//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // // FIX: // ==== // We still have sometimes a demodulation error when sniffing iClass communication. // The resulting trace of a read-block-03 command may look something like this: // // + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc // // We still left the error signalling bytes in the traces like 0xbb // // A correct trace should look like this: // // + 21112: : 0c 03 e8 01 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- #include "apps.h" #include "cmd.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "crc16.h" #include "protocols.h" #include "optimized_cipher.h" #include "usb_cdc.h" // for usb_poll_validate_length static int timeout = 4096; static int SendIClassAnswer(uint8_t *resp, int respLen, uint16_t delay); int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); #define MODE_SIM_CSN 0 #define MODE_EXIT_AFTER_MAC 1 #define MODE_FULLSIM 2 #ifndef ICLASS_DMA_BUFFER_SIZE # define ICLASS_DMA_BUFFER_SIZE 256 #endif // The length of a received command will in most cases be no more than 18 bytes. // 32 should be enough! #ifndef ICLASS_BUFFER_SIZE #define ICLASS_BUFFER_SIZE 32 #endif #define AddCrc(data, len) compute_crc(CRC_ICLASS, (data), (len), (data)+(len), (data)+(len)+1) //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- /* typedef struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_RECEIVING } state; uint16_t shiftReg; int bitCnt; int byteCnt; // int byteCntMax; int posCnt; int nOutOfCnt; int OutOfCnt; int syncBit; int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; uint8_t *output; } tUart; */ typedef struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, DEMOD_SOF_COMPLETE, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; uint16_t shiftReg; uint32_t buffer; uint32_t buffer2; uint32_t buffer3; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH } sub; uint8_t *output; } tDemod; /* * Abrasive's uart implementation * https://github.com/abrasive/proxmark3/commit/2b8bff7daea8ae1193bf7ee29b1fa46e95218902 */ // Static vars for UART typedef struct { bool synced; bool frame; bool frame_done; uint8_t *buf; int len; } tUart; static tUart Uart; static void uart_reset(void) { Uart.frame_done = false; Uart.synced = false; Uart.frame = false; } static void uart_init(uint8_t *data) { Uart.buf = data; uart_reset(); } static void uart_bit(uint8_t bit) { static uint8_t buf = 0xff; static uint8_t n_buf; static int nmsg_byte; buf <<= 1; buf |= bit ? 1 : 0; if (!Uart.frame) { if (buf == 0x7b) { // 0b0111 1011 Uart.frame = true; n_buf = 0; Uart.len = 0; nmsg_byte = 0; } } else { static uint8_t msg_byte; n_buf++; if (n_buf == 8) { msg_byte >>= 2; switch (buf) { case 0xbf: // 0 - 1011 1111 break; case 0xef: // 1 - 1110 1111 msg_byte |= (1 << 6); break; case 0xfb: // 2 - 1111 1011 msg_byte |= (2 << 6); break; case 0xfe: // 3 - 1111 1110 msg_byte |= (3 << 6); break; case 0xdf: // eof - 1101 1111 Uart.frame = false; Uart.synced = false; Uart.frame_done = true; break; default: Uart.frame = false; Uart.synced = false; Dbprintf("[-] bad %02X at %d:%d", buf, Uart.len, nmsg_byte); } if (Uart.frame) { // data bits nmsg_byte += 2; if (nmsg_byte >= 8) { Uart.buf[Uart.len++] = msg_byte; nmsg_byte = 0; } } n_buf = 0; buf = 0xff; } } } static void uart_samples(uint8_t byte) { static uint32_t buf; static int window; static int drop_next = 0; uint32_t falling; int lz; if (!Uart.synced) { if (byte == 0xFF) return; buf = 0xFFFFFFFF; window = 0; drop_next = 0; Uart.synced = true; } buf <<= 8; buf |= byte; if (drop_next) { drop_next = 0; return; } again: falling = ~buf & ((buf >> 1) ^ buf) & (0xFF << window); uart_bit(!falling); if (!falling) return; lz = __builtin_clz(falling) - 24 + window; // aim to get falling edge on fourth-leftmost bit of window window += 3 - lz; if (window < 0) { window += 8; drop_next = 1; } else if (window >= 8) { window -= 8; goto again; } } /* static void UartReset(){ Uart.state = STATE_UNSYNCD; Uart.shiftReg = 0; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.posCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 0; Uart.syncBit = 0; Uart.samples = 0; Uart.highCnt = 0; Uart.swapper = 0; Uart.counter = 0; Uart.bitBuffer = 0; Uart.dropPosition = 0; } */ /* * READER TO CARD * 1 out of 4 Decoding * 1 out of 256 Decoding */ /* static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; if (!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return false; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } // if (Uart.swapper) { // Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; // Uart.byteCnt++; // Uart.swapper = 0; // if (Uart.byteCnt > 15) return true; // } // else { // Uart.swapper = 1; // } if (Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) bit = 0; else bit = 1; if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) bitright = 0; else bitright = 1; if(bit != bitright) bit = bitright; // So, now we only have to deal with *bit*, lets see... if (Uart.posCnt == 1) { // measurement first half bitperiod if (!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. if (Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; if (Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return TRUE Uart.output[0] = 0xf0; Uart.byteCnt++; } else { return true; } } else if (Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; if (!bit) { if (Uart.dropPosition) { if (Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; if (Uart.state == STATE_START_OF_COMMUNICATION) { if (Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; } else if (Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; } else { // RECEIVING DATA // 1 out of 4 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; } else { Uart.shiftReg >>= 2; // Swap bit order Uart.dropPosition--; //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; if (Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; } } } } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; Uart.dropPosition = 0; } } */ /*if (error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return true; }*/ /* } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) if (bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if (Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if (Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; } else { Uart.highCnt = 0; } } else { if (Uart.highCnt < 8) Uart.highCnt++; } } return false; } */ //============================================================================= // Manchester //============================================================================= static tDemod Demod; static void DemodReset() { Demod.bitCount = 0; Demod.posCount = 0; Demod.syncBit = 0; Demod.shiftReg = 0; Demod.buffer = 0; Demod.buffer2 = 0; Demod.buffer3 = 0; Demod.buff = 0; Demod.samples = 0; Demod.len = 0; Demod.sub = SUB_NONE; Demod.state = DEMOD_UNSYNCD; } static void DemodInit(uint8_t *data) { Demod.output = data; DemodReset(); } // UART debug // it adds the debug values which will be put in the tracelog, // visible on client when running 'hf list iclass' /* pm3 --> hf li iclass Recorded Activity (TraceLen = 162 bytes) Start | End | Src | Data (! denotes parity error) | CRC | Annotation | ------------|------------|-----|-----------------------------------------------------------------|-----|--------------------| 0 | 0 | Rdr |0a | | ACTALL 1280 | 1280 | Tag |bb! 33! bb! 01 02 04 08 bb! | ok | 1280 | 1280 | Rdr |0c | | IDENTIFY 1616 | 1616 | Tag |bb! 33! bb! 00! 02 00! 02 bb! | ok | 1616 | 1616 | Rdr |0a | | ACTALL 2336 | 2336 | Tag |bb! d4! bb! 02 08 00! 08 bb! | ok | 2336 | 2336 | Rdr |0c | | IDENTIFY 2448 | 2448 | Tag |bb! 33! bb! 00! 00! 00! 02 bb! | ok | 2448 | 2448 | Rdr |0a | | ACTALL 2720 | 2720 | Tag |bb! d4! bb! 08 0b 01 04 bb! | ok | 2720 | 2720 | Rdr |0c | | IDENTIFY 3232 | 3232 | Tag |bb! d4! bb! 02 02 08 04 bb! | ok | */ static void uart_debug(int error, int bit) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; // Look harder ;-) Demod.output[Demod.len] = Demod.buffer2 & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; } /* * CARD TO READER * in ISO15693-2 mode - Manchester * in ISO 14443b - BPSK coding * * Timings: * ISO 15693-2 * Tout = 330 µs, Tprog 1 = 4 to 15 ms, Tslot = 330 µs + (number of slots x 160 µs) * ISO 14443a * Tout = 100 µs, Tprog = 4 to 15 ms, Tslot = 100 µs+ (number of slots x 80 µs) * ISO 14443b Tout = 76 µs, Tprog = 4 to 15 ms, Tslot = 119 µs+ (number of slots x 150 µs) * * * So for current implementation in ISO15693, its 330 µs from end of reader, to start of card. */ static RAMFUNC int ManchesterDecoding_iclass(uint32_t v) { int bit; int modulation; int error = 0; bit = Demod.buffer; Demod.buffer = Demod.buffer2; Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; // too few bits? if (Demod.buff < 3) { Demod.buff++; return false; } if (Demod.state == DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if (bit & 0x08) Demod.syncBit = 0x08; if (bit & 0x04) { if (Demod.syncBit) bit <<= 4; Demod.syncBit = 0x04; } if (bit & 0x02) { if (Demod.syncBit) bit <<= 2; Demod.syncBit = 0x02; } if (bit & 0x01 && Demod.syncBit) Demod.syncBit = 0x01; if (Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.samples = 0; if (Demod.posCount) { switch (Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) Demod.state = DEMOD_UNSYNCD; } else { // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; uart_debug(error, bit); return false; } } } return false; } // state is DEMOD is in SYNC from here on. modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if (Demod.posCount == 0) { Demod.posCount = 1; Demod.sub = (modulation) ? SUB_FIRST_HALF : SUB_NONE; return false; } Demod.posCount = 0; if (modulation) { if (Demod.sub == SUB_FIRST_HALF) Demod.sub = SUB_BOTH; else Demod.sub = SUB_SECOND_HALF; } if (Demod.sub == SUB_NONE) { if (Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } } switch (Demod.state) { case DEMOD_START_OF_COMMUNICATION: if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_SOF_COMPLETE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; } break; case DEMOD_SOF_COMPLETE: case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if (Demod.len > 0 || Demod.bitCount > 0) { if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; } Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } if (Demod.bitCount >= 8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; Demod.bitCount = 0; Demod.shiftReg = 0; } if (error) { uart_debug(error, bit); return true; } return false; } //============================================================================= // Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= static void iclass_setup_sniff(void) { if (DBGLEVEL > 3) Dbprintf("iclass_setup_sniff Enter"); LEDsoff(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Set up the synchronous serial port FpgaSetupSsc(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); // Initialize Demod and Uart structs DemodInit(BigBuf_malloc(ICLASS_BUFFER_SIZE)); uart_init(BigBuf_malloc(ICLASS_BUFFER_SIZE)); //UartInit(BigBuf_malloc(ICLASS_BUFFER_SIZE)); if (DBGLEVEL > 1) { // Print debug information about the buffer sizes Dbprintf("[+] Sniffing buffers initialized:"); Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); Dbprintf(" Reader -> tag: %i bytes", ICLASS_BUFFER_SIZE); Dbprintf(" tag -> Reader: %i bytes", ICLASS_BUFFER_SIZE); Dbprintf(" DMA: %i bytes", ICLASS_DMA_BUFFER_SIZE); } // Set FPGA in the appropriate mode // put the FPGA in the appropriate mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SpinDelay(200); // Start the SSP timer StartCountSspClk(); LED_A_ON(); if (DBGLEVEL > 3) Dbprintf("[+] iclass_setup_sniff Exit"); } //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- // turn off afterwards void RAMFUNC SniffIClass(void) { //int datalen = 0; uint32_t previous_data = 0; uint32_t time_0 = 0, time_start = 0, time_stop; uint32_t sniffCounter = 0; bool TagIsActive = false; bool ReaderIsActive = false; iclass_setup_sniff(); // The DMA buffer, used to stream samples from the FPGA // *dmaBuf is the start reference. uint8_t *dmaBuf = BigBuf_malloc(ICLASS_DMA_BUFFER_SIZE); // pointer to samples from fpga uint8_t *data = dmaBuf; // Setup and start DMA. if (!FpgaSetupSscDma(dmaBuf, ICLASS_DMA_BUFFER_SIZE)) { if (DBGLEVEL > 1) DbpString("[-] FpgaSetupSscDma