//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------

#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "hitag2.h"
#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
#include "lfsampling.h"
#include "protocols.h"
#include "usb_cdc.h" // for usb_poll_validate_length
#include "common.h"
#include "flashmem.h" // persistence on mem

//#define START_GAP 31*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (15fc)
//#define WRITE_GAP 8*8 // 17*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (10fc)
//#define WRITE_0   15*8 // 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
//#define WRITE_1   47*8 // 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc)  432 for T55x7; 448 for E5550
//#define READ_GAP  15*8

//  VALUES TAKEN FROM EM4x function: SendForward
//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
//  WRITE_GAP = 128;       (16*8)
//  WRITE_1   = 256 32*8;  (32*8)

//  These timings work for 4469/4269/4305 (with the 55*8 above)
//  WRITE_0 = 23*8 , 9*8

// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
// 1 Cycle = 8 microseconds(us)  == 1 field clock

// new timer:
//     = 1us = 1.5ticks
// 1fc = 8us = 12ticks
/*
Default LF T55xx config is set to:
    startgap = 31*8
    writegap = 17*8
    write_0 = 15*8
    write_1 = 47*8
    read_gap = 15*8
*/
t55xx_config t_config = { 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8 } ;

void printT55xxConfig(void) {
    Dbprintf("LF T55XX config");
    Dbprintf("  [a] startgap............%d*8 (%d)", t_config.start_gap / 8, t_config.start_gap);
    Dbprintf("  [b] writegap............%d*8 (%d)", t_config.write_gap / 8, t_config.write_gap);
    Dbprintf("  [c] write_0.............%d*8 (%d)", t_config.write_0 / 8,   t_config.write_0);
    Dbprintf("  [d] write_1.............%d*8 (%d)", t_config.write_1 / 8,   t_config.write_1);
    Dbprintf("  [e] readgap.............%d*8 (%d)", t_config.read_gap / 8,  t_config.read_gap);
}

void setT55xxConfig(uint8_t arg0, t55xx_config *c) {

    if (c->start_gap != 0) t_config.start_gap = c->start_gap;
    if (c->write_gap != 0) t_config.write_gap = c->write_gap;
    if (c->write_0   != 0) t_config.write_0 = c->write_0;
    if (c->write_1   != 0) t_config.write_1 = c->write_1;
    if (c->read_gap  != 0) t_config.read_gap = c->read_gap;

    printT55xxConfig();

#ifdef WITH_FLASH
    // shall persist to flashmem
    if (arg0 == 0) {
        return;
    }

    if (!FlashInit()) {
        return;
    }

    uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
    Flash_CheckBusy(BUSY_TIMEOUT);
    uint16_t res = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
    if (res == 0) {
        FlashStop();
        BigBuf_free();
        return;
    }

    memcpy(buf, &t_config, T55XX_CONFIG_LEN);

    Flash_CheckBusy(BUSY_TIMEOUT);
    Flash_WriteEnable();
    Flash_Erase4k(3, 0xD);
    res = Flash_Write(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);

    if (res == T55XX_CONFIG_LEN && MF_DBGLEVEL > 1) {
        DbpString("T55XX Config save success");
    }

    BigBuf_free();
#endif
}

t55xx_config *getT55xxConfig(void) {
    return &t_config;
}

void loadT55xxConfig(void) {
#ifdef WITH_FLASH
    if (!FlashInit()) {
        return;
    }

    uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);

    Flash_CheckBusy(BUSY_TIMEOUT);
    uint16_t isok = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
    FlashStop();

    // verify read mem is actual data.
    uint8_t cntA = T55XX_CONFIG_LEN, cntB = T55XX_CONFIG_LEN;
    for (int i = 0; i < T55XX_CONFIG_LEN; i++) {
        if (buf[i] == 0xFF) cntA--;
        if (buf[i] == 0x00) cntB--;
    }
    if (!cntA || !cntB) {
        BigBuf_free();
        return;
    }

    memcpy((uint8_t *)&t_config, buf, T55XX_CONFIG_LEN);

    if (isok == T55XX_CONFIG_LEN) {
        if (MF_DBGLEVEL > 1) DbpString("T55XX Config load success");
    }
#endif
}

/**
 * Function to do a modulation and then get samples.
 * @param delay_off
 * @param period_0
 * @param period_1
 * @param command (in binary char array)
 */
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) {

    // start timer
    StartTicks();

    // use lf config settings
    sample_config *sc = getSamplingConfig();

    // Make sure the tag is reset
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitMS(500);

    // clear read buffer
    BigBuf_Clear_keep_EM();

    LFSetupFPGAForADC(sc->divisor, 1);

    // little more time for the tag to fully power up
    WaitMS(200);

    // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
    bool bitbang = delay_off == 0;
    // now modulate the reader field
    if (bitbang) {
        // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
        uint8_t hack_cnt = 7;
        if (period_0 < hack_cnt || period_1 < hack_cnt) {
            DbpString("[!] Warning periods cannot be less than 7us in bit bang mode");
            FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
            LED_D_OFF();
            return;
        }

        // hack2 needed---  it appears to take about 8-16us to turn the antenna back on
        // leading to ~ 1 to 2 125khz samples extra in every off period
        // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
        // but is this time different for every antenna or other hw builds???  more testing needed

