// Merlok, 2011, 2012 // people from mifare@nethemba.com, 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // mifare commands //----------------------------------------------------------------------------- #include #include #include #include "mifarehost.h" // MIFARE int compar_int(const void * a, const void * b) { return (*(uint64_t*)b - *(uint64_t*)a); } // Compare countKeys structure int compar_special_int(const void * a, const void * b) { return (((countKeys *)b)->count - ((countKeys *)a)->count); } countKeys * uniqsort(uint64_t * possibleKeys, uint32_t size) { int i, j = 0; int count = 0; countKeys *our_counts; qsort(possibleKeys, size, sizeof (uint64_t), compar_int); our_counts = calloc(size, sizeof(countKeys)); if (our_counts == NULL) { PrintAndLog("Memory allocation error for our_counts"); return NULL; } for (i = 0; i < size; i++) { if (possibleKeys[i+1] == possibleKeys[i]) { count++; } else { our_counts[j].key = possibleKeys[i]; our_counts[j].count = count; j++; count=0; } } qsort(our_counts, j, sizeof(countKeys), compar_special_int); return (our_counts); } int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKeys) { int i, m, len; uint8_t isEOF; uint32_t uid; fnVector * vector = NULL; countKeys *ck; int lenVector = 0; UsbCommand * resp = NULL; memset(resultKeys, 0x00, 16 * 6); // flush queue while (WaitForResponseTimeout(CMD_ACK, 500) != NULL) ; UsbCommand c = {CMD_MIFARE_NESTED, {blockNo, keyType, trgBlockNo + trgKeyType * 0x100}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); PrintAndLog("\n"); // wait cycle while (true) { printf("."); if (ukbhit()) { getchar(); printf("\naborted via keyboard!\n"); break; } resp = WaitForResponseTimeout(CMD_ACK, 1500); if (resp != NULL) { isEOF = resp->arg[0] & 0xff; if (isEOF) break; len = resp->arg[1] & 0xff; if (len == 0) continue; memcpy(&uid, resp->d.asBytes, 4); PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, resp->arg[2] & 0xff, (resp->arg[2] >> 8) & 0xff); vector = (fnVector *) realloc((void *)vector, (lenVector + len) * sizeof(fnVector) + 200); if (vector == NULL) { PrintAndLog("Memory allocation error for fnVector. len: %d bytes: %d", lenVector + len, (lenVector + len) * sizeof(fnVector)); break; } for (i = 0; i < len; i++) { vector[lenVector + i].blockNo = resp->arg[2] & 0xff; vector[lenVector + i].keyType = (resp->arg[2] >> 8) & 0xff; vector[lenVector + i].uid = uid; memcpy(&vector[lenVector + i].nt, (void *)(resp->d.asBytes + 8 + i * 8 + 0), 4); memcpy(&vector[lenVector + i].ks1, (void *)(resp->d.asBytes + 8 + i * 8 + 4), 4); } lenVector += len; } } if (!lenVector) { PrintAndLog("Got 0 keys from proxmark."); return 1; } printf("------------------------------------------------------------------\n"); // calc keys struct Crypto1State* revstate = NULL; struct Crypto1State* revstate_start = NULL; uint64_t lfsr; int kcount = 0; pKeys *pk; if ((pk = (void *) malloc(sizeof(pKeys))) == NULL) return 1; memset(pk, 0x00, sizeof(pKeys)); for (m = 0; m < lenVector; m++) { // And finally recover the first 32 bits of the key revstate = lfsr_recovery32(vector[m].ks1, vector[m].nt ^ vector[m].uid); if (revstate_start == NULL) revstate_start = revstate; while ((revstate->odd != 0x0) || (revstate->even != 0x0)) { lfsr_rollback_word(revstate, vector[m].nt ^ vector[m].uid, 0); crypto1_get_lfsr(revstate, &lfsr); // Allocate a new space for keys if (((kcount % MEM_CHUNK) == 0) || (kcount >= pk->size)) { pk->size += MEM_CHUNK; //fprintf(stdout, "New chunk by %d, sizeof %d\n", kcount, pk->size * sizeof(uint64_t)); pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t)); if (pk->possibleKeys == NULL) { PrintAndLog("Memory allocation error for pk->possibleKeys"); return 1; } } pk->possibleKeys[kcount] = lfsr; kcount++; revstate++; } free(revstate_start); revstate_start = NULL; } // Truncate if (kcount != 0) { pk->size = --kcount; if ((pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t))) == NULL) { PrintAndLog("Memory allocation error