//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // utilities //----------------------------------------------------------------------------- #include "util.h" #define MAX_BIN_BREAK_LENGTH (3072+384+1) #ifndef _WIN32 int ukbhit(void) { int cnt = 0; int error; static struct termios Otty, Ntty; if ( tcgetattr( 0, &Otty) == -1) return -1; Ntty = Otty; Ntty.c_iflag = 0; /* input mode */ Ntty.c_oflag = 0; /* output mode */ Ntty.c_lflag &= ~ICANON; /* raw mode */ Ntty.c_cc[VMIN] = CMIN; /* minimum time to wait */ Ntty.c_cc[VTIME] = CTIME; /* minimum characters to wait for */ if (0 == (error = tcsetattr(0, TCSANOW, &Ntty))) { error += ioctl(0, FIONREAD, &cnt); error += tcsetattr(0, TCSANOW, &Otty); } return ( error == 0 ? cnt : -1 ); } #else int ukbhit(void) { return kbhit(); } #endif // log files functions void AddLogLine(char *file, char *extData, char *c) { FILE *f = NULL; char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(file); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, file, len); f = fopen(filename, "a"); if (!f) { printf("Could not append log file %s", filename); return; } fprintf(f, "%s", extData); fprintf(f, "%s\n", c); fflush(f); if (f) { fclose(f); f = NULL; } } void AddLogHex(char *fileName, char *extData, const uint8_t * data, const size_t len){ AddLogLine(fileName, extData, sprint_hex(data, len)); } void AddLogUint64(char *fileName, char *extData, const uint64_t data) { char buf[20] = {0}; memset(buf, 0x00, sizeof(buf)); //sprintf(buf, "%X%X", (unsigned int)((data & 0xFFFFFFFF00000000) >> 32), (unsigned int)(data & 0xFFFFFFFF)); sprintf(buf, "%012"llx"", data); AddLogLine(fileName, extData, buf); } void AddLogCurrentDT(char *fileName) { char buf[20]; memset(buf, 0x00, sizeof(buf)); struct tm *curTime; time_t now = time(0); curTime = gmtime(&now); strftime (buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", curTime); AddLogLine(fileName, "\nanticollision: ", buf); } void FillFileNameByUID(char *fileName, uint8_t *uid, char *ext, int byteCount) { if ( fileName == NULL || uid == NULL || ext == NULL ){ printf("error: parameter is NULL\n"); return; } char * fnameptr = fileName; memset(fileName, 0x00, FILE_PATH_SIZE); for (int j = 0; j < byteCount; j++, fnameptr += 2) sprintf(fnameptr, "%02X", uid[j]); sprintf(fnameptr, "%s", ext); } // printing and converting functions void print_hex(const uint8_t * data, const size_t len) { size_t i; for (i=0; i < len; ++i) printf("%02x ", data[i]); printf("\n"); } void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) { int rownum = 0; printf("[%02d] | ", rownum); for (int i = 0; i < len; ++i) { printf("%02X ", data[i]); // check if a line break is needed if ( breaks > 0 && !((i+1) % breaks) && (i+1 < len) ) { ++rownum; printf("\n[%02d] | ", rownum); } } printf("\n"); } char *sprint_hex(const uint8_t *data, const size_t len) { int maxLen = ( len > 1024/3) ? 1024/3 : len; static char buf[1024]; memset(buf, 0x00, 1024); char * tmp = buf; size_t i; for (i=0; i < maxLen; ++i, tmp += 3) sprintf(tmp, "%02X ", data[i]); return buf; } char *sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) { // make sure we don't go beyond our char array memory size_t in_index = 0, out_index = 0; int max_len; if (breaks==0) max_len = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len; else max_len = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks); static char buf[MAX_BIN_BREAK_LENGTH]; // 3072 + end of line characters if broken at 8 bits //clear memory memset(buf, 0x00, sizeof(buf)); char *tmp = buf; // loop through the out_index to make sure we don't go too far for (out_index=0; out_index < max_len-2; out_index++) { // set character sprintf(tmp++, "%u", (unsigned int) data[in_index]); // check if a line break is needed and we have room to print it in our array if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != max_len) ) { // increment and print line break out_index++; sprintf(tmp++, "%s","\n"); } in_index++; } // last char. sprintf(tmp++, "%u", (unsigned int) data[in_index]); return buf; } char *sprint_bin(const uint8_t *data, const size_t len) { return sprint_bin_break(data, len, 0); } char *sprint_hex_ascii(const uint8_t *data, const size_t len) { static char buf[1024]; char *tmp = buf; memset(buf, 0x00, 1024); size_t max_len = (len > 1010) ? 