#include struct common_area common_area __attribute__((section(".commonarea"))); unsigned int start_addr, end_addr, bootrom_unlocked; extern char _bootrom_start, _bootrom_end, _flash_start, _flash_end; static void ConfigClocks(void) { // we are using a 16 MHz crystal as the basis for everything // slow clock runs at 32Khz typical regardless of crystal // enable system clock and USB clock PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROCESSOR_CLK | PMC_SYS_CLK_UDP_CLK; // enable the clock to the following peripherals PMC_PERIPHERAL_CLK_ENABLE = (1<cmd) { case CMD_DEVICE_INFO: dont_ack = 1; c->cmd = CMD_DEVICE_INFO; c->ext1 = DEVICE_INFO_FLAG_BOOTROM_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM | DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH; if(common_area.flags.osimage_present) c->ext1 |= DEVICE_INFO_FLAG_OSIMAGE_PRESENT; UsbSendPacket(packet, len); break; case CMD_SETUP_WRITE: /* The temporary write buffer of the embedded flash controller is mapped to the * whole memory region, only the last 8 bits are decoded. */ p = (volatile DWORD *)&_flash_start; for(i = 0; i < 12; i++) { p[i+c->ext1] = c->d.asDwords[i]; } break; case CMD_FINISH_WRITE: p = (volatile DWORD *)&_flash_start; for(i = 0; i < 4; i++) { p[i+60] = c->d.asDwords[i]; } /* Check that the address that we are supposed to write to is within our allowed region */ if( ((c->ext1+FLASH_PAGE_SIZE_BYTES-1) >= end_addr) || (c->ext1 < start_addr) ) { /* Disallow write */ dont_ack = 1; c->cmd = CMD_NACK; UsbSendPacket(packet, len); } else { /* Translate address to flash page and do flash, update here for the 512k part */ MC_FLASH_COMMAND = MC_FLASH_COMMAND_KEY | MC_FLASH_COMMAND_PAGEN((c->ext1-(int)&_flash_start)/FLASH_PAGE_SIZE_BYTES) | FCMD_WRITE_PAGE; } while(!(MC_FLASH_STATUS & MC_FLASH_STATUS_READY)) ; break; case CMD_HARDWARE_RESET: USB_D_PLUS_PULLUP_OFF(); RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; break; case CMD_START_FLASH: if(c->ext3 == START_FLASH_MAGIC) bootrom_unlocked = 1; else bootrom_unlocked = 0; { int prot_start = (int)&_bootrom_start; int prot_end = (int)&_bootrom_end; int allow_start = (int)&_flash_start; int allow_end = (int)&_flash_end; int cmd_start = c->ext1; int cmd_end = c->ext2; /* Only allow command if the bootrom is unlocked, or the parameters are outside of the protected * bootrom area. In any case they must be within the flash area. */ if( (bootrom_unlocked || ((cmd_start >= prot_end) || (cmd_end < prot_start))) && (cmd_start >= allow_start) && (cmd_end <= allow_end) ) { start_addr = cmd_start; end_addr = cmd_end; } else { start_addr = end_addr = 0; dont_ack = 1; c->cmd = CMD_NACK; UsbSendPacket(packet, len); } } break; default: Fatal(); break; } if(!dont_ack) { c->cmd = CMD_ACK; UsbSendPacket(packet, len); } } static void flash_mode(int externally_entered) { start_addr = 0; end_addr = 0; bootrom_unlocked = 0; UsbStart(); for(;;) { WDT_HIT(); UsbPoll(TRUE); if(!externally_entered && !BUTTON_PRESS()) { /* Perform a reset to leave flash mode */ USB_D_PLUS_PULLUP_OFF(); LED_B_ON(); RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; for(;;); } if(externally_entered && BUTTON_PRESS()) { /* Let the user's button press override the automatic leave */ externally_entered = 0; } } } extern char _osimage_entry; void BootROM(void) { //------------ // First set up all the I/O pins; GPIOs configured directly, other ones // just need to be assigned to the appropriate peripheral. // Kill all the pullups, especially the one on USB D+; leave them for // the unused pins, though. PIO_NO_PULL_UP_ENABLE = (1 << GPIO_USB_PU) | (1 << GPIO_LED_A) | (1 << GPIO_LED_B) | (1 << GPIO_LED_C) | (1 << GPIO_LED_D) | (1 << GPIO_FPGA_DIN) | (1 << GPIO_FPGA_DOUT) | (1 << GPIO_FPGA_CCLK) | (1 << GPIO_FPGA_NINIT) | (1 << GPIO_FPGA_NPROGRAM) | (1 << GPIO_FPGA_DONE) | (1 << GPIO_MUXSEL_HIPKD) | (1 << GPIO_MUXSEL_HIRAW) | (1 << GPIO_MUXSEL_LOPKD) | (1 << GPIO_MUXSEL_LORAW) | (1 << GPIO_RELAY) | (1 << GPIO_NVDD_ON); // (and add GPIO_FPGA_ON) // These pins are outputs PIO_OUTPUT_ENABLE = (1 << GPIO_LED_A) | (1 << GPIO_LED_B) | (1 << GPIO_LED_C) | (1 << GPIO_LED_D) | (1 << GPIO_RELAY) | (1 << GPIO_NVDD_ON); // PIO controls the following pins PIO_ENABLE = (1 << GPIO_USB_PU) | (1 << GPIO_LED_A) | (1 << GPIO_LED_B) | (1 << GPIO_LED_C) | (1 << GPIO_LED_D); USB_D_PLUS_PULLUP_OFF(); LED_D_OFF(); LED_C_ON(); LED_B_OFF(); LED_A_OFF(); // if 512K FLASH part - TODO make some defines :) if ((DBGU_CIDR | 0xf00) == 0xa00) { MC_FLASH_MODE0 = MC_FLASH_MODE_FLASH_WAIT_STATES(1) | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(0x48); MC_FLASH_MODE1 = MC_FLASH_MODE_FLASH_WAIT_STATES(1) | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(0x48); } else { MC_FLASH_MODE0 = MC_FLASH_MODE_FLASH_WAIT_STATES(0) | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48); } // Initialize all system clocks ConfigClocks(); LED_A_ON(); int common_area_present = 0; switch(RSTC_STATUS & RST_STATUS_TYPE_MASK) { case RST_STATUS_TYPE_WATCHDOG: case RST_STATUS_TYPE_SOFTWARE: case RST_STATUS_TYPE_USER: /* In these cases the common_area in RAM should be ok, retain it if it's there */ if(common_area.magic == COMMON_AREA_MAGIC && common_area.version == 1) { common_area_present = 1; } break; default: /* Otherwise, initialize it from scratch */ break; } if(!common_area_present){ /* Common area not ok, initialize it */ int i; for(i=0; i