failed. Exiting"); return; } // time ZERO, the point from which it all is calculated. time_0 = GetCountSspClk(); int divi = 0; uint8_t tag_byte = 0, foo = 0; // loop and listen // every sample (1byte in data), // contains HIGH nibble = reader data // contains LOW nibble = tag data // so two bytes are needed in order to get 1byte of either reader or tag data. (ie 2 sample bytes) // since reader data is manchester encoded, we need 2bytes of data in order to get one demoded byte. (ie: 4 sample bytes) uint16_t checked = 0; for (;;) { WDT_HIT(); if (checked == 1000) { if (BUTTON_PRESS() || data_available()) break; checked = 0; } else { checked++; } previous_data <<= 8; previous_data |= *data; sniffCounter++; data++; if (data == dmaBuf + ICLASS_DMA_BUFFER_SIZE) { data = dmaBuf; AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RNCR = ICLASS_DMA_BUFFER_SIZE; } if (*data & 0xF) { //tag_byte <<= 1; tag_byte ^= (1 << 4); foo ^= (1 << (3 - divi)); Dbprintf(" %d|%x == %d|%x", tag_byte, tag_byte, foo, foo); } divi++; // every odd sample if (sniffCounter & 0x01) { // no need to try decoding reader data if the tag is sending // READER TO CARD if (!TagIsActive) { LED_C_INV(); // HIGH nibble is always reader data. uint8_t reader_byte = (previous_data & 0xF0) | (*data >> 4); uart_samples(reader_byte); if (Uart.frame_done) { time_stop = GetCountSspClk() - time_0; LogTrace(Uart.buf, Uart.len, time_start, time_stop, NULL, true); DemodReset(); uart_reset(); } else { time_start = GetCountSspClk() - time_0; } ReaderIsActive = Uart.frame_done; } } // every four sample if ((sniffCounter % 4) == 0) { // need two samples to feed Manchester // no need to try decoding tag data if the reader is sending - and we cannot afford the time // CARD TO READER if (!ReaderIsActive) { LED_C_INV(); // LOW nibble is always tag data. /* uint32_t tag_byte = ((previous_data & 0x0F000000) >> 8 ) | ((previous_data & 0x000F0000) >> 4 ) | ((previous_data & 0x00000F00) ) | ((previous_data & 0x0000000F) << 4 ) | (*data & 0xF); */ //uint8_t tag_byte = ((previous_data & 0xF) << 4 ) | (*data & 0xF); if (ManchesterDecoding_iclass(foo)) { time_stop = GetCountSspClk() - time_0; LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, false); DemodReset(); uart_reset(); } else { time_start = GetCountSspClk() - time_0; } TagIsActive = (Demod.state != DEMOD_UNSYNCD); } tag_byte = 0; foo = 0; divi = 0; } } // end main loop if (DBGLEVEL >= 1) { DbpString("[+] Sniff statistics:"); Dbhexdump(ICLASS_DMA_BUFFER_SIZE, data, false); } switch_off(); } void rotateCSN(uint8_t *originalCSN, uint8_t *rotatedCSN) { int i; for (i = 0; i < 8; i++) rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i + 1) % 8] << 5); } //----------------------------------------------------------------------------- // SIMULATION // Wait for commands from reader // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- static bool GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); uart_init(received); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void)b; uint16_t checked = 0; for (;;) { WDT_HIT(); if (checked == 1000) { if (BUTTON_PRESS() || data_available()) return false; checked = 0; } else { checked++; } // keep tx buffer in a defined state anyway. if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) AT91C_BASE_SSC->SSC_THR = 0x00; // wait for byte to become available in rx holding register if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; uart_samples(b); if (Uart.frame_done) { *len = Uart.len; return true; } } } return false; } static uint8_t encode4Bits(const uint8_t b) { // OTA, the least significant bits first // Manchester encoding added // The columns are // 1 - Bit value to send // 2 - Reversed (big-endian) // 3 - Machester Encoded // 4 - Hex values uint8_t c = b & 0xF; switch (c) { // 1 2 3 4 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa } } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us * * 24 pulses of 423.75 kHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * * * EOF comprises 3 parts: * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated * time of 18.88us. * - 24 pulses of fc/32 * - An unmodulated time of 56.64 us * * * A logic 0 starts with 8 pulses of fc/32 * followed by an unmodulated time of 256/fc (~18,88us). * * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by * 8 pulses of fc/32 (also 18.88us) * * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, * works like this. * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us * * In this mode * SOF can be written as 00011101 = 0x1D * EOF can be written as 10111000 = 0xb8 * logic 1 be written as 01 = 0x1 * logic 0 be written as 10 = 0x2 * * */ ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; int i; for (i = 0; i < len; i++) { uint8_t b = cmd[i]; ToSend[++ToSendMax] = encode4Bits(b & 0xF); // least significant half ToSend[++ToSendMax] = encode4Bits((b >> 4) & 0xF); // most significant half } // Send EOF ToSend[++ToSendMax] = 0xB8; //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end // Convert from last byte pos to length ToSendMax++; } // Only SOF static void CodeIClassTagSOF() { //So far a dummy implementation, not used //int lastProxToAirDuration =0; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning // Convert from last byte pos to length ToSendMax++; } /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ // turn off afterwards void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { if (DBGLEVEL > 3) Dbprintf("[+] iClass_simulate Enter"); LEDsoff(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // this will clear out bigbuf memory, the eload command must select this before! FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaSetupSsc(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Enable and clear the trace clear_trace(); set_tracing(true); uint32_t simType = arg0; uint32_t numberOfCSNS = arg1; //Use the emulator memory for SIM uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t mac_responses[PM3_CMD_DATA_SIZE] = { 0 }; if (simType == 0) { // Use the CSN from commandline memcpy(emulator, datain, 8); doIClassSimulation(MODE_SIM_CSN, NULL); } else if (simType == 1) { //Default