1010 : len; sprintf(tmp, "%s| %s", sprint_hex(data, max_len) , data); return buf; } void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) { while (len--) { dest[len] = n & 0xFF; n >>= 8; } } uint64_t bytes_to_num(uint8_t* src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } // takes a number (uint64_t) and creates a binarray in dest. void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = n & 1; n >>= 1; } } //least significant bit first void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) { for(int i = 0 ; i < len ; ++i) { dest[i] = n & 1; n >>= 1; } } // aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp // to // hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii // up to 64 bytes or 512 bits uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize){ static uint8_t buf[64]; memset(buf, 0x00, 64); uint8_t *tmp = buf; for (uint8_t block=0; block < (uint8_t)(len/blockSize); block++){ for (size_t i = 0; i < blockSize; i++){ tmp[i+(blockSize*block)] = src[(blockSize-1-i)+(blockSize*block)]; } } return buf; } // takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64), // returns: the dest array contains the reordered src array. void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest){ for (uint8_t block=0; block < (uint8_t)(len/blockSize); block++){ for (size_t i = 0; i < blockSize; i++){ dest[i+(blockSize*block)] = src[(blockSize-1-i)+(blockSize*block)]; } } } // ------------------------------------------------------------------------- // string parameters lib // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- // line - param line // bg, en - symbol numbers in param line of beginning an ending parameter // paramnum - param number (from 0) // ------------------------------------------------------------------------- int param_getptr(const char *line, int *bg, int *en, int paramnum) { int i; int len = strlen(line); *bg = 0; *en = 0; // skip spaces while (line[*bg] ==' ' || line[*bg]=='\t') (*bg)++; if (*bg >= len) { return 1; } for (i = 0; i < paramnum; i++) { while (line[*bg]!=' ' && line[*bg]!='\t' && line[*bg] != '\0') (*bg)++; while (line[*bg]==' ' || line[*bg]=='\t') (*bg)++; if (line[*bg] == '\0') return 1; } *en = *bg; while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0') (*en)++; (*en)--; return 0; } char param_getchar(const char *line, int paramnum) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0x00; return line[bg]; } uint8_t param_get8(const char *line, int paramnum) { return param_get8ex(line, paramnum, 0, 10); } /** * @brief Reads a decimal integer (actually, 0-254, not 255) * @param line * @param paramnum * @return -1 if error */ uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) { uint8_t val = param_get8ex(line, paramnum, 255, 10); if( (int8_t) val == -1) return 1; (*destination) = val; return 0; } /** * @brief Checks if param is decimal * @param line * @param paramnum * @return */ uint8_t param_isdec(const char *line, int paramnum) { int bg, en; //TODO, check more thorougly if (!param_getptr(line, &bg, &en, paramnum)) return 1; // return strtoul(&line[bg], NULL, 10) & 0xff; return 0; } uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base) & 0xff; else return deflt; } uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base); else return deflt; } uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoull(&line[bg], NULL, base); else return deflt; } int param_gethex(const char *line, int paramnum, uint8_t * data, int hexcnt) { int bg, en, temp, i; if (hexcnt & 1) return 1; if (param_getptr(line, &bg, &en, paramnum)) return 1; if (en - bg + 1 != hexcnt) return 1; for(i = 0; i < hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1])) ) return 1; sscanf((char[]){line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_gethex_ex(const char *line, int paramnum, uint8_t * data, int *hexcnt) { int bg, en, temp, i; //if (hexcnt % 2) // return 