//----------------------------------------------------------------------------- // Jonathan Westhues, Aug 2005 // Gerhard de Koning Gans, April 2008, May 2011 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Definitions internal to the app source. //----------------------------------------------------------------------------- #ifndef __APPS_H #define __APPS_H #ifdef __cplusplus extern "C" { #endif #include #include #include "common.h" #include "usb_cdc.h" #include "crc32.h" #include "lfdemod.h" #include "BigBuf.h" #include "fpgaloader.h" #include "hitag2.h" #include "hitagS.h" #include "mifare.h" #include "pcf7931.h" #include "desfire.h" #include "iso14443b.h" #include "Standalone/standalone.h" #include "flashmem.h" extern const uint8_t OddByteParity[256]; extern int rsamples; // = 0; extern uint8_t trigger; // This may be used (sparingly) to declare a function to be copied to // and executed from RAM #define RAMFUNC __attribute((long_call, section(".ramfunc"))) /// appmain.h void ReadMem(int addr); void __attribute__((noreturn)) AppMain(void); //void DbpIntegers(int a, int b, int c); void DbpString(char *str); void DbpStringEx(uint32_t flags, char *str); void Dbprintf(const char *fmt, ...); void DbprintfEx(uint32_t flags, const char *fmt, ...); void Dbhexdump(int len, uint8_t *d, bool bAsci); // ADC Vref = 3300mV, and an (10M+1M):1M voltage divider on the HF input can measure voltages up to 36300 mV #define MAX_ADC_HF_VOLTAGE 36300 // ADC Vref = 3300mV, (240k-10M):240k voltage divider, 140800 mV #define MAX_ADC_HF_VOLTAGE_RDV40 140800 // ADC Vref = 3300mV, and an (10000k+240k):240k voltage divider on the LF input can measure voltages up to 140800 mV #define MAX_ADC_LF_VOLTAGE 140800 uint16_t AvgAdc(int ch); void print_result(char *name, uint8_t *buf, size_t len); //void PrintToSendBuffer(void); void ToSendStuffBit(int b); void ToSendReset(void); void ListenReaderField(uint8_t limit); extern int ToSendMax; extern uint8_t ToSend[]; void StandAloneMode(void); void printStandAloneModes(void); /// lfops.h extern uint8_t decimation; extern uint8_t bits_per_sample ; extern bool averaging; void AcquireRawAdcSamples125k(int divisor); void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command); void ReadTItag(void); void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc); void AcquireTiType(void); void AcquireRawBitsTI(void); void SimulateTagLowFrequencyEx(int period, int gap, bool ledcontrol, int numcycles); void SimulateTagLowFrequency(int period, int gap, bool ledcontrol); void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen); void CmdHIDsimTAGEx(uint32_t hi, uint32_t lo, bool ledcontrol, int numcycles); void CmdHIDsimTAG(uint32_t hi, uint32_t lo, bool ledcontrol); void CmdFSKsimTAG(uint8_t fchigh, uint8_t fclow, uint8_t separator, uint8_t clk, uint16_t bitslen, uint8_t *bits, bool ledcontrol); void CmdASKsimTAG(uint8_t encoding, uint8_t invert, uint8_t separator, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol); void CmdPSKsimTag(uint8_t carrier, uint8_t invert, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol); void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol); void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol); // Realtime demodulation mode for AWID26 void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol); void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol); void CopyIOtoT55x7(uint32_t hi, uint32_t lo); // Clone an ioProx card to T5557/T5567 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT); // Clone an HID card to T5557/T5567 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5); void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo); void CopyIndala64toT55x7(uint32_t hi, uint32_t lo); // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7); // Clone Indala 224-bit tag by UID to T55x7 void T55xxResetRead(uint8_t flags); //id T55xxWriteBlock(uint32_t data, uint8_t blockno, uint32_t pwd, uint8_t flags); void T55xxWriteBlock(uint8_t *data); // void T55xxWriteBlockExt(uint32_t data, uint8_t blockno, uint32_t pwd, uint8_t flags); void T55xxReadBlock(uint8_t page, bool pwd_mode, bool brute_mem, uint8_t block, uint32_t pwd, uint8_t downlink_mode); void T55xxWakeUp(uint32_t pwd, uint8_t flags); void T55xx_ChkPwds(uint8_t flags); void TurnReadLFOn(uint32_t delay); void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd); void EM4xWriteWord(uint8_t addr, uint32_t data, uint32_t pwd, uint8_t usepwd); void Cotag(uint32_t arg0); void setT55xxConfig(uint8_t arg0, t55xx_configurations_t *c); t55xx_configurations_t *getT55xxConfig(void); void printT55xxConfig(void); void loadT55xxConfig(void); /// iso14443b.h void SimulateIso14443bTag(uint32_t pupi); void AcquireRawAdcSamplesIso14443b(uint32_t parameter); void ReadSTMemoryIso14443b(uint8_t numofblocks); void RAMFUNC SniffIso14443b(void); void SendRawCommand14443B(uint32_t, uint32_t, uint8_t, uint8_t[]); void SendRawCommand14443B_Ex(PacketCommandNG *c); void ClearFpgaShiftingRegisters(void); // iso14443a.h void RAMFUNC SniffIso14443a(uint8_t param); void ReaderIso14443a(PacketCommandNG *c); // Also used in iclass.c //bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t len, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag); void GetParity(const uint8_t *pbtCmd, uint16_t len, uint8_t *par); void iso14a_set_trigger(bool enable); // also used in emv //bool prepare_allocated_tag_modulation(tag_response_info_t *response_info); //int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len); // epa.h void EPA_PACE_Collect_Nonce(PacketCommandNG *c); void EPA_PACE_Replay(PacketCommandNG *c); // mifarecmd.h void MifareReadBlock(uint8_t blockNo, uint8_t keyType, uint8_t *datain); void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain); void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes); void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain); void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t *datain); void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain); //void MifareUWriteBlockCompat(uint8_t arg0,uint8_t *datain); void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain); void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain); void MifareAcquireNonces(uint32_t arg0, uint32_t flags); void MifareChkKeys(uint8_t *datain); void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void MifareEMemClr(void); void MifareEMemSet(uint8_t blockno, uint8_t blockcnt, uint8_t blockwidth, uint8_t *datain); void MifareEMemGet(uint8_t blockno, uint8_t blockcnt); int MifareECardLoad(uint32_t arg0, uint32_t arg1); void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain); // Work with "magic Chinese" card void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain); void MifareCIdent(); // is "magic chinese" card? void MifareSetMod(uint8_t *datain); void MifareUSetPwd(uint8_t arg0, uint8_t *datain); void OnSuccessMagic(); void OnErrorMagic(uint8_t reason); int32_t dist_nt(uint32_t nt1, uint32_t nt2); void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype); //void RAMFUNC SniffMifare(uint8_t param); //desfire void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain); void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain); // mifaredesfire.h bool InitDesfireCard(); void MifareSendCommand(uint8_t arg0, uint8_t arg1, uint8_t *datain); void MifareDesfireGetInformation(); void MifareDES_Auth1(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain); void ReaderMifareDES(uint32_t param, uint32_t param2, uint8_t *datain); int DesfireAPDU(uint8_t *cmd, size_t cmd_len, uint8_t *dataout); size_t CreateAPDU(uint8_t *datain, size_t len, uint8_t *dataout); void OnSuccess(); void OnError(uint8_t reason); // desfire_crypto.h void *mifare_cryto_preprocess_data(desfiretag_t tag, void *data, size_t *nbytes, size_t offset, int communication_settings); void *mifare_cryto_postprocess_data(desfiretag_t tag, void *data, size_t *nbytes, int communication_settings); void mifare_cypher_single_block(desfirekey_t key, uint8_t *data, uint8_t *ivect, MifareCryptoDirection direction, MifareCryptoOperation operation, size_t block_size); void mifare_cypher_blocks_chained(desfiretag_t tag, desfirekey_t key, uint8_t *ivect, uint8_t *data, size_t data_size, MifareCryptoDirection direction, MifareCryptoOperation operation); size_t key_block_size(const desfirekey_t key); size_t padded_data_length(const size_t nbytes, const size_t block_size); size_t maced_data_length(const desfirekey_t key, const size_t nbytes); size_t enciphered_data_length(const desfiretag_t tag, const size_t nbytes, int communication_settings); void cmac_generate_subkeys(desfirekey_t key); void cmac(const desfirekey_t key, uint8_t *ivect, const uint8_t *data, size_t len, uint8_t *cmac); // iso15693.h void RecordRawAdcSamplesIso15693(void); void AcquireRawAdcSamplesIso15693(void); void ReaderIso15693(uint32_t parameter); // Simulate an ISO15693 reader - greg void SimTagIso15693(uint32_t parameter, uint8_t *uid); // simulate an ISO15693 tag - greg void BruteforceIso15693Afi(uint32_t speed); // find an AFI of a tag - atrox void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t *data); // send arbitrary commands from CLI - atrox void Iso15693InitReader(void); // iclass.h void RAMFUNC SniffIClass(void); void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); void ReaderIClass(uint8_t arg0); void ReaderIClass_Replay(uint8_t arg0, uint8_t *mac); void iClass_Authentication(uint8_t *mac); void iClass_Authentication_fast(uint64_t arg0, uint64_t arg1, uint8_t *datain); void iClass_WriteBlock(uint8_t blockno, uint8_t *data); void iClass_ReadBlk(uint8_t blockno); bool iClass_ReadBlock(uint8_t blockno, uint8_t *data, uint8_t len); void iClass_Dump(uint8_t blockno, uint8_t numblks); void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data); void iClass_ReadCheck(uint8_t blockno, uint8_t keytype); // cmd.h int reply_old(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void *data, size_t len); int reply_mix(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void *data, size_t len); int reply_ng(uint16_t cmd, int16_t status, uint8_t *data, size_t len); int receive_ng(PacketCommandNG *rx); // util.h void HfSniff(int, int); //felica.c void felica_sendraw(PacketCommandNG *c); void felica_sniff(uint32_t samplesToSkip, uint32_t triggersToSkip); void felica_sim_lite(uint64_t uid); void felica_dump_lite_s(); #ifdef __cplusplus } #endif #endif