CSN uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; // Use the CSN from commandline memcpy(emulator, csn_crc, 8); doIClassSimulation(MODE_SIM_CSN, NULL); } else if (simType == 2) { Dbprintf("[+] going into attack mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. #define EPURSE_MAC_SIZE 16 int i = 0; for (; i < numberOfCSNS && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) { // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. memcpy(emulator, datain + (i * 8), 8); if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) { // Button pressed reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE); goto out; } } reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE); } else if (simType == 3) { //This is 'full sim' mode, where we use the emulator storage for data. //ie: BigBuf_get_EM_addr should be previously filled with data from the "eload" command doIClassSimulation(MODE_FULLSIM, NULL); } else if (simType == 4) { // This is the KEYROLL version of sim 2. // the collected data (mac_response) is doubled out since we are trying to collect both keys in the keyroll process. // Keyroll iceman 9 csns * 8 * 2 = 144 // keyroll CARL55 15csns * 8 * 2 = 15 * 8 * 2 = 240 Dbprintf("[+] going into attack keyroll mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. // keyroll mode, reader swaps between old key and new key alternatively when fail a authentication. // attack below is same as SIM 2, but we run the CSN twice to collected the mac for both keys. int i = 0; // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. iceman fork uses 9 CSNS for (; i < numberOfCSNS && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) { memcpy(emulator, datain + (i * 8), 8); // keyroll 1 if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) { reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); // Button pressed goto out; } // keyroll 2 if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + (i + numberOfCSNS) * EPURSE_MAC_SIZE)) { reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); // Button pressed goto out; } } // double the amount of collected data. reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); } else { // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. DbpString("[-] the mode is not implemented, reserved for future use"); } out: switch_off(); BigBuf_free_keep_EM(); } /** * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); State cipher_state; uint8_t *csn = BigBuf_get_EM_addr(); uint8_t *emulator = csn; uint8_t sof_data[] = { 0x0F} ; // CSN followed by two CRC bytes uint8_t anticoll_data[10] = { 0 }; uint8_t csn_data[10] = { 0 }; memcpy(csn_data, csn, sizeof(csn_data)); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs AddCrc(anticoll_data, 8); AddCrc(csn_data, 8); uint8_t diversified_key[8] = { 0 }; // e-Purse uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; //uint8_t card_challenge_data[8] = { 0 }; if (simulationMode == MODE_FULLSIM) { //The diversified key should be stored on block 3 //Get the diversified key from emulator memory memcpy(diversified_key, emulator + (8 * 3), 8); //Card challenge, a.k.a e-purse is on block 2 memcpy(card_challenge_data, emulator + (8 * 2), 8); //Precalculate the cipher state, feeding it the CC cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key); } // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } int exitLoop = 0; // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response; int modulated_response_size = 0; uint8_t *trace_data = NULL; int trace_data_size = 0; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(2); int resp_sof_Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(28); int resp_anticoll_len; // CSN // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(28); int resp_csn_len; // configuration picopass 2ks uint8_t *resp_conf = BigBuf_malloc(28); int resp_conf_len; uint8_t conf_data[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; AddCrc(conf_data, 8); // e-Purse // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp_cc = BigBuf_malloc(28); int resp_cc_len; // Application Issuer Area uint8_t *resp_aia = BigBuf_malloc(28); int resp_aia_len; uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AddCrc(aia_data, 8); // receive command uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); int len = 0; // Prepare card messages ToSendMax = 0; // First card answer: SOF CodeIClassTagSOF(); memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; // Anticollision CSN CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; // CSN CodeIClassTagAnswer(csn_data, sizeof(csn_data)); memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; // Configuration CodeIClassTagAnswer(conf_data, sizeof(conf_data)); memcpy(resp_conf, ToSend, ToSendMax); resp_conf_len = ToSendMax; // e-Purse CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; // Application Issuer Area CodeIClassTagAnswer(aia_data, sizeof(aia_data)); memcpy(resp_aia, ToSend, ToSendMax); resp_aia_len = ToSendMax; //This is used for responding to READ-block commands or other data which is dynamically generated //First the 'trace'-data, not encoded for FPGA uint8_t *data_generic_trace = BigBuf_malloc((8 * 4) + 2);//8 bytes data + 2byte CRC is max tag answer //Then storage for the modulated data //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) uint8_t *data_response = BigBuf_malloc(((8 * 4) + 2) * 2 + 2); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); SpinDelay(100); StartCountSspClk(); // To control where we are in the protocol uint32_t time_0 = GetCountSspClk(); uint32_t t2r_stime = 0, t2r_etime = 0; uint32_t r2t_stime, r2t_etime = 0; LED_A_ON(); bool buttonPressed = false; while (!exitLoop) { WDT_HIT(); //Signal tracer, can be used to get a trigger for an oscilloscope.. LED_B_OFF(); LED_C_OFF(); r2t_stime = (GetCountSspClk() - time_0) << 4; if (!GetIClassCommandFromReader(receivedCmd, &len, 0)) { buttonPressed = true; exitLoop = true; continue; } r2t_etime = ((GetCountSspClk() - time_0) << 4) - r2t_stime; // 330us normal wait, adjusted for our execution LED_C_ON(); //Signal tracer if (receivedCmd[0] == ICLASS_CMD_ACTALL) { // 0x0A // Reader in