        // prime cmd_len to save time comparing strings while modulating
        int cmd_len = 0;
        while (command[cmd_len] != '\0' && command[cmd_len] != ' ')
            cmd_len++;

        int counter = 0;
        bool off = false;
        for (counter = 0; counter < cmd_len; counter++) {
            // if cmd = 0 then turn field off
            if (command[counter] == '0') {
                // if field already off leave alone (affects timing otherwise)
                if (off == false) {
                    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                    LED_D_OFF();
                    off = true;
                }
                // note we appear to take about 7us to switch over (or run the if statements/loop...)
                WaitUS(period_0 - hack_cnt);
                // else if cmd = 1 then turn field on
            } else {
                // if field already on leave alone (affects timing otherwise)
                if (off) {
                    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
                    LED_D_ON();
                    off = false;
                }
                // note we appear to take about 7us to switch over (or run the if statements/loop...)
                WaitUS(period_1 - hack_cnt);
            }
        }
    } else { // old mode of cmd read using delay as off period
        while (*command != '\0' && *command != ' ') {
            LED_D_ON();
            if (*(command++) == '0')
                TurnReadLFOn(period_0);
            else
                TurnReadLFOn(period_1);

            LED_D_OFF();
            FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
            WaitUS(delay_off);
        }

        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
    }

    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);

    // now do the read
    DoAcquisition_config(false, 0);

    // Turn off antenna
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    // tell client we are done
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}

/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
0011010010100001
01111111
101010101010101[0]000...

[5555fe852c5555555555555555fe0000]
*/
void ReadTItag(void) {
    StartTicks();
    // some hardcoded initial params
    // when we read a TI tag we sample the zerocross line at 2Mhz
    // TI tags modulate a 1 as 16 cycles of 123.2Khz
    // TI tags modulate a 0 as 16 cycles of 134.2Khz
#define FSAMPLE 2000000
#define FREQLO 123200
#define FREQHI 134200

    signed char *dest = (signed char *)BigBuf_get_addr();
    uint16_t n = BigBuf_max_traceLen();
    // 128 bit shift register [shift3:shift2:shift1:shift0]
    uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;

    int i, cycles = 0, samples = 0;
    // how many sample points fit in 16 cycles of each frequency
    uint32_t sampleslo = (FSAMPLE << 4) / FREQLO, sampleshi = (FSAMPLE << 4) / FREQHI;
    // when to tell if we're close enough to one freq or another
    uint32_t threshold = (sampleslo - sampleshi + 1) >> 1;

    // TI tags charge at 134.2Khz
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz

    // Place FPGA in passthrough mode, in this mode the CROSS_LO line
    // connects to SSP_DIN and the SSP_DOUT logic level controls
    // whether we're modulating the antenna (high)
    // or listening to the antenna (low)
    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);

    // get TI tag data into the buffer
    AcquireTiType();

    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);

    for (i = 0; i < n - 1; i++) {
        // count cycles by looking for lo to hi zero crossings
        if ((dest[i] < 0) && (dest[i + 1] > 0)) {
            cycles++;
            // after 16 cycles, measure the frequency
            if (cycles > 15) {
                cycles = 0;
                samples = i - samples; // number of samples in these 16 cycles

                // TI bits are coming to us lsb first so shift them
                // right through our 128 bit right shift register
                shift0 = (shift0 >> 1) | (shift1 << 31);
                shift1 = (shift1 >> 1) | (shift2 << 31);
                shift2 = (shift2 >> 1) | (shift3 << 31);
                shift3 >>= 1;

                // check if the cycles fall close to the number
                // expected for either the low or high frequency
                if ((samples > (sampleslo - threshold)) && (samples < (sampleslo + threshold))) {
                    // low frequency represents a 1
                    shift3 |= (1u << 31);
                } else if ((samples > (sampleshi - threshold)) && (samples < (sampleshi + threshold))) {
                    // high frequency represents a 0
                } else {
                    // probably detected a gay waveform or noise
                    // use this as gaydar or discard shift register and start again
                    shift3 = shift2 = shift1 = shift0 = 0;
                }
                samples = i;

                // for each bit we receive, test if we've detected a valid tag

                // if we see 17 zeroes followed by 6 ones, we might have a tag
                // remember the bits are backwards
                if (((shift0 & 0x7fffff) == 0x7e0000)) {
                    // if start and end bytes match, we have a tag so break out of the loop
                    if (((shift0 >> 16) & 0xff) == ((shift3 >> 8) & 0xff)) {
                        cycles = 0xF0B; //use this as a flag (ugly but whatever)
                        break;
                    }
                }
            }
        }
    }

    // if flag is set we have a tag
    if (cycles != 0xF0B) {
        DbpString("Info: No valid tag detected.");
    } else {
        // put 64 bit data into shift1 and shift0
        shift0 = (shift0 >> 24) | (shift1 << 8);
        shift1 = (shift1 >> 24) | (shift2 << 8);

        // align 16 bit crc into lower half of shift2
        shift2 = ((shift2 >> 24) | (shift3 << 8)) & 0x0ffff;

        // if r/w tag, check ident match
        if (shift3 & (1 << 15)) {
            DbpString("Info: TI tag is rewriteable");
            // only 15 bits compare, last bit of ident is not valid
            if (((shift3 >> 16) ^ shift0) & 0x7fff) {
                DbpString("Error: Ident mismatch!");
            } else {
                DbpString("Info: TI tag ident is valid");
            }
        } else {
            DbpString("Info: TI tag is readonly");
        }

        // WARNING the order of the bytes in which we calc crc below needs checking
        // i'm 99% sure the crc algorithm is correct, but it may need to eat the
        // bytes in reverse or something
        // calculate CRC
        uint32_t crc = 0;

        crc = update_crc16(crc, (shift0) & 0xff);
        crc = update_crc16(crc, (shift0 >> 8) & 0xff);
        crc = update_crc16(crc, (shift0 >> 16) & 0xff);
        crc = update_crc16(crc, (shift0 >> 24) & 0xff);
        crc = update_crc16(crc, (shift1) & 0xff);
        crc = update_crc16(crc, (shift1 >> 8) & 0xff);
        crc = update_crc16(crc, (shift1 >> 16) & 0xff);
        crc = update_crc16(crc, (shift1 >> 24) & 0xff);

        Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
        if (crc != (shift2 & 0xffff)) {
            Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
        } else {
            DbpString("Info: CRC is good");
        }
    }
    StopTicks();
}

void WriteTIbyte(uint8_t b) {
    int i = 0;

    // modulate 8 bits out to the antenna
    for (i = 0; i < 8; i++) {
        if (b & (1 << i)) {
            // stop modulating antenna 1ms
            LOW(GPIO_SSC_DOUT);
            WaitUS(1000);
            // modulate antenna 1ms
            HIGH(GPIO_SSC_DOUT);
            WaitUS(1000);
        } else {
            // stop modulating antenna 0.3ms
            LOW(GPIO_SSC_DOUT);
            WaitUS(300);
            // modulate antenna 1.7ms
            HIGH(GPIO_SSC_DOUT);
            WaitUS(1700);
        }
    }
}

void AcquireTiType(void) {
    int i, j, n;
    // tag transmission is <20ms, sampling at 2M gives us 40K samples max
    // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
#define TIBUFLEN 1250

    // clear buffer
    uint32_t *buf = (uint32_t *)BigBuf_get_addr();

    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_ext(false);

    // Set up the synchronous serial port
    AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
    AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;

    // steal this pin from the SSP and use it to control the modulation
    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;

    AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
    AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;

    // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
    // 48/2 = 24 MHz clock must be divided by 12
    AT91C_BASE_SSC->SSC_CMR = 12;

    AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
    AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
    // Transmit Clock Mode Register
    AT91C_BASE_SSC->SSC_TCMR = 0;
    // Transmit Frame Mode Register
    AT91C_BASE_SSC->SSC_TFMR = 0;
    // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
    LED_D_ON();

    // modulate antenna
    HIGH(GPIO_SSC_DOUT);

    // Charge TI tag for 50ms.
    WaitMS(50);

    // stop modulating antenna and listen
    LOW(GPIO_SSC_DOUT);

    LED_D_OFF();

    i = 0;
    for (;;) {
        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
            buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
            i++;
            if (i >= TIBUFLEN) break;
        }
        WDT_HIT();
    }

    // return stolen pin to SSP
    AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
    AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;

    char *dest = (char *)BigBuf_get_addr();
    n = TIBUFLEN * 32;

    // unpack buffer
    for (i = TIBUFLEN - 1; i >= 0; i--) {
        for (j = 0; j < 32; j++) {
            if (buf[i] & (1u << j)) {
                dest[--n] = 1;
            } else {
                dest[--n] = -1;
            }
        }
    }

    // reset SSC
    FpgaSetupSsc();
}

// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) {
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    if (crc == 0) {
        crc = update_crc16(crc, (idlo) & 0xff);
        crc = update_crc16(crc, (idlo >> 8) & 0xff);
        crc = update_crc16(crc, (idlo >> 16) & 0xff);
        crc = update_crc16(crc, (idlo >> 24) & 0xff);
        crc = update_crc16(crc, (idhi) & 0xff);
        crc = update_crc16(crc, (idhi >> 8) & 0xff);
        crc = update_crc16(crc, (idhi >> 16) & 0xff);
        crc = update_crc16(crc, (idhi >> 24) & 0xff);
    }
    Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc);

    // TI tags charge at 134.2Khz
    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
    // Place FPGA in passthrough mode, in this mode the CROSS_LO line
    // connects to SSP_DIN and the SSP_DOUT logic level controls
    // whether we're modulating the antenna (high)
    // or listening to the antenna (low)
    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
    StartTicks();

    LED_A_ON();

    // steal this pin from the SSP and use it to control the modulation
    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;

    // writing algorithm:
    // a high bit consists of a field off for 1ms and field on for 1ms
    // a low bit consists of a field off for 0.3ms and field on for 1.7ms
    // initiate a charge time of 50ms (field on) then immediately start writing bits
    // start by writing 0xBB (keyword) and 0xEB (password)
    // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
    // finally end with 0x0300 (write frame)
    // all data is sent lsb first
    // finish with 50ms programming time

    // modulate antenna
    HIGH(GPIO_SSC_DOUT);
    WaitMS(50); // charge time

    WriteTIbyte(0xbb); // keyword
    WriteTIbyte(0xeb); // password
    WriteTIbyte((idlo) & 0xff);
    WriteTIbyte((idlo >> 8) & 0xff);
    WriteTIbyte((idlo >> 16) & 0xff);
    WriteTIbyte((idlo >> 24) & 0xff);
    WriteTIbyte((idhi) & 0xff);
    WriteTIbyte((idhi >> 8) & 0xff);
    WriteTIbyte((idhi >> 16) & 0xff);
    WriteTIbyte((idhi >> 24) & 0xff); // data hi to lo
    WriteTIbyte((crc) & 0xff);      // crc lo
    WriteTIbyte((crc >> 8) & 0xff); // crc hi
    WriteTIbyte(0x00); // write frame lo
    WriteTIbyte(0x03); // write frame hi
    HIGH(GPIO_SSC_DOUT);
    WaitMS(50); // programming time

    LED_A_OFF();

    // get TI tag data into the buffer
    AcquireTiType();

    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    DbpString("Now use `lf ti read` to check");
    StopTicks();
}

// note:   a call to FpgaDownloadAndGo(FPGA_BITSTREAM_LF) must be done before, but
//  this may destroy the bigbuf so be sure this is called before calling SimulateTagLowFrequencyEx
void SimulateTagLowFrequencyEx(int period, int gap, int ledcontrol, int numcycles) {

