//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Utility functions used in many places, not specific to any piece of code. //----------------------------------------------------------------------------- #include "commonutil.h" #include /* Similar to FpgaGatherVersion this formats stored version information * into a string representation. It takes a pointer to the struct version_information_t, * verifies the magic properties, then stores a formatted string, prefixed by * prefix in dst. */ void FormatVersionInformation(char *dst, int len, const char *prefix, const void *version_info) { const struct version_information_t *v = (const struct version_information_t *)version_info; dst[0] = 0; strncat(dst, prefix, len - 1); if (v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1); return; } if (v->versionversion != 1) { strncat(dst, "Version information not understood", len - strlen(dst) - 1); return; } if (!v->present) { strncat(dst, "Version information not available", len - strlen(dst) - 1); return; } strncat(dst, v->gitversion, len - strlen(dst) - 1); if (v->clean == 0) { strncat(dst, "-unclean", len - strlen(dst) - 1); } else if (v->clean == 2) { strncat(dst, "-suspect", len - strlen(dst) - 1); } strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->buildtime, len - strlen(dst) - 1); strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->armsrc, len - strlen(dst) - 1); } void format_version_information_short(char *dst, int len, const void *version_info) { const struct version_information_t *v = (const struct version_information_t *)version_info; dst[0] = 0; if (v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1); return; } if (v->versionversion != 1) { strncat(dst, "Version information not understood", len - strlen(dst) - 1); return; } if (!v->present) { strncat(dst, "Version information not available", len - strlen(dst) - 1); return; } strncat(dst, v->gitversion, len - strlen(dst) - 1); strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->buildtime, len - strlen(dst) - 1); } /* ref http://www.csm.ornl.gov/~dunigan/crc.html Returns the value v with the bottom b [0,32] bits reflected. Example: reflect(0x3e23L,3) == 0x3e26 */ uint32_t reflect(uint32_t v, int b) { uint32_t t = v; for (int i = 0; i < b; ++i) { if (t & 1) v |= BITMASK((b - 1) - i); else v &= ~BITMASK((b - 1) - i); t >>= 1; } return v; } // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable // Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division): uint8_t reflect8(uint8_t b) { return (b * 0x0202020202ULL & 0x010884422010ULL) % 1023; } // Reverse the bits in a byte with 4 operations (64-bit multiply, no division): /* uint8_t reflect8(uint8_t b) { return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32; } */ uint16_t reflect16(uint16_t b) { uint16_t v = 0; v |= (b & 0x8000) >> 15; v |= (b & 0x4000) >> 13; v |= (b & 0x2000) >> 11; v |= (b & 0x1000) >> 9; v |= (b & 0x0800) >> 7; v |= (b & 0x0400) >> 5; v |= (b & 0x0200) >> 3; v |= (b & 0x0100) >> 1; v |= (b & 0x0080) << 1; v |= (b & 0x0040) << 3; v |= (b & 0x0020) << 5; v |= (b & 0x0010) << 7; v |= (b & 0x0008) << 9; v |= (b & 0x0004) << 11; v |= (b & 0x0002) << 13; v |= (b & 0x0001) << 15; return v; } uint32_t reflect32(uint32_t b) { // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable uint32_t v = b; // 32-bit word to reverse bit order // swap odd and even bits v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); // swap consecutive pairs v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); // swap nibbles ... v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); // swap bytes v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); // swap 2-byte long pairs v = (v >> 16) | (v << 16); return