anticollission phase modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; trace_data = sof_data; trace_data_size = sizeof(sof_data); // adjusted for 330 + (160*num of slot) goto send; } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY) { // 0x0C if (len == 1) { // Reader asks for anticollission CSN modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); goto send; } if (len == 4) { // block0,1,2,5 is always readable. switch (receivedCmd[1]) { case 0: // csn (0c 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); break; case 1: // configuration (0c 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_data; trace_data_size = sizeof(conf_data); break; case 2: // e-purse (0c 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } break; case 5:// Application Issuer Area (0c 05) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); break; default: break; } goto send; } } else if (receivedCmd[0] == ICLASS_CMD_SELECT) { // 0x81 // Reader selects anticollission CSN. // Tag sends the corresponding real CSN modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; trace_data = csn_data; trace_data_size = sizeof(csn_data); goto send; } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { // 0x88 // Read e-purse (88 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); LED_B_ON(); goto send; } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KC) { // 0x18 // Read e-purse (18 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); LED_B_ON(); goto send; } else if (receivedCmd[0] == ICLASS_CMD_CHECK) { // 0x05 // Reader random and reader MAC!!! if (simulationMode == MODE_FULLSIM) { // NR, from reader, is in receivedCmd +1 opt_doTagMAC_2(cipher_state, receivedCmd + 1, data_generic_trace, diversified_key); trace_data = data_generic_trace; trace_data_size = 4; CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } else { // Not fullsim, we don't respond // We do not know what to answer, so lets keep quiet modulated_response = resp_sof; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; if (simulationMode == MODE_EXIT_AFTER_MAC) { if (DBGLEVEL == DBG_EXTENDED) { Dbprintf("[+] CSN: %02x %02x %02x %02x %02x %02x %02x %02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); Dbprintf("[+] RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); } else { Dbprintf("[+] CSN: %02x .... %02x OK", csn[0], csn[7]); } if (reader_mac_buf != NULL) { memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); } exitLoop = true; } } goto send; } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { // Reader ends the session modulated_response = resp_sof; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; goto send; } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // 0x0C //Read block uint8_t blk = receivedCmd[1]; //Take the data... memcpy(data_generic_trace, emulator + (blk << 3), 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; goto send; } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 //Read block uint8_t blk = receivedCmd[1]; //Take the data... memcpy(data_generic_trace, emulator + (blk << 3), 8 * 4); AddCrc(data_generic_trace, 8 * 4); trace_data = data_generic_trace; trace_data_size = 34; CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; goto send; } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_UPDATE) { //Probably the reader wants to update the nonce. Let's just ignore that for now. // OBS! If this is implemented, don't forget to regenerate the cipher_state //We're expected to respond with the data+crc, exactly what's already in the receivedcmd //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| //Take the data... memcpy(data_generic_trace, receivedCmd + 2, 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; // response_delay = 4600 * 1.5; // tPROG 4-15ms goto send; // } else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) { // 0x84 //Pagesel //Pagesel enables to select a page in the selected chip memory and return its configuration block //Chips with a single page will not answer to this command // It appears we're fine ignoring this. //Otherwise, we should answer 8bytes (block) + 2bytes CRC // } else if(receivedCmd[0] == ICLASS_CMD_DETECT) { // 0x0F } else { //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 // Never seen this command before if (DBGLEVEL == DBG_EXTENDED) print_result("[-] Unhandled command received ", receivedCmd, len); // Do not respond modulated_response = resp_sof; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; } send: /** A legit tag has about 330us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { t2r_stime = (GetCountSspClk() - time_0) << 4; SendIClassAnswer(modulated_response, modulated_response_size, 0); t2r_etime = ((GetCountSspClk() - time_0) << 4) - t2r_stime; } LogTrace(receivedCmd, len, r2t_stime, r2t_etime, NULL, true); if (trace_data != NULL) LogTrace(trace_data, trace_data_size, t2r_stime, t2r_etime, NULL, false); } LEDsoff(); if (buttonPressed) DbpString("[+] button pressed"); return buttonPressed; } /** * @brief sends our simulated tag answer * @param resp * @param respLen * @param delay */ static int SendIClassAnswer(uint8_t *resp, int respLen, uint16_t delay) { int i = 0; volatile uint8_t b; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); AT91C_BASE_SSC->SSC_THR = 0x00; uint16_t checked = 0; for (;;) { if (checked == 1000) { if (BUTTON_PRESS() || data_available()) return 0; checked = 0; } else { checked++; } // Prevent rx holding register from overflowing if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) { b = AT91C_BASE_SSC->SSC_RHR; (void) b; } // Put byte into tx holding register as soon as it is ready if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { b = 0x00; if (i < respLen) { b = resp[i]; //Hack //b = 0xAC; } i++; AT91C_BASE_SSC->SSC_THR = b; } // if (i > respLen + 4) break; if (i > respLen + 1) break; } return 0; } /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { int c = 0; volatile uint32_t b; bool firstpart = true; uint8_t sendbyte; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; // make sure we timeout previous comms. if (*wait) SpinDelayUs(*wait); for (;;) { WDT_HIT(); // Put byte into tx holding register as soon as it is ready if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // DOUBLE THE SAMPLES! if (firstpart) { sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); } else { sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); c++; } if (sendbyte == 0xff) sendbyte = 0xfe; AT91C_BASE_SSC->SSC_THR = sendbyte; firstpart = !firstpart; if (c >= len) break; } // Prevent rx holding register from overflowing if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { b = AT91C_BASE_SSC->SSC_RHR; (void)b; } } if (samples) { if (wait) *samples = (c + *wait) << 3; else *samples = c << 3; } } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- void CodeIClassCommand(const uint8_t *cmd, int len) { int i, j, k; ToSendReset(); // (SOC) Start of Communication: 1 out of 4 ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x0f; ToSend[++ToSendMax] = 0x00; // Modulate the bytes for (i = 0; i < len; i++) { uint8_t b = cmd[i]; for (j = 0; j < 4; j++) { for (k = 0; k < 4; k++) { if (k == (b & 3)) ToSend[++ToSendMax] = 0xf0; else ToSend[++ToSendMax] = 0x00; } b >>= 2; } } // (EOC) End of Communication ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; // Convert from last character reference to length ToSendMax++; } void ReaderTransmitIClass_ext(uint8_t *frame, int len, int wait) { int samples = 0; // This is tied to other size changes CodeIClassCommand(frame, len); // Select the card TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); if (trigger) LED_A_ON(); rsamples += samples; LogTrace(frame, len, rsamples, rsamples, NULL, true); } void ReaderTransmitIClass(uint8_t *frame, int len) { ReaderTransmitIClass_ext(frame, len, 330); } //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { // buffer needs to be 512 bytes // maxLen is not used... int c = 0; bool skip = false; // Setup UART/DEMOD to receive DemodInit(receivedResponse); if (elapsed) *elapsed = 0; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); SpinDelayUs(320); //310 Tout= 330us (iso15603-2) (330/21.3) take consideration for clock increments. // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void)b; uint16_t checked = 0; for (;;) { WDT_HIT(); if (checked == 1000) { if (BUTTON_PRESS() || data_available()) return false; checked = 0; } else { checked++; } // keep tx buffer in a defined state anyway. if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed)(*elapsed)++; } // Wait for byte be become available in rx holding register if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if (c >= timeout) return false; c++; b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; if (skip) continue; if (ManchesterDecoding_iclass(b & 0x0f)) { if (samples) *samples = c << 3; return true; } } } return false; } int ReaderReceiveIClass(uint8_t *receivedAnswer) { int samples = 0; if (!GetIClassAnswer(receivedAnswer, 0, &samples, NULL)) return false; rsamples += samples; LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, NULL, false); if (samples == 0) return false; return Demod.len; } void setupIclassReader() { LEDsoff(); // Start from off (no field generated) // Signal field is off with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaSetupSsc(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); clear_trace(); set_tracing(true); // Now give it time to spin up. // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(300); StartCountSspClk(); LED_A_ON(); } bool sendCmdGetResponseWithRetries(uint8_t *command, size_t cmdsize, uint8_t *resp, uint8_t expected_size, uint8_t retries) { while (retries-- > 0) { ReaderTransmitIClass(command, cmdsize); //iceman - if received size is bigger than expected, we smash the stack here // since its called with fixed sized arrays uint8_t got_n = ReaderReceiveIClass(resp); // 0xBB is the internal debug separator byte.. if (expected_size != got_n || (resp[0] == 0xBB || resp[7] == 0xBB || resp[2] == 0xBB)) { //try again continue; } if (got_n == expected_size) return true; } return false; } /** * @brief Talks to an iclass tag, sends the commands to get CSN and CC. * @param card_data where the CSN and CC are stored for return * @return 0 = fail * 1 = Got CSN * 2 = Got CSN and CC */ uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) { // act_all... static uint8_t act_all[] = { ICLASS_CMD_ACTALL }; static uint8_t identify[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x00, 0x73, 0x33 }; static uint8_t select[] = { ICLASS_CMD_SELECT, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 }; if (use_credit_key) readcheck_cc[0] = ICLASS_CMD_READCHECK_KC; uint8_t resp[ICLASS_BUFFER_SIZE] = {0}; uint8_t read_status = 0; // Send act_all ReaderTransmitIClass_ext(act_all, 1, 330 + 160); // Card present? if (!ReaderReceiveIClass(resp)) return read_status;//Fail //Send Identify ReaderTransmitIClass(identify, 1); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC uint8_t len = ReaderReceiveIClass(resp); if (len != 10) return read_status;//Fail //Copy the Anti-collision CSN to our select-packet memcpy(&select[1], resp, 8); //Select the card ReaderTransmitIClass(select, sizeof(select)); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC len = ReaderReceiveIClass(resp); if (len != 10) return read_status;//Fail //Success - level 1, we got CSN //Save CSN in response data memcpy(card_data, resp, 8); //Flag that we got to at least stage 1, read CSN read_status = 1; // Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC) // ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); // if (ReaderReceiveIClass(resp) == 8) { // //Save CC (e-purse) in response data // memcpy(card_data+8, resp, 8); // read_status++; // } bool isOK = sendCmdGetResponseWithRetries(readcheck_cc, sizeof(readcheck_cc), resp, 8, 3); if (!isOK) return read_status; //Save CC (e-purse) in response data memcpy(card_data + 8, resp, 8); read_status++; return read_status; } uint8_t handshakeIclassTag(uint8_t *card_data) { return handshakeIclassTag_ext(card_data, false); } // Reader iClass Anticollission // turn off afterwards void ReaderIClass(uint8_t arg0) { uint8_t card_data[6 * 8] = {0}; uint8_t last_csn[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint8_t