for pk->possibleKeys"); return 1; } } PrintAndLog("Total keys count:%d", kcount); ck = uniqsort(pk->possibleKeys, pk->size); // fill key array for (i = 0; i < 16 ; i++) { num_to_bytes(ck[i].key, 6, (uint8_t*)(resultKeys + i * 6)); } // finalize free(pk->possibleKeys); free(pk); free(ck); free(vector); return 0; } int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){ *key = 0; UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}}; memcpy(c.d.asBytes, keyBlock, 6 * keycnt); SendCommand(&c); UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 3000); if (resp == NULL) return 1; if ((resp->arg[0] & 0xff) != 0x01) return 2; *key = bytes_to_num(resp->d.asBytes, 6); return 0; } // EMULATOR int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; SendCommand(&c); UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500); if (resp == NULL) return 1; memcpy(data, resp->d.asBytes, blocksCount * 16); return 0; } int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; memcpy(c.d.asBytes, data, blocksCount * 16); SendCommand(&c); return 0; } // "MAGIC" CARD int mfCSetUID(uint8_t *uid, uint8_t *oldUID, int wantWipe) { uint8_t block0[16]; memset(block0, 0, 16); memcpy(block0, uid, 4); block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // Mifare UID BCC // mifare classic SAK(byte 5) and ATQA(byte 6 and 7) block0[5] = 0x88; block0[6] = 0x04; block0[7] = 0x00; return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER); } int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, int wantWipe, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_EML_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; memcpy(c.d.asBytes, data, 16); SendCommand(&c); UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500); if (resp != NULL) { isOK = resp->arg[0] & 0xff; if (uid != NULL) memcpy(uid, resp->d.asBytes, 4); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_EML_CGETBLOCK, {params, 0, blockNo}}; SendCommand(&c); UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500); if (resp != NULL) { isOK = resp->arg[0] & 0xff; memcpy(data, resp->d.asBytes, 16); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } // SNIFFER // constants static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; // variables char logHexFileName[200] = {0x00}; static uint8_t traceCard[4096] = {0x00}; static char traceFileName[20]; static int traceState = TRACE_IDLE; static uint8_t traceCurBlock = 0; static uint8_t traceCurKey = 0; struct Crypto1State *traceCrypto1 = NULL; struct Crypto1State *revstate; uint64_t lfsr; uint32_t ks2; uint32_t ks3; uint32_t uid; // serial number uint32_t nt; // tag challenge uint32_t nt_par; uint32_t nr_enc; // encrypted reader challenge uint32_t ar_enc; // encrypted reader response uint32_t nr_ar_par; uint32_t at_enc; // encrypted tag response uint32_t at_par; int isTraceCardEmpty(void) { return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); } int isBlockEmpty(int blockN) { for (int i = 0; i < 16; i++) if (traceCard[blockN * 16 + i] != 0) return 0; return 1; } int isBlockTrailer(int blockN) { return ((blockN & 0x03) == 0x03); } int loadTraceCard(uint8_t *tuid) { FILE * f; char buf[64]; uint8_t buf8[64]; int i, blockNum; if (!isTraceCardEmpty()) saveTraceCard(); memset(traceCard, 0x00, 4096); memcpy(traceCard, tuid + 3, 4); FillFileNameByUID(traceFileName, tuid, ".eml", 7); f = fopen(traceFileName, "r"); if (!f) return 1; blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); fgets(buf, sizeof(buf), f); if (strlen(buf) < 32){ if (feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); memcpy(traceCard + blockNum * 16, buf8, 16); blockNum++; } fclose(f); return 0; } int saveTraceCard(void) { FILE * f; if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; f = fopen(traceFileName, "w+"); for (int i = 0; i < 64; i++) { // blocks for (int j = 0; j < 16; j++) // bytes fprintf(f, "%02x", *(traceCard + i * 16 + j)); fprintf(f,"\n"); } fclose(f); return 