v; } void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = (uint8_t) n; n >>= 8; } } uint64_t bytes_to_num(const uint8_t *src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } uint16_t MemLeToUint2byte(const uint8_t *data) { return (uint16_t)( (((uint16_t)(data[1])) << (8 * 1)) + (((uint16_t)(data[0])) << (8 * 0)) ); } uint32_t MemLeToUint3byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[2])) << (8 * 2)) + (((uint32_t)(data[1])) << (8 * 1)) + (((uint32_t)(data[0])) << (8 * 0)) ); } uint32_t MemLeToUint4byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[3])) << (8 * 3)) + (((uint32_t)(data[2])) << (8 * 2)) + (((uint32_t)(data[1])) << (8 * 1)) + (((uint32_t)(data[0])) << (8 * 0)) ); } uint64_t MemLeToUint5byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[4])) << (8 * 4)) + (((uint64_t)(data[3])) << (8 * 3)) + (((uint64_t)(data[2])) << (8 * 2)) + (((uint64_t)(data[1])) << (8 * 1)) + (((uint64_t)(data[0])) << (8 * 0)) ); } uint64_t MemLeToUint6byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[5])) << (8 * 5)) + (((uint64_t)(data[4])) << (8 * 4)) + (((uint64_t)(data[3])) << (8 * 3)) + (((uint64_t)(data[2])) << (8 * 2)) + (((uint64_t)(data[1])) << (8 * 1)) + (((uint64_t)(data[0])) << (8 * 0)) ); } uint64_t MemLeToUint7byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[6])) << (8 * 6)) + (((uint64_t)(data[5])) << (8 * 5)) + (((uint64_t)(data[4])) << (8 * 4)) + (((uint64_t)(data[3])) << (8 * 3)) + (((uint64_t)(data[2])) << (8 * 2)) + (((uint64_t)(data[1])) << (8 * 1)) + (((uint64_t)(data[0])) << (8 * 0)) ); } uint64_t MemLeToUint8byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[7])) << (8 * 7)) + (((uint64_t)(data[6])) << (8 * 6)) + (((uint64_t)(data[5])) << (8 * 5)) + (((uint64_t)(data[4])) << (8 * 4)) + (((uint64_t)(data[3])) << (8 * 3)) + (((uint64_t)(data[2])) << (8 * 2)) + (((uint64_t)(data[1])) << (8 * 1)) + (((uint64_t)(data[0])) << (8 * 0)) ); } uint16_t MemBeToUint2byte(const uint8_t *data) { return (uint16_t)( (((uint16_t)(data[0])) << (8 * 1)) + (((uint16_t)(data[1])) << (8 * 0)) ); } uint32_t MemBeToUint3byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[0])) << (8 * 2)) + (((uint32_t)(data[1])) << (8 * 1)) + (((uint32_t)(data[2])) << (8 * 0)) ); } uint32_t MemBeToUint4byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[0])) << (8 * 3)) + (((uint32_t)(data[1])) << (8 * 2)) + (((uint32_t)(data[2])) << (8 * 1)) + (((uint32_t)(data[3])) << (8 * 0)) ); } uint64_t MemBeToUint5byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << (8 * 4)) + (((uint64_t)(data[1])) << (8 * 3)) + (((uint64_t)(data[2])) << (8 * 2)) + (((uint64_t)(data[3])) << (8 * 1)) + (((uint64_t)(data[4])) << (8 * 0)) ); } uint64_t MemBeToUint6byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << (8 * 5)) + (((uint64_t)(data[1])) << (8 * 4)) + (((uint64_t)(data[2])) << (8 * 3)) + (((uint64_t)(data[3])) << (8 * 2)) + (((uint64_t)(data[4])) << (8 * 1)) + (((uint64_t)(data[5])) << (8 * 0)) ); } uint64_t MemBeToUint7byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << (8 * 6)) + (((uint64_t)(data[1])) << (8 * 5)) + (((uint64_t)(data[2])) << (8 * 4)) + (((uint64_t)(data[3])) << (8 * 3)) + (((uint64_t)(data[4])) << (8 * 2)) + (((uint64_t)(data[5])) << (8 * 1)) + (((uint64_t)(data[6])) << (8 * 0)) ); } uint64_t MemBeToUint8byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << (8 * 7)) + (((uint64_t)(data[1])) << (8 * 6)) + (((uint64_t)(data[2])) << (8 * 5)) + (((uint64_t)(data[3])) << (8 * 4)) + (((uint64_t)(data[4])) << (8 * 3)) + (((uint64_t)(data[5])) << (8 * 2)) + (((uint64_t)(data[6])) << (8 * 1)) + (((uint64_t)(data[7])) << (8 * 0)) ); } void Uint2byteToMemLe(uint8_t *data, uint16_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); } void