    // start us timer
    StartTicks();

    //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
    WaitMS(20);

    int i = 0, x = 0;
    uint8_t *buf = BigBuf_get_addr();

    // set frequency,  get values from 'lf config' command
    sample_config *sc = getSamplingConfig();

    if ((sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255))
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
    else if (sc->divisor == 0)
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
    else
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);

    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
    AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;

    uint8_t check = 1;

    for (;;) {

        if (numcycles > -1) {
            if (x != numcycles) {
                ++x;
            } else {
                // exit without turning of field
                return;
            }
        }

        if (ledcontrol) LED_D_ON();

        // wait until SSC_CLK goes HIGH
        // used as a simple detection of a reader field?
        while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
            WDT_HIT();
            if (!check) {
                if (usb_poll_validate_length() || BUTTON_PRESS())
                    goto OUT;
            }
            ++check;
        }

        if (buf[i])
            OPEN_COIL();
        else
            SHORT_COIL();

        //wait until SSC_CLK goes LOW
        while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
            WDT_HIT();
            if (!check) {
                if (usb_poll_validate_length() || BUTTON_PRESS())
                    goto OUT;
            }
            ++check;
        }

        i++;
        if (i == period) {
            i = 0;
            if (gap) {
                SHORT_COIL();
                WaitUS(gap);
            }
        }

        if (ledcontrol) LED_D_OFF();
    }
OUT:
    StopTicks();
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    LED_D_OFF();
}

void SimulateTagLowFrequency(int period, int gap, int ledcontrol) {
    SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1);
}


#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int t0) {
}
// compose fc/5 fc/8  waveform (FSK1)

// compose fc/8 fc/10 waveform (FSK2)
// also manchester,
static void fc(int c, int *n) {
    uint8_t *dest = BigBuf_get_addr();
    int idx;

    // for when we want an fc8 pattern every 4 logical bits
    if (c == 0) {
        dest[((*n)++)] = 1;
        dest[((*n)++)] = 1;
        dest[((*n)++)] = 1;
        dest[((*n)++)] = 1;
        dest[((*n)++)] = 0;
        dest[((*n)++)] = 0;
        dest[((*n)++)] = 0;
        dest[((*n)++)] = 0;
    }

    // an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
    if (c == 8) {
        for (idx = 0; idx < 6; idx++) {
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
        }
    }

    // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
    if (c == 10) {
        for (idx = 0; idx < 5; idx++) {
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 1;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
            dest[((*n)++)] = 0;
        }
    }
}

// special start of frame marker containing invalid bit sequences
// this one is focused on HID,  with manchester encoding.
static void fcSTT(int *n) {
    fc(8,  n);
    fc(8,  n); // invalid
    fc(8,  n);
    fc(10, n); // logical 0
    fc(10, n);
    fc(10, n); // invalid
    fc(8,  n);
    fc(10, n); // logical 0
}

// compose fc/X fc/Y waveform (FSKx)
static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) {
    uint8_t *dest = BigBuf_get_addr();
    uint8_t halfFC = fc >> 1;
    uint8_t wavesPerClock = clock / fc;
    uint8_t mod = clock % fc;    //modifier

    // loop through clock - step field clock
    for (uint8_t idx = 0; idx < wavesPerClock; idx++) {
        // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
        memset(dest + (*n), 0, fc - halfFC);  //in case of odd number use extra here
        memset(dest + (*n) + (fc - halfFC), 1, halfFC);
        *n += fc;
    }
    if (mod > 0) {
        uint8_t modAdj = fc / mod;   //how often to apply modifier
        bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk = true;
        (*modCnt)++;

        if (modAdjOk) { //fsk2
            if ((*modCnt % modAdj) == 0) { //if 4th 8 length wave in a rf/50 add extra 8 length wave
                memset(dest + (*n), 0, fc - halfFC);
                memset(dest + (*n) + (fc - halfFC), 1, halfFC);
                *n += fc;
            }
        }
        if (!modAdjOk) { //fsk1
            memset(dest + (*n), 0, mod - (mod >> 1));
            memset(dest + (*n) + (mod - (mod >> 1)), 1, mod >> 1);
            *n += mod;
        }
    }
}

// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAGEx(uint32_t hi, uint32_t lo, int ledcontrol, int numcycles) {

    if (hi > 0xFFF) {
        DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags");
        return;
    }

    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    set_tracing(false);

    int n = 0, i = 0;
    /*
     HID tag bitstream format
     The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
     A 1 bit is represented as 6 fc8 and 5 fc10 patterns  (manchester 10) during 2 clock periods. (1bit = 1clock period)
     A 0 bit is represented as 5 fc10 and 6 fc8 patterns  (manchester 01)
     A fc8 is inserted before every 4 bits
     A special start of frame pattern is used consisting a0b0 where a and b are neither 0
     nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)

     FSK2a
     bit 1 = fc10
     bit 0 = fc8
    */

    fc(0, &n);

    // special start of frame marker containing invalid bit sequences
    fcSTT(&n);

    // manchester encode bits 43 to 32
    for (i = 11; i >= 0; i--) {

        if ((i % 4) == 3) fc(0, &n);

        if ((hi >> i) & 1) {
            fc(10, &n);
            fc(8,  &n); // low-high transition
        } else {
            fc(8,  &n);
            fc(10, &n); // high-low transition
        }
    }

    // manchester encode bits 31 to 0
    for (i = 31; i >= 0; i--) {

        if ((i % 4) == 3) fc(0, &n);

        if ((lo >> i) & 1) {
            fc(10, &n);
            fc(8,  &n); // low-high transition
        } else {
            fc(8,  &n);
            fc(10, &n); // high-low transition
        }
    }

    if (ledcontrol) LED_A_ON();
    SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles);
    if (ledcontrol) LED_A_OFF();
}

void CmdHIDsimTAG(uint32_t hi, uint32_t lo, int ledcontrol) {
    CmdHIDsimTAGEx(hi, lo, ledcontrol, -1);
    DbpString("[!] simulation finished");
}