resp[ICLASS_BUFFER_SIZE]; memset(card_data, 0xFF, sizeof(card_data)); memset(resp, 0xFF, sizeof(resp)); //Read conf block CRC(0x01) => 0xfa 0x22 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; //Read App Issuer Area block CRC(0x05) => 0xde 0x64 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; uint16_t tryCnt = 0; bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; // flag to read until one tag is found successfully bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; // flag to not to loop continuously, looking for tag bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; // flag to use credit key bool flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; // flag to read block1, configuration bool flagReadCC = arg0 & FLAG_ICLASS_READER_CC; // flag to read block2, e-purse bool flagReadAIA = arg0 & FLAG_ICLASS_READER_AIA; // flag to read block5, application issuer area setupIclassReader(); uint16_t checked = 0; bool userCancelled = BUTTON_PRESS() || data_available(); while (!userCancelled) { WDT_HIT(); // if only looking for one card try 2 times if we missed it the first time if (try_once && tryCnt > 2) { if (DBGLEVEL > 1) DbpString("Failed to find a tag"); break; } tryCnt++; uint8_t result_status = 0; int read_status = handshakeIclassTag_ext(card_data, use_credit_key); if (read_status == 0) continue; if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; // handshakeIclass returns CSN|CC, but the actual block // layout is CSN|CONFIG|CC, so here we reorder the data, // moving CC forward 8 bytes memcpy(card_data + 16, card_data + 8, 8); //Read block 1, config if (flagReadConfig) { if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 5)) { result_status |= FLAG_ICLASS_READER_CONF; memcpy(card_data + 8, resp, 8); } else { if (DBGLEVEL > 1) DbpString("Failed to dump config block"); } } //Read block 5, AIA if (flagReadAIA) { if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 5)) { result_status |= FLAG_ICLASS_READER_AIA; memcpy(card_data + (8 * 5), resp, 8); } else { if (DBGLEVEL > 1) DbpString("Failed to dump AA block"); } } // 0 : CSN // 1 : Configuration // 2 : e-purse // 3 : kd / debit / aa2 (write-only) // 4 : kc / credit / aa1 (write-only) // 5 : AIA, Application issuer area // //Then we can 'ship' back the 6 * 8 bytes of data, // with 0xFF:s in block 3 and 4. LED_B_ON(); //Send back to client, but don't bother if we already sent this - // only useful if looping in arm (not try_once && not abort_after_read) if (memcmp(last_csn, card_data, 8) != 0) { // If caller requires that we get Conf, CC, AA, continue until we got it if (DBGLEVEL >= DBG_EXTENDED) { Dbprintf("STATUS %02X | CSN %c | CONF %c | CC %c | AIA %c | ONCE %c | 1TRY %c", result_status, (result_status & FLAG_ICLASS_READER_CSN) ? 'Y' : 'N', (result_status & FLAG_ICLASS_READER_CONF) ? 'Y' : 'N', (result_status & FLAG_ICLASS_READER_CC) ? 'Y' : 'N', (result_status & FLAG_ICLASS_READER_AIA) ? 'Y' : 'N' ); Dbprintf(" aar %c | to %c, | uc %c | frc %c | fra %c | cc %c", abort_after_read ? 'Y' : 'N', try_once ? 'Y' : 'N', use_credit_key ? 'Y' : 'N', flagReadConfig ? 'Y' : 'N', flagReadAIA ? 'Y' : 'N', flagReadCC ? 'Y' : 'N' ); } bool send = (result_status & FLAG_ICLASS_READER_CSN); if (flagReadCC) send |= (result_status & FLAG_ICLASS_READER_CC); if (flagReadAIA) send |= (result_status & FLAG_ICLASS_READER_AIA); if (flagReadConfig) send |= (result_status & FLAG_ICLASS_READER_CONF); if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("SEND %c", send ? 'y' : 'n'); if (send) { reply_old(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); if (abort_after_read) { LED_B_OFF(); return; } //Save that we already sent this.... memcpy(last_csn, card_data, 8); } } LED_B_OFF(); if (checked == 1000) { userCancelled = BUTTON_PRESS() || data_available(); checked = 0; } else { checked++; } } if (userCancelled) { reply_old(CMD_ACK, 0xFF, 0, 0, card_data, 0); switch_off(); } else { reply_old(CMD_ACK, 0, 0, 0, card_data, 0); } } // turn off afterwards void ReaderIClass_Replay(uint8_t arg0, uint8_t *mac) { uint8_t cardsize = 0; uint8_t mem = 0; uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; uint8_t card_data[PM3_CMD_DATA_SIZE] = {0}; uint8_t resp[ICLASS_BUFFER_SIZE] = {0}; static struct memory_t { int k16; int book; int k2; int lockauth; int keyaccess; } memory; setupIclassReader(); while (!BUTTON_PRESS()) { WDT_HIT(); uint8_t read_status = handshakeIclassTag(card_data); if (read_status < 2) continue; //for now replay captured auth (as cc not updated) memcpy(check + 5, mac, 4); if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) { DbpString("Error: Authentication Fail!"); continue; } //first get configuration block (block 1) read[1] = 1; AddCrc(read + 1, 1); if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 5)) { DbpString("Dump config (block 1) failed"); continue; } mem = resp[5]; memory.k16 = (mem & 0x80); memory.book = (mem & 0x20); memory.k2 = (mem & 0x8); memory.lockauth = (mem & 0x2); memory.keyaccess = (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data memset(card_data, 0x0, PM3_CMD_DATA_SIZE); uint8_t failedRead = 0; uint32_t stored_data_length = 0; //then loop around remaining blocks for (uint16_t block = 0; block < cardsize; block++) { read[1] = block; AddCrc(read + 1, 1); if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 5)) { Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7] ); //Fill up the buffer memcpy(card_data + stored_data_length, resp, 8); stored_data_length += 8; if (stored_data_length + 8 > PM3_CMD_DATA_SIZE) { //Time to send this off and start afresh reply_old(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length ); //reset stored_data_length = 0; failedRead = 0; } } else { failedRead = 1; stored_data_length += 8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data if (stored_data_length > 0) { reply_old(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length ); } //If we got here, let's break break; } //Signal end of transmission reply_old(CMD_ACK, 0,//data length 0,//Failed blocks? 