Uint3byteToMemLe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); } void Uint4byteToMemLe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); } void Uint5byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu); } void Uint6byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu); } void Uint7byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu); data[6] = (uint8_t)((value >> (8 * 6)) & 0xffu); } void Uint8byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu); data[6] = (uint8_t)((value >> (8 * 6)) & 0xffu); data[7] = (uint8_t)((value >> (8 * 7)) & 0xffu); } void Uint2byteToMemBe(uint8_t *data, uint16_t value) { data[0] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint3byteToMemBe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint4byteToMemBe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint5byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint6byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 5)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint7byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 6)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 5)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[6] = (uint8_t)((value >> (8 * 0)) & 0xffu); } void Uint8byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> (8 * 7)) & 0xffu); data[1] = (uint8_t)((value >> (8 * 6)) & 0xffu); data[2] = (uint8_t)((value >> (8 * 5)) & 0xffu); data[3] = (uint8_t)((value >> (8 * 4)) & 0xffu); data[4] = (uint8_t)((value >> (8 * 3)) & 0xffu); data[5] = (uint8_t)((value >> (8 * 2)) & 0xffu); data[6] = (uint8_t)((value >> (8 * 1)) & 0xffu); data[7] = (uint8_t)((value >> (8 * 0)) & 0xffu); } // RotateLeft - Ultralight, Desfire void rol(uint8_t *data, const size_t len) { uint8_t first = data[0]; for (size_t i = 0; i < len - 1; i++) { data[i] = data[i + 1]; } data[len - 1] = first; } void lsl(uint8_t *data, size_t len) { for (size_t n = 0; n < len - 1; n++) { data[n] = (data[n] << 1) | (data[n + 1] >> 7); } data[len - 1] <<= 1; } // BSWAP24 of array[3] uint32_t le24toh(const uint8_t data[3]) { return (data[2] << 16) | (data[1] << 8) | data[0]; } // BSWAP24, take u32, output array void htole24(uint32_t val, uint8_t data[3]) { data[0] = (uint8_t) val; data[1] = (uint8_t)(val >> 8); data[2] = (uint8_t)(val >> 16); } // ROL on u32 uint32_t rotl(uint32_t a, uint8_t n) { n &= 31; return (a << n) | (a >> (32 - n)); } // ROR on u32 uint32_t rotr(uint32_t a, uint8_t n) { n &= 31; return (a >> n) | (a << (32 - n)); } uint16_t get_sw(const uint8_t *d, uint16_t n) { if (n < 2) return 0; n -= 2; return (d[n] << 8 | d[n + 1]); } // reverse same array void reverse_array(uint8_t *d, size_t n) { if (d == NULL || n < 2) { return; } for (int i = 0, j = n - 1; i < j; ++i, --j) { d[i] ^= d[j]; d[j] ^= d[i]; d[i] ^= d[j]; } } // reverse src array into dest array void reverse_array_copy(const uint8_t *src, int src_len, uint8_t *dest) { if (src == NULL || src_len == 0 || dest == NULL) { return; } for (int i = 0; i < src_len; i++) { dest[i] = src[(src_len - 1) - i]; } } static int hexchar_to_dec(char ch) { if (ch >= '0' && ch <= '9') { return ch - '0'; } if (ch >= 'a' && ch <= 'f') { return ch - 'a' + 10; } if (ch >= 'A' && ch <= 'F') { return ch - 'A' + 10; } return -1; } // no spaces allowed for input hex string bool hexstr_to_byte_array(const char *hexstr, uint8_t *d, size_t *n) { size_t hexstr_len = strlen(hexstr); if (hexstr_len & 1) { return false; } *n = (hexstr_len >> 1); for (int i = 0; i < *n; i++) { char c1 = *hexstr++; char c2 = *hexstr++; if (c1 == '\0' || c2 == '\0') { return false; } int b = (hexchar_to_dec(c1) << 4) | hexchar_to_dec(c2); if (b < 0) { // Error: invalid hex character return false; } d[i] = (uint8_t) b; } return true; }