1; if (param_getptr(line, &bg, &en, paramnum)) return 1; *hexcnt = en - bg + 1; if (*hexcnt % 2) //error if not complete hex bytes return 1; for(i = 0; i < *hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1])) ) return 1; sscanf((char[]){line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_getstr(const char *line, int paramnum, char * str) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0; memcpy(str, line + bg, en - bg + 1); str[en - bg + 1] = 0; return en - bg + 1; } /* The following methods comes from Rfidler sourcecode. https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/ */ // convert hex to sequence of 0/1 bit values // returns number of bits converted int hextobinarray(char *target, char *source) { int length, i, count= 0; char x; length = strlen(source); // process 4 bits (1 hex digit) at a time while(length--) { x= *(source++); // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else return 0; // output for(i= 0 ; i < 4 ; ++i, ++count) *(target++)= (x >> (3 - i)) & 1; } return count; } // convert hex to human readable binary string int hextobinstring(char *target, char *source) { int length; if(!(length= hextobinarray(target, source))) return 0; binarraytobinstring(target, target, length); return length; } // convert binary array of 0x00/0x01 values to hex (safe to do in place as target will always be shorter than source) // return number of bits converted int binarraytohex(char *target, char *source, int length) { unsigned char i, x; int j = length; if(j % 4) return 0; while(j) { for(i= x= 0 ; i < 4 ; ++i) x += ( source[i] << (3 - i)); sprintf(target,"%X", x); ++target; source += 4; j -= 4; } return length; } // convert binary array to human readable binary void binarraytobinstring(char *target, char *source, int length) { int i; for(i= 0 ; i < length ; ++i) *(target++)= *(source++) + '0'; *target= '\0'; } // return parity bit required to match type uint8_t GetParity( uint8_t *bits, uint8_t type, int length) { int x; for( x = 0 ; length > 0 ; --length) x += bits[length - 1]; x %= 2; return x ^ type; } // add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length) { *(target++)= GetParity(source, EVEN, length / 2); memcpy(target, source, length); target += length; *(target)= GetParity(source + length / 2, ODD, length / 2); } // xor two arrays together for len items. The dst array contains the new xored values. void xor(unsigned char * dst, unsigned char * src, size_t len) { for( ; len > 0; len--,dst++,src++) *dst ^= *src; } int32_t le24toh (uint8_t data[3]) { return (data[2] << 16) | (data[1] << 8) | data[0]; } uint32_t le32toh (uint8_t *data) { return (uint32_t)( (data[3]<<24) | (data[2]<<16) | (data[1]<<8) | data[0]); } // Pack a bitarray into a uint32_t. uint32_t PackBits(uint8_t start, uint8_t len, uint8_t* bits) { if (len > 32) return 0; int i = start; int j = len-1; uint32_t tmp = 0; for (; j >= 0; --j, ++i) tmp |= bits[i] << j; return tmp; } // RotateLeft - Ultralight, Desfire, works on byte level // 00-01-02 >> 01-02-00 void rol(uint8_t *data, const size_t len){ uint8_t first = data[0]; for (size_t i = 0; i < len-1; i++) { data[i] = data[i+1]; } data[len-1] = first; } // Swap bit order on a uint32_t value. Can be limited by nrbits just use say 8bits reversal // And clears the rest of the bits. uint32_t SwapBits(uint32_t value, int nrbits) { uint32_t newvalue = 0; for(int i = 0; i < nrbits; i++) { newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i); } return newvalue; } /* ref http://www.csm.ornl.gov/~dunigan/crc.html Returns the value v with the bottom b [0,32] bits reflected. Example: reflect(0x3e23L,3) == 0x3e26 */ uint32_t reflect(uint32_t v, int b) { uint32_t t = v; for ( int i = 0; i < b; ++i) { if (t & 1) v |= BITMASK((b-1)-i); else v &= ~BITMASK((b-1)-i); t>>=1; } return v; } uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) { uint64_t remainder=0, quotient=0, result=0; remainder = num % divider; quotient = num / divider; if(!(quotient == 0 && remainder == 0)) result += HornerScheme(quotient, divider, factor) * factor + remainder; return result; }