0,//Not used ATM card_data, 0 ); switch_off(); } // not used. ?!? ( CMD_HF_ICLASS_READCHECK) // turn off afterwards void iClass_ReadCheck(uint8_t blockno, uint8_t keytype) { uint8_t readcheck[] = { keytype, blockno }; uint8_t resp[] = {0, 0, 0, 0, 0, 0, 0, 0}; size_t isOK = 0; isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); reply_mix(CMD_ACK, isOK, 0, 0, 0, 0); switch_off(); } // used with function select_and_auth (cmdhficlass.c) // which needs to authenticate before doing more things like read/write void iClass_Authentication(uint8_t *mac) { uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; // copy MAC to check command (readersignature) check[5] = mac[0]; check[6] = mac[1]; check[7] = mac[2]; check[8] = mac[3]; //memcpy(check+5, mac, 4); // 6 retries bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); reply_mix(CMD_ACK, isOK, 0, 0, 0, 0); } typedef struct iclass_premac { uint8_t mac[4]; } iclass_premac_t; /* this function works on the following assumptions. * - one select first, to get CSN / CC (e-purse) * - calculate before diversified keys and precalc mac based on CSN/KEY. * - data in contains of diversified keys, mac * - key loop only test one type of authtication key. Ie two calls needed * to cover debit and credit key. (AA1/AA2) */ void iClass_Authentication_fast(uint64_t arg0, uint64_t arg1, uint8_t *datain) { uint8_t i = 0, isOK = 0; uint8_t lastChunk = ((arg0 >> 8) & 0xFF); bool use_credit_key = ((arg0 >> 16) & 0xFF); uint8_t keyCount = arg1 & 0xFF; uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 }; if (use_credit_key) readcheck_cc[0] = ICLASS_CMD_READCHECK_KC; // select card / e-purse uint8_t card_data[6 * 8] = {0}; iclass_premac_t *keys = (iclass_premac_t *)datain; LED_A_ON(); switch_off(); SpinDelay(20); setupIclassReader(); uint16_t checked = 0; int read_status = 0; uint8_t startup_limit = 10; while (read_status != 2) { if (checked == 1000) { if (BUTTON_PRESS() || !data_available()) goto out; checked = 0; } else { checked++; } read_status = handshakeIclassTag_ext(card_data, use_credit_key); if (startup_limit-- == 0) { Dbprintf("[-] Handshake status | %d (fail 10)", read_status); isOK = 99; goto out; } }; // since handshakeIclassTag_ext call sends s readcheck, we start with sending first response. // Keychunk loop for (i = 0; i < keyCount; i++) { // Allow button press / usb cmd to interrupt device if (checked == 1000) { if (BUTTON_PRESS() || !data_available()) goto out; checked = 0; } else { checked++; } WDT_HIT(); LED_B_ON(); // copy MAC to check command (readersignature) check[5] = keys[i].mac[0]; check[6] = keys[i].mac[1]; check[7] = keys[i].mac[2]; check[8] = keys[i].mac[3]; // expect 4bytes, 3 retries times.. isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 3); if (isOK) goto out; SpinDelayUs(400); //iClass (iso15693-2) should timeout after 330us. // Auth Sequence MUST begin with reading e-purse. (block2) // Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC) ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); LED_B_OFF(); } out: // send keyindex. reply_mix(CMD_ACK, isOK, i, 0, 0, 0); if (isOK >= 1 || lastChunk) { switch_off(); LED_A_OFF(); } LED_B_OFF(); LED_C_OFF(); } // Tries to read block. // retries 10times. bool iClass_ReadBlock(uint8_t blockno, uint8_t *data, uint8_t len) { uint8_t resp[10]; uint8_t cmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00}; AddCrc(cmd + 1, 1); // expect size 10, retry 5times bool isOK = sendCmdGetResponseWithRetries(cmd, sizeof(cmd), resp, 10, 5); memcpy(data, resp, len); return isOK; } // turn off afterwards // readblock 8 + 2. only want 8. void iClass_ReadBlk(uint8_t blockno) { uint8_t data[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; bool isOK = iClass_ReadBlock(blockno, data, sizeof(data)); reply_mix(CMD_ACK, isOK, 0, 0, data, sizeof(data)); switch_off(); } // turn off afterwards void iClass_Dump(uint8_t blockno, uint8_t numblks) { uint8_t blockdata[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; bool isOK = false; uint8_t blkCnt = 0; BigBuf_free(); uint8_t *dataout = BigBuf_malloc(255 * 8); if (dataout == NULL) { DbpString("[!] out of memory"); OnError(1); return; } // fill mem with 0xFF memset(dataout, 0xFF, 255 * 8); for (; blkCnt < numblks; blkCnt++) { isOK = iClass_ReadBlock(blockno + blkCnt, blockdata, sizeof(blockdata)); // 0xBB is the internal debug separator byte.. if (!isOK || (blockdata[0] == 0xBB || blockdata[7] == 0xBB || blockdata[2] == 0xBB)) { //try again isOK = iClass_ReadBlock(blockno + blkCnt, blockdata, sizeof(blockdata)); if (!isOK) { Dbprintf("[!] block %02X failed to read", blkCnt + blockno); break; } } memcpy(dataout + (blkCnt * 8), blockdata, 8); } //return pointer to dump memory in arg3 reply_mix(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); switch_off(); BigBuf_free(); } bool iClass_WriteBlock_ext(uint8_t blockno, uint8_t *data) { uint8_t resp[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t write[] = { ICLASS_CMD_UPDATE, blockno, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(write + 2, data, 12); // data + mac AddCrc(write + 1, 13); bool isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 5); if (isOK) { //if reader responded correctly //if response is not equal to write values if (memcmp(write + 2, resp, 8)) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) if (blockno != 3 && blockno != 4) { isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 5); } } } return isOK; } // turn off afterwards void iClass_WriteBlock(uint8_t blockno, uint8_t *data) { bool isOK = iClass_WriteBlock_ext(blockno, data); reply_mix(CMD_ACK, isOK, 0, 0, 0, 0); switch_off(); } // turn off afterwards void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { int i, written = 0; int total_block = (endblock - startblock) + 1; for (i = 0; i < total_block; i++) { // block number if (iClass_WriteBlock_ext(i + startblock, data + (i * 12))) { Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { if (iClass_WriteBlock_ext(i + startblock, data + (i * 12))) { Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { Dbprintf("Write block [%02x] failed", i + startblock); } } } if (written == total_block) DbpString("Clone complete"); else DbpString("Clone incomplete"); reply_mix(CMD_ACK, 1, 0, 0, 0, 0); switch_off(); }