// prepare a waveform pattern in the buffer based on the ID given then
// simulate a FSK tag until the button is pressed
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits, int ledcontrol) {
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);

    // free eventually allocated BigBuf memory
    BigBuf_free();
    BigBuf_Clear_ext(false);
    clear_trace();
    set_tracing(false);

    int n = 0, i = 0;
    uint8_t fcHigh = arg1 >> 8;
    uint8_t fcLow = arg1 & 0xFF;
    uint16_t modCnt = 0;
    uint8_t clk = arg2 & 0xFF;
    uint8_t stt = (arg2 >> 8) & 1;

    if (stt) {
        //int fsktype = ( fcHigh == 8 && fcLow == 5) ? 1 : 2;
        //fcSTT(&n);
    }

    for (i = 0; i < size; i++) {
        if (bits[i])
            fcAll(fcLow, &n, clk, &modCnt);
        else
            fcAll(fcHigh, &n, clk, &modCnt);
    }

    WDT_HIT();

    Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, STT: %d, n: %d", fcHigh, fcLow, clk, stt, n);

    if (ledcontrol) LED_A_ON();
    SimulateTagLowFrequency(n, 0, ledcontrol);
    if (ledcontrol) LED_A_OFF();
}

// compose ask waveform for one bit(ASK)
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) {
    uint8_t *dest = BigBuf_get_addr();
    uint8_t halfClk = clock / 2;
    // c = current bit 1 or 0
    if (manchester == 1) {
        memset(dest + (*n), c, halfClk);
        memset(dest + (*n) + halfClk, c ^ 1, halfClk);
    } else {
        memset(dest + (*n), c, clock);
    }
    *n += clock;
}

static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) {
    uint8_t *dest = BigBuf_get_addr();
    uint8_t halfClk = clock / 2;
    if (c) {
        memset(dest + (*n), c ^ 1 ^ *phase, halfClk);
        memset(dest + (*n) + halfClk, c ^ *phase, halfClk);
    } else {
        memset(dest + (*n), c ^ *phase, clock);
        *phase ^= 1;
    }
    *n += clock;
}

static void stAskSimBit(int *n, uint8_t clock) {
    uint8_t *dest = BigBuf_get_addr();
    uint8_t halfClk = clock / 2;
    //ST = .5 high .5 low 1.5 high .5 low 1 high
    memset(dest + (*n), 1, halfClk);
    memset(dest + (*n) + halfClk, 0, halfClk);
    memset(dest + (*n) + clock, 1, clock + halfClk);
    memset(dest + (*n) + clock * 2 + halfClk, 0, halfClk);
    memset(dest + (*n) + clock * 3, 1, clock);
    *n += clock * 4;
}

// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream, int ledcontrol) {
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    set_tracing(false);

    int n = 0, i = 0;
    uint8_t clk = (arg1 >> 8) & 0xFF;
    uint8_t encoding = arg1 & 0xFF;
    uint8_t separator = arg2 & 1;
    uint8_t invert = (arg2 >> 8) & 1;

    if (encoding == 2) { //biphase
        uint8_t phase = 0;
        for (i = 0; i < size; i++) {
            biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
        }
        if (phase == 1) { //run a second set inverted to keep phase in check
            for (i = 0; i < size; i++) {
                biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
            }
        }
    } else {  // ask/manchester || ask/raw
        for (i = 0; i < size; i++) {
            askSimBit(BitStream[i]^invert, &n, clk, encoding);
        }
        if (encoding == 0 && BitStream[0] == BitStream[size - 1]) { //run a second set inverted (for ask/raw || biphase phase)
            for (i = 0; i < size; i++) {
                askSimBit(BitStream[i]^invert ^ 1, &n, clk, encoding);
            }
        }
    }
    if (separator == 1 && encoding == 1)
        stAskSimBit(&n, clk);
    else if (separator == 1)
        Dbprintf("sorry but separator option not yet available");

    WDT_HIT();

    Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d", clk, invert, encoding, separator, n);

    if (ledcontrol) LED_A_ON();
    SimulateTagLowFrequency(n, 0, ledcontrol);
    if (ledcontrol) LED_A_OFF();
}

//carrier can be 2,4 or 8
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) {
    uint8_t *dest = BigBuf_get_addr();
    uint8_t halfWave = waveLen / 2;
    //uint8_t idx;
    int i = 0;
    if (phaseChg) {
        // write phase change
        memset(dest + (*n), *curPhase ^ 1, halfWave);
        memset(dest + (*n) + halfWave, *curPhase, halfWave);
        *n += waveLen;
        *curPhase ^= 1;
        i += waveLen;
    }
    //write each normal clock wave for the clock duration
    for (; i < clk; i += waveLen) {
        memset(dest + (*n), *curPhase, halfWave);
        memset(dest + (*n) + halfWave, *curPhase ^ 1, halfWave);
        *n += waveLen;
    }
}

// args clock, carrier, invert,
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream, int ledcontrol) {
    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
    set_tracing(false);

    int n = 0, i = 0;
    uint8_t clk = arg1 >> 8;
    uint8_t carrier = arg1 & 0xFF;
    uint8_t invert = arg2 & 0xFF;
    uint8_t curPhase = 0;
    for (i = 0; i < size; i++) {
        if (BitStream[i] == curPhase) {
            pskSimBit(carrier, &n, clk, &curPhase, false);
        } else {
            pskSimBit(carrier, &n, clk, &curPhase, true);
        }
    }

