incomplete over 2k chars): %s", sprint_hex_inrow(response, resplen)); } else { PrintAndLogEx(INFO, "PACE unsupported. Will not read EF_CardAccess."); } // Select MRTD applet if (emrtd_select_file(EMRTD_P1_SELECT_BY_NAME, EMRTD_AID_MRTD, *use_14b) == false) { PrintAndLogEx(ERR, "Couldn't select the MRTD application."); return false; } // Select EF_COM if (emrtd_select_file(EMRTD_P1_SELECT_BY_EF, EMRTD_EF_COM, *use_14b) == false) { *BAC = true; PrintAndLogEx(INFO, "Basic Access Control is enforced. Will attempt external authentication."); } else { *BAC = false; // Select EF_DG1 emrtd_select_file(EMRTD_P1_SELECT_BY_EF, EMRTD_EF_DG1, *use_14b); if (emrtd_read_file(response, &resplen, NULL, NULL, NULL, false, *use_14b) == false) { *BAC = true; PrintAndLogEx(INFO, "Basic Access Control is enforced. Will attempt external authentication."); } else { *BAC = false; PrintAndLogEx(INFO, "EF_DG1: %s", sprint_hex(response, resplen)); } } // Do Basic Access Aontrol if (*BAC) { // If BAC isn't available, exit out and warn user. if (!BAC_available) { PrintAndLogEx(ERR, "This eMRTD enforces Basic Access Control, but you didn't supply MRZ data. Cannot proceed."); PrintAndLogEx(HINT, "Check out hf emrtd dump --help, supply data with -n -d and -e."); return false; } if (emrtd_do_bac(documentnumber, dob, expiry, ssc, ks_enc, ks_mac, *use_14b) == false) { return false; } } return true; } int dumpHF_EMRTD(char *documentnumber, char *dob, char *expiry, bool BAC_available) { uint8_t response[EMRTD_MAX_FILE_SIZE] = { 0x00 }; int resplen = 0; uint8_t ssc[8] = { 0x00 }; uint8_t ks_enc[16] = { 0x00 }; uint8_t ks_mac[16] = { 0x00 }; bool BAC = false; bool use_14b = false; // Select the eMRTD if (!emrtd_connect(&use_14b)) { DropField(); return PM3_ESOFT; } // Authenticate with the eMRTD if (!emrtd_do_auth(documentnumber, dob, expiry, BAC_available, &BAC, ssc, ks_enc, ks_mac, &use_14b)) { DropField(); return PM3_ESOFT; } // Select EF_COM if (!emrtd_select_and_read(response, &resplen, EMRTD_EF_COM, ks_enc, ks_mac, ssc, BAC, use_14b)) { PrintAndLogEx(ERR, "Failed to read EF_COM."); DropField(); return PM3_ESOFT; } PrintAndLogEx(INFO, "Read EF_COM, len: %i.", resplen); PrintAndLogEx(DEBUG, "Contents (may be incomplete over 2k chars): %s", sprint_hex_inrow(response, resplen)); saveFile("EF_COM", ".BIN", response, resplen); uint8_t filelist[50]; int filelistlen = 0; if (!emrtd_lds_get_data_by_tag(response, &resplen, filelist, &filelistlen, 0x5c, 0x00, false)) { PrintAndLogEx(ERR, "Failed to read file list from EF_COM."); DropField(); return PM3_ESOFT; } PrintAndLogEx(DEBUG, "File List: %s", sprint_hex_inrow(filelist, filelistlen)); // Dump all files in the file list for (int i = 0; i < filelistlen; i++) { char file_id[5] = { 0x00 }; char file_name[8] = { 0x00 }; if (emrtd_file_tag_to_file_id(&filelist[i], file_name, file_id) == false) { PrintAndLogEx(INFO, "File tag not found, skipping: %02X", filelist[i]); continue; } PrintAndLogEx(DEBUG, "Current file: %s", file_name); emrtd_dump_file(ks_enc, ks_mac, ssc, file_id, file_name, BAC, use_14b); } // Dump EF_SOD emrtd_dump_file(ks_enc, ks_mac, ssc, EMRTD_EF_SOD, "EF_SOD", BAC, use_14b); DropField(); return PM3_SUCCESS; } static bool emrtd_compare_check_digit(char *datain, int datalen, char expected_check_digit) { char tempdata[90] = { 0x00 }; memcpy(tempdata, datain, datalen); uint8_t check_digit = emrtd_calculate_check_digit(tempdata) + 0x30; bool res =check_digit == expected_check_digit; PrintAndLogEx(DEBUG, "emrtd_compare_check_digit, expected %c == %c calculated ( %s )" , expected_check_digit , check_digit , (res) ? _GREEN_("ok") : _RED_("fail")); return res; } static bool emrtd_mrz_verify_check_digit(char *mrz, int offset, int datalen) { char tempdata[90] = { 0x00 }; memcpy(tempdata, mrz + offset, datalen); return emrtd_compare_check_digit(tempdata, datalen, mrz[offset + datalen]); } static void emrtd_print_legal_sex(char *legal_sex) { char sex[12] = { 0x00 }; switch (*legal_sex) { case 'M': strncpy(sex, "Male", 5); break; case 'F': strncpy(sex, "Female", 7); break; case '<': strncpy(sex, "Unspecified", 12); break; } PrintAndLogEx(SUCCESS, "Legal Sex Marker......: " _YELLOW_("%s"), sex); } static int emrtd_mrz_determine_length(char *mrz, int offset, int max_length) { int i; for (i = max_length; i >= 0; i--) { if (mrz[offset + i - 1] != '<') { break; } } return i; } static int emrtd_mrz_determine_separator(char *mrz, int offset, int max_length) { int i; for (i = max_length; i >= 0; i--) { if (mrz[offset + i - 1] == '<' && mrz[offset + i] == '<') { break; } } return i - 1; } static void emrtd_print_optional_elements(char *mrz, int offset, int length, bool verify_check_digit) { int i = emrtd_mrz_determine_length(mrz, offset, length); // Only print optional elements if they're available if (i != 0) { PrintAndLogEx(SUCCESS, "Optional elements.....: " _YELLOW_("%.*s"), i, mrz + offset); } if (verify_check_digit && !emrtd_mrz_verify_check_digit(mrz, offset, length)) { PrintAndLogEx(SUCCESS, _RED_("Optional element check digit is invalid.")); } } static void emrtd_print_document_number(char *mrz, int offset) { int i = emrtd_mrz_determine_length(mrz, offset, 9); PrintAndLogEx(SUCCESS, "Document Number.......: " _YELLOW_("%.*s"), i, mrz + offset); if (!emrtd_mrz_verify_check_digit(mrz, offset, 9)) { PrintAndLogEx(SUCCESS, _RED_("Document number check digit is invalid.")); } } static void emrtd_print_name(char *mrz, int offset, int max_length) { char final_name[100] = { 0x00 }; int i = emrtd_mrz_determine_length(mrz, offset, max_length); int sep = emrtd_mrz_determine_separator(mrz, offset, i); int namelen = (i - (sep + 2)); memcpy(final_name, mrz + offset + sep + 2, namelen); final_name[namelen] = ' '; memcpy(final_name + namelen + 1, mrz + offset, sep); PrintAndLogEx(SUCCESS, "Legal Name............: " _YELLOW_("%s"), final_name); } static void emrtd_mrz_convert_date(char *mrz, int offset, char *final_date, bool is_expiry) { char temp_year[3] = { 0x00 }; memcpy(temp_year, mrz + offset, 2); // If it's > 20, assume 19xx. if (strtol(temp_year, NULL, 10) < 20 || is_expiry) { final_date[0] = '2'; final_date[1] = '0'; } else { final_date[0] = '1'; final_date[1] = '9'; } memcpy(final_date + 2, mrz + offset, 2); final_date[4] = '-'; memcpy(final_date + 5, mrz + offset + 2, 2); final_date[7] = '-'; memcpy(final_date + 8, mrz + offset + 4, 2); } static void emrtd_print_dob(char *mrz, int offset) { char final_date[12] = { 0x00 }; emrtd_mrz_convert_date(mrz, offset, final_date, false); PrintAndLogEx(SUCCESS, "Date of birth.........: " _YELLOW_("%s"), final_date); if (!emrtd_mrz_verify_check_digit(mrz, offset, 6)) { PrintAndLogEx(SUCCESS, _RED_("Date of Birth check digit is invalid.")); } } static void emrtd_print_expiry(char *mrz, int offset) { char final_date[12] = { 0x00 }; emrtd_mrz_convert_date(mrz, offset, final_date, true); PrintAndLogEx(SUCCESS, "Date