0; } int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { if (traceCrypto1) crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; if (wantSaveToEmlFile) loadTraceCard(tuid); traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; traceCard[5] = sak; memcpy(&traceCard[6], atqa, 2); traceCurBlock = 0; uid = bytes_to_num(tuid + 3, 4); traceState = TRACE_IDLE; return 0; } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ uint8_t bt = 0; int i; if (len != 1) { for (i = 0; i < len; i++) data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; } else { bt = 0; for (i = 0; i < 4; i++) bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i; data[0] = bt; } return; } int mfTraceDecode(uint8_t *data_src, int len, uint32_t parity, bool wantSaveToEmlFile) { uint8_t data[64]; if (traceState == TRACE_ERROR) return 1; if (len > 64) { traceState = TRACE_ERROR; return 1; } memcpy(data, data_src, len); if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { mf_crypto1_decrypt(traceCrypto1, data, len, 0); PrintAndLog("dec> %s", sprint_hex(data, len)); AddLogHex(logHexFileName, "dec> ", data, len); } switch (traceState) { case TRACE_IDLE: // check packet crc16! if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) { PrintAndLog("dec> CRC ERROR!!!"); AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!"); traceState = TRACE_ERROR; // do not decrypt the next commands return 1; } // AUTHENTICATION if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) { traceState = TRACE_AUTH1; traceCurBlock = data[1]; traceCurKey = data[0] == 60 ? 1:0; return 0; } // READ if ((len ==4) && ((data[0] == 0x30))) { traceState = TRACE_READ_DATA; traceCurBlock = data[1]; return 0; } // WRITE if ((len ==4) && ((data[0] == 0xA0))) { traceState = TRACE_WRITE_OK; traceCurBlock = data[1]; return 0; } // HALT if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) { traceState = TRACE_ERROR; // do not decrypt the next commands return 0; } return 0; break; case TRACE_READ_DATA: if (len == 18) { traceState = TRACE_IDLE; if (isBlockTrailer(traceCurBlock)) { memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); } else { memcpy(traceCard + traceCurBlock * 16, data, 16); } if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_OK: if ((len == 1) && (data[0] = 0x0a)) { traceState = TRACE_WRITE_DATA; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_DATA: if (len == 18) { traceState = TRACE_IDLE; memcpy(traceCard + traceCurBlock * 16, data, 16); if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH1: if (len == 4) { traceState = TRACE_AUTH2; nt = bytes_to_num(data, 4); nt_par = parity; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH2: if (len == 8) { traceState = TRACE_AUTH_OK; nr_enc = bytes_to_num(data, 4); ar_enc = bytes_to_num(data + 4, 4); nr_ar_par = parity; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH_OK: if (len ==4) { traceState = TRACE_IDLE; at_enc = bytes_to_num(data, 4); at_par = parity; // decode key here) if (!traceCrypto1) { ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); }else{ ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); } crypto1_get_lfsr(revstate, &lfsr); printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF)); AddLogUint64(logHexFileName, "key> ", lfsr); int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); if (traceCurKey) { num_to_bytes(lfsr, 6, traceCard + blockShift + 10); } else { num_to_bytes(lfsr, 6, traceCard + blockShift); } if (wantSaveToEmlFile) saveTraceCard(); if (traceCrypto1) { crypto1_destroy(traceCrypto1); } // set cryptosystem state traceCrypto1 = lfsr_recovery64(ks2, ks3); // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt; /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr crypto1_word(traceCrypto1, nt ^ uid, 0); crypto1_word(traceCrypto1, ar, 1); crypto1_word(traceCrypto1, 0, 0); crypto1_word(traceCrypto1, 0, 0);*/ return 0; } else { traceState = TRACE_ERROR; return 1; } break; default: traceState = TRACE_ERROR; return 1; } return 0; }