    WDT_HIT();

    Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d", carrier, clk, invert, n);

    if (ledcontrol) LED_A_ON();
    SimulateTagLowFrequency(n, 0, ledcontrol);
    if (ledcontrol) LED_A_OFF();
}

// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
    uint8_t *dest = BigBuf_get_addr();
    size_t size = 0;
    uint32_t hi2 = 0, hi = 0, lo = 0;
    int idx = 0;
    int dummyIdx = 0;
    // Configure to go in 125Khz listen mode
    LFSetupFPGAForADC(95, true);

    //clear read buffer
    BigBuf_Clear_keep_EM();

    while (!BUTTON_PRESS() && !usb_poll_validate_length()) {

        WDT_HIT();
        if (ledcontrol) LED_A_ON();

        DoAcquisition_default(-1, true);
        // FSK demodulator
        size = 50 * 128 * 2; //big enough to catch 2 sequences of largest format
        idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
        if (idx < 0) continue;

        if (idx > 0 && lo > 0 && (size == 96 || size == 192)) {
            // go over previously decoded manchester data and decode into usable tag ID
            if (hi2 != 0) { //extra large HID tags  88/192 bits
                Dbprintf("TAG ID: %x%08x%08x (%d)",
                         hi2,
                         hi,
                         lo,
                         (lo >> 1) & 0xFFFF
                        );
            } else {  //standard HID tags 44/96 bits
                uint8_t bitlen = 0;
                uint32_t fc = 0;
                uint32_t cardnum = 0;

                if (((hi >> 5) & 1) == 1) { //if bit 38 is set then < 37 bit format is used
                    uint32_t lo2 = 0;
                    lo2 = (((hi & 31) << 12) | (lo >> 20)); //get bits 21-37 to check for format len bit
                    uint8_t idx3 = 1;
                    while (lo2 > 1) { //find last bit set to 1 (format len bit)
                        lo2 >>= 1;
                        idx3++;
                    }
                    bitlen = idx3 + 19;
                    fc = 0;
                    cardnum = 0;
                    if (bitlen == 26) {
                        cardnum = (lo >> 1) & 0xFFFF;
                        fc = (lo >> 17) & 0xFF;
                    }
                    if (bitlen == 37) {
                        cardnum = (lo >> 1) & 0x7FFFF;
                        fc = ((hi & 0xF) << 12) | (lo >> 20);
                    }
                    if (bitlen == 34) {
                        cardnum = (lo >> 1) & 0xFFFF;
                        fc = ((hi & 1) << 15) | (lo >> 17);
                    }
                    if (bitlen == 35) {
                        cardnum = (lo >> 1) & 0xFFFFF;
                        fc = ((hi & 1) << 11) | (lo >> 21);
                    }
                } else { //if bit 38 is not set then 37 bit format is used
                    bitlen = 37;
                    cardnum = (lo >> 1) & 0x7FFFF;
                    fc = ((hi & 0xF) << 12) | (lo >> 20);
                }
                Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
                         hi,
                         lo,
                         (lo >> 1) & 0xFFFF,
                         bitlen,
                         fc,
                         cardnum
                        );
            }
            if (findone) {
                *high = hi;
                *low = lo;
                break;
            }
            // reset
        }
        hi2 = hi = lo = idx = 0;
    }
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    DbpString("Stopped");
    if (ledcontrol) LED_A_OFF();
}

// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {

    uint8_t *dest = BigBuf_get_addr();

    //big enough to catch 2 sequences of largest format
    size_t size = 12800; //50 * 128 * 2;

    int idx = 0, dummyIdx = 0;

    BigBuf_Clear_keep_EM();

    LFSetupFPGAForADC(95, true);

    while (!BUTTON_PRESS() && !usb_poll_validate_length()) {

        WDT_HIT();
        if (ledcontrol) LED_A_ON();

        DoAcquisition_default(-1, true);
        // FSK demodulator

        idx = detectAWID(dest, &size, &dummyIdx);

        if (idx <= 0 || size != 96) continue;
        // Index map
        // 0            10            20            30              40            50              60
        // |            |             |             |               |             |               |
        // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
        // -----------------------------------------------------------------------------
        // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
        // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
        //          |---26 bit---|    |-----117----||-------------142-------------|
        // b = format bit len, o = odd parity of last 3 bits
        // f = facility code, c = card number
        // w = wiegand parity
        // (26 bit format shown)

        //get raw ID before removing parities
        uint32_t rawLo = bytebits_to_byte(dest + idx + 64, 32);
        uint32_t rawHi = bytebits_to_byte(dest + idx + 32, 32);
        uint32_t rawHi2 = bytebits_to_byte(dest + idx, 32);

        size = removeParity(dest, idx + 8, 4, 1, 88);
        if (size != 66) continue;
        // ok valid card found!