of expiry........: " _YELLOW_("%s"), final_date); if (!emrtd_mrz_verify_check_digit(mrz, offset, 6)) { PrintAndLogEx(SUCCESS, _RED_("Date of expiry check digit is invalid.")); } } int infoHF_EMRTD(char *documentnumber, char *dob, char *expiry, bool BAC_available) { uint8_t response[EMRTD_MAX_FILE_SIZE] = { 0x00 }; int resplen = 0; uint8_t ssc[8] = { 0x00 }; uint8_t ks_enc[16] = { 0x00 }; uint8_t ks_mac[16] = { 0x00 }; bool BAC = false; bool use_14b = false; int td_variant = 0; // Select the eMRTD if (!emrtd_connect(&use_14b)) { DropField(); return PM3_ESOFT; } // Select and authenticate with the eMRTD bool auth_result = emrtd_do_auth(documentnumber, dob, expiry, BAC_available, &BAC, ssc, ks_enc, ks_mac, &use_14b); PrintAndLogEx(SUCCESS, "Communication standard: %s", use_14b ? _YELLOW_("ISO/IEC 14443(B)") : _YELLOW_("ISO/IEC 14443(A)")); PrintAndLogEx(SUCCESS, "BAC...................: %s", BAC ? _GREEN_("Enforced") : _RED_("Not enforced")); PrintAndLogEx(SUCCESS, "Authentication result.: %s", auth_result ? _GREEN_("Successful") : _RED_("Failed")); if (!auth_result) { DropField(); return PM3_ESOFT; } // Select EF_DG1 if (emrtd_select_and_read(response, &resplen, EMRTD_EF_DG1, ks_enc, ks_mac, ssc, BAC, use_14b) == false) { PrintAndLogEx(ERR, "Failed to read EF_DG1."); DropField(); return PM3_ESOFT; } // MRZ on TD1 is 90 characters, 30 on each row. // MRZ on TD3 is 88 characters, 44 on each row. char mrz[90] = { 0x00 }; int mrzlen = 0; if (!emrtd_lds_get_data_by_tag(response, &resplen, (uint8_t *) mrz, &mrzlen, 0x5f, 0x1f, true)) { PrintAndLogEx(ERR, "Failed to read MRZ from EF_DG1."); DropField(); return PM3_ESOFT; } // Determine and print the document type if (mrz[0] == 'I' && mrz[1] == 'P') { td_variant = 1; PrintAndLogEx(SUCCESS, "Document Type.........: " _YELLOW_("Passport Card")); } else if (mrz[0] == 'I') { td_variant = 1; PrintAndLogEx(SUCCESS, "Document Type.........: " _YELLOW_("ID Card")); } else if (mrz[0] == 'P') { td_variant = 3; PrintAndLogEx(SUCCESS, "Document Type.........: " _YELLOW_("Passport")); } else { td_variant = 1; PrintAndLogEx(SUCCESS, "Document Type.........: " _YELLOW_("Unknown")); PrintAndLogEx(INFO, "Assuming ID-style MRZ."); } PrintAndLogEx(SUCCESS, "Document Form Factor..: " _YELLOW_("TD%i"), td_variant); // Print the MRZ if (td_variant == 1) { PrintAndLogEx(DEBUG, "MRZ Row 1: " _YELLOW_("%.30s"), mrz); PrintAndLogEx(DEBUG, "MRZ Row 2: " _YELLOW_("%.30s"), mrz + 30); PrintAndLogEx(DEBUG, "MRZ Row 3: " _YELLOW_("%.30s"), mrz + 60); } else if (td_variant == 3) { PrintAndLogEx(DEBUG, "MRZ Row 1: " _YELLOW_("%.44s"), mrz); PrintAndLogEx(DEBUG, "MRZ Row 2: " _YELLOW_("%.44s"), mrz + 44); } PrintAndLogEx(SUCCESS, "Issuing state.........: " _YELLOW_("%.3s"), mrz + 2); if (td_variant == 3) { // Passport form factor PrintAndLogEx(SUCCESS, "Nationality...........: " _YELLOW_("%.3s"), mrz + 44 + 10); emrtd_print_name(mrz, 5, 38); emrtd_print_document_number(mrz, 44); emrtd_print_dob(mrz, 44 + 13); emrtd_print_legal_sex(&mrz[44 + 20]); emrtd_print_expiry(mrz, 44 + 21); emrtd_print_optional_elements(mrz, 44 + 28, 14, true); // Calculate and verify composite check digit char composite_check_data[50] = { 0x00 }; memcpy(composite_check_data, mrz + 44, 10); memcpy(composite_check_data + 10, mrz + 44 + 13, 7); memcpy(composite_check_data + 17, mrz + 44 + 21, 23); if (!emrtd_compare_check_digit(composite_check_data, 39, mrz[87])) { PrintAndLogEx(SUCCESS, _RED_("Composite check digit is invalid.")); } } else if (td_variant == 1) { // ID form factor PrintAndLogEx(SUCCESS, "Nationality...........: " _YELLOW_("%.3s"), mrz + 30 + 15); emrtd_print_name(mrz, 60, 30); emrtd_print_document_number(mrz, 5); emrtd_print_dob(mrz, 30); emrtd_print_legal_sex(&mrz[30 + 7]); emrtd_print_expiry(mrz, 30 + 8); emrtd_print_optional_elements(mrz, 15, 15, false); emrtd_print_optional_elements(mrz, 30 + 18, 11, false); // Calculate and verify composite check digit if (!emrtd_compare_check_digit(mrz, 59, mrz[59])) { PrintAndLogEx(SUCCESS, _RED_("Composite check digit is invalid.")); } } DropField(); return PM3_SUCCESS; } static int cmd_hf_emrtd_dump(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf emrtd dump", "Dump all files on an eMRTD", "hf emrtd dump" ); void *argtable[] = { arg_param_begin, arg_str0("n", "documentnumber", "", "document number, up to 9 chars"), arg_str0("d", "dateofbirth", "", "date of birth in YYMMDD format"), arg_str0("e", "expiry", "", "expiry in YYMMDD format"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); uint8_t docnum[10] = { 0x00 }; uint8_t dob[7] = { 0x00 }; uint8_t expiry[7] = { 0x00 }; bool BAC = true; int slen = 0; // unused // Go through all args, if even one isn't supplied, mark BAC as unavailable if (CLIParamStrToBuf(arg_get_str(ctx, 1), docnum, 9, &slen) != 0 || slen == 0) { BAC = false; } else { if (slen != 9) { // Pad to 9 with < memset(docnum + slen, 0x3c, 9 - slen); } } if (CLIParamStrToBuf(arg_get_str(ctx, 2), dob, 6, &slen) != 0 || slen == 0) { BAC = false; } if (CLIParamStrToBuf(arg_get_str(ctx, 3), expiry, 6, &slen) != 0 || slen == 0) { BAC = false; } CLIParserFree(ctx); return dumpHF_EMRTD((char *)docnum, (char *)dob, (char *)expiry, BAC); } static int cmd_hf_emrtd_info(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "hf emrtd info", "Display info about an eMRTD", "hf emrtd info" ); void *argtable[] = { arg_param_begin, arg_str0("n", "documentnumber", "", "document number, up to 9 chars"), arg_str0("d", "dateofbirth", "", "date of birth in YYMMDD format"), arg_str0("e", "expiry", "", "expiry in YYMMDD format"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); uint8_t docnum[10] = { 0x00 }; uint8_t dob[7] = { 0x00 }; uint8_t expiry[7] = { 0x00 }; bool BAC = true; int slen = 0; // unused // Go through all args, if even one isn't supplied, mark BAC as unavailable if (CLIParamStrToBuf(arg_get_str(ctx, 1), docnum, 9, &slen) != 0 || slen == 0) { BAC = false; } else { if ( slen != 9) { memset(docnum + slen, 0x3c, 9 - slen); } } if (CLIParamStrToBuf(arg_get_str(ctx, 2), dob, 6, &slen) != 0 || slen == 0) { BAC = false; } if (CLIParamStrToBuf(arg_get_str(ctx, 3), expiry, 6, &slen) != 0 || slen == 0) { BAC = false; } CLIParserFree(ctx); return infoHF_EMRTD((char *)docnum, (char *)dob, (char *)expiry, BAC); } static int cmd_hf_emrtd_list(const char *Cmd) { char args[128] = {0}; if (strlen(Cmd) == 0) { snprintf(args, sizeof(args), "-t 7816"); } else { strncpy(args, Cmd, sizeof(args) - 1); } return CmdTraceList(args); } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"dump", cmd_hf_emrtd_dump, IfPm3Iso14443, "Dump eMRTD files to binary files"}, {"info", cmd_hf_emrtd_info, IfPm3Iso14443, "Display info about an eMRTD"}, {"list", cmd_hf_emrtd_list, AlwaysAvailable, "List ISO 14443A/7816 history"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdHFeMRTD(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); }