        // Index map
        // 0           10         20        30          40        50        60
        // |           |          |         |           |         |         |
        // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
        // -----------------------------------------------------------------------------
        // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
        // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        // |26 bit|   |-117--| |-----142------|
        // b = format bit len, o = odd parity of last 3 bits
        // f = facility code, c = card number
        // w = wiegand parity
        // (26 bit format shown)

        uint32_t fc = 0;
        uint32_t cardnum = 0;
        uint32_t code1 = 0;
        uint32_t code2 = 0;
        uint8_t fmtLen = bytebits_to_byte(dest, 8);
        if (fmtLen == 26) {
            fc = bytebits_to_byte(dest + 9, 8);
            cardnum = bytebits_to_byte(dest + 17, 16);
            code1 = bytebits_to_byte(dest + 8, fmtLen);
            Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
        } else {
            cardnum = bytebits_to_byte(dest + 8 + (fmtLen - 17), 16);
            if (fmtLen > 32) {
                code1 = bytebits_to_byte(dest + 8, fmtLen - 32);
                code2 = bytebits_to_byte(dest + 8 + (fmtLen - 32), 32);
                Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
            } else {
                code1 = bytebits_to_byte(dest + 8, fmtLen);
                Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
            }
        }
        if (findone) {
            if (ledcontrol) LED_A_OFF();
            *high = rawHi;
            *low = rawLo;
            break;
        }
        // reset
        idx = 0;
        WDT_HIT();
    }
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    DbpString("Stopped");
    if (ledcontrol) LED_A_OFF();
}

void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol) {
    uint8_t *dest = BigBuf_get_addr();

    size_t size = 0, idx = 0;
    int clk = 0, invert = 0, errCnt = 0, maxErr = 20;
    uint32_t hi = 0;
    uint64_t lo = 0;

    BigBuf_Clear_keep_EM();

    LFSetupFPGAForADC(95, true);

    while (!BUTTON_PRESS() && !usb_poll_validate_length()) {

        WDT_HIT();
        if (ledcontrol) LED_A_ON();

        DoAcquisition_default(-1, true);

        size  = BigBuf_max_traceLen();
        //askdemod and manchester decode
        if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
        errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
        WDT_HIT();

        if (errCnt < 0) continue;

        errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
        if (errCnt == 1) {
            if (size == 128) {
                Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
                         hi,
                         (uint32_t)(lo >> 32),
                         (uint32_t)lo,
                         (uint32_t)(lo & 0xFFFF),
                         (uint32_t)((lo >> 16LL) & 0xFF),
                         (uint32_t)(lo & 0xFFFFFF));
            } else {
                Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
                         (uint32_t)(lo >> 32),
                         (uint32_t)lo,
                         (uint32_t)(lo & 0xFFFF),
                         (uint32_t)((lo >> 16LL) & 0xFF),
                         (uint32_t)(lo & 0xFFFFFF));
            }

            if (findone) {
                if (ledcontrol) LED_A_OFF();
                *high = hi;
                *low = lo;
                break;
            }
        }
        WDT_HIT();
        hi = lo = size = idx = 0;
        clk = invert = errCnt = 0;
    }
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    DbpString("Stopped");
    if (ledcontrol) LED_A_OFF();
}

void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {

    uint8_t *dest = BigBuf_get_addr();

    int dummyIdx = 0, idx = 0;
    uint32_t code = 0, code2 = 0;
    uint8_t version = 0, facilitycode = 0, crc = 0;
    uint16_t number = 0, calccrc = 0;

    size_t size = BigBuf_max_traceLen();

    BigBuf_Clear_keep_EM();

    // Configure to go in 125Khz listen mode
    LFSetupFPGAForADC(95, true);

    while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
        WDT_HIT();
        if (ledcontrol) LED_A_ON();

        DoAcquisition_default(-1, true);

        //fskdemod and get start index
        WDT_HIT();
        idx = detectIOProx(dest, &size, &dummyIdx);
        if (idx < 0) continue;
        //valid tag found

        //Index map
        //0           10          20          30          40          50          60
        //|           |           |           |           |           |           |
        //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
        //-----------------------------------------------------------------------------
        //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
        //
        //Checksum:
        //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
        //preamble      F0         E0         01         03         B6         75
        // How to calc checksum,
        // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
        //   F0 + E0 + 01 + 03 + B6 = 28A
        //   28A & FF = 8A
        //   FF - 8A = 75
        // Checksum: 0x75
        //XSF(version)facility:codeone+codetwo
        //Handle the data
        // if(findone){ //only print binary if we are doing one
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
        // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
        // }
        code = bytebits_to_byte(dest + idx, 32);
        code2 = bytebits_to_byte(dest + idx + 32, 32);
        version = bytebits_to_byte(dest + idx + 27, 8); //14,4
        facilitycode = bytebits_to_byte(dest + idx + 18, 8);
        number = (bytebits_to_byte(dest + idx + 36, 8) << 8) | (bytebits_to_byte(dest + idx + 45, 8)); //36,9

        crc = bytebits_to_byte(dest + idx + 54, 8);
        for (uint8_t i = 1; i < 6; ++i)
            calccrc += bytebits_to_byte(dest + idx + 9 * i, 8);
        calccrc &= 0xff;
        calccrc = 0xff - calccrc;

        char *crcStr = (crc == calccrc) ? "ok" : "!crc";

        Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]", version, facilitycode, number, code, code2, crc, crcStr);
        // if we're only looking for one tag
        if (findone) {
            if (ledcontrol) LED_A_OFF();
            *high = code;
            *low = code2;
            break;
        }
        code = code2 = 0;
        version = facilitycode = 0;
        number = 0;
        idx = 0;

        WDT_HIT();
    }
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    DbpString("Stopped");
    if (ledcontrol) LED_A_OFF();
}

/*------------------------------
 * T5555/T5557/T5567/T5577 routines
 *------------------------------
 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
 *
 * Relevant communication times in microsecond
 * To compensate antenna falling times shorten the write times
 * and enlarge the gap ones.
 * Q5 tags seems to have issues when these values changes.
 */

void TurnReadLFOn(uint32_t delay) {
    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);

    // measure antenna strength.
    //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
    WaitUS(delay);
}
void TurnReadLF_off(uint32_t delay) {
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(delay);
}

// Write one bit to card
void T55xxWriteBit(int bit) {
    if (!bit)
        TurnReadLFOn(t_config.write_0);
    else
        TurnReadLFOn(t_config.write_1);
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(t_config.write_gap);
}

// Send T5577 reset command then read stream (see if we can identify the start of the stream)
void T55xxResetRead(void) {
    LED_A_ON();
    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_keep_EM();

    // Set up FPGA, 125kHz
    LFSetupFPGAForADC(95, true);
    // make sure tag is fully powered up...
    WaitMS(4);

    // Trigger T55x7 in mode.
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(t_config.start_gap);

    // reset tag - op code 00
    T55xxWriteBit(0);
    T55xxWriteBit(0);

    TurnReadLFOn(t_config.read_gap);

    // Acquisition
    DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);

    // Turn the field off
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
    LED_A_OFF();
}

// Write one card block in page 0, no lock
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
    LED_A_ON();
    bool PwdMode = arg & 0x1;
    uint8_t Page = (arg & 0x2) >> 1;
    bool testMode = arg & 0x4;
    uint32_t i = 0;

    // Set up FPGA, 125kHz
    LFSetupFPGAForADC(95, true);

    // make sure tag is fully powered up...
    WaitMS(4);
    // Trigger T55x7 in mode.
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(t_config.start_gap);

    if (testMode) Dbprintf("TestMODE");
    // Std Opcode 10
    T55xxWriteBit(testMode ? 0 : 1);
    T55xxWriteBit(testMode ? 1 : Page); //Page 0

    if (PwdMode) {
        // Send Pwd
        for (i = 0x80000000; i != 0; i >>= 1)
            T55xxWriteBit(Pwd & i);
    }
    // Send Lock bit
    T55xxWriteBit(0);

    // Send Data
    for (i = 0x80000000; i != 0; i >>= 1)
        T55xxWriteBit(Data & i);

    // Send Block number
    for (i = 0x04; i != 0; i >>= 1)
        T55xxWriteBit(Block & i);

    // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
    // so wait a little more)

    // "there is a clock delay before programming"
    //  - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
    //  so we should wait 1 clock + 5.6ms then read response?
    //  but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
    if (testMode) {
        //TESTMODE TIMING TESTS:
        // <566us does nothing
        // 566-568 switches between wiping to 0s and doing nothing
        // 5184 wipes and allows 1 block to be programmed.
        // indefinite power on wipes and then programs all blocks with bitshifted data sent.
        TurnReadLFOn(5184);

    } else {
        TurnReadLFOn(20 * 1000);

        //could attempt to do a read to confirm write took
        // as the tag should repeat back the new block
        // until it is reset, but to confirm it we would
        // need to know the current block 0 config mode for
        // modulation clock an other details to demod the response...
        // response should be (for t55x7) a 0 bit then (ST if on)
        // block data written in on repeat until reset.

        //DoPartialAcquisition(20, true, 12000);
    }

    // turn field off
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    LED_A_OFF();
}

// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
    T55xxWriteBlockExt(Data, Block, Pwd, arg);
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}

// Read one card block in page [page]
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
    LED_A_ON();
    bool PwdMode = arg0 & 0x1;
    uint8_t Page = (arg0 & 0x2) >> 1;
    bool brute_mem =  arg0 & 0x4;

    uint32_t i = 0;

    // regular read mode
    bool RegReadMode = (Block == 0xFF);

    uint8_t start_wait = 4;
    size_t samples = 12000;
    if (brute_mem) {
        start_wait = 0;
        samples = 1024;
    }

    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_keep_EM();

    //make sure block is at max 7
    Block &= 0x7;

    // Set up FPGA, 125kHz to power up the tag
    LFSetupFPGAForADC(95, true);
    // make sure tag is fully powered up...
    WaitMS(start_wait);

    // Trigger T55x7 Direct Access Mode with start gap
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(t_config.start_gap);

    // Opcode 1[page]
    T55xxWriteBit(1);
    T55xxWriteBit(Page); //Page 0

    if (PwdMode) {
        // Send Pwd
        for (i = 0x80000000; i != 0; i >>= 1)
            T55xxWriteBit(Pwd & i);
    }
    // Send a zero bit separation
    T55xxWriteBit(0);

    // Send Block number (if direct access mode)
    if (!RegReadMode)
        for (i = 0x04; i != 0; i >>= 1)
            T55xxWriteBit(Block & i);

    // Turn field on to read the response
    // 137*8 seems to get to the start of data pretty well...
    // but we want to go past the start and let the repeating data settle in...
    TurnReadLFOn(150 * 8);

    // Acquisition
    // Now do the acquisition
    DoPartialAcquisition(0, true, samples, 0);

    // Turn the field off
    if (!brute_mem) {
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
        LED_A_OFF();
    }
}

void T55xx_ChkPwds() {

    DbpString("[+] T55XX Check pwds using flashmemory starting");

    uint8_t ret = 0;
    // First get baseline and setup LF mode.
    // tends to mess up BigBuf
    uint8_t *buf = BigBuf_get_addr();

    uint32_t b1, baseline = 0;

    // collect baseline for failed attempt
    uint8_t x = 32;
    while (x--) {
        b1 = 0;
        T55xxReadBlock(4, 1, 0);
        for (uint16_t j = 0; j < 1024; ++j)
            b1 += buf[j];

        b1 *= b1;
        b1 >>= 8;
        baseline += b1;
    }

    baseline >>= 5;
    Dbprintf("[=] Baseline determined [%u]", baseline);


    uint8_t *pwds = BigBuf_get_EM_addr();
    uint16_t pwdCount = 0;
    uint32_t candidate = 0;

#ifdef WITH_FLASH
    BigBuf_Clear_EM();
    uint16_t isok = 0;
    uint8_t counter[2] = {0x00, 0x00};
    isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET, counter, sizeof(counter));
    if (isok != sizeof(counter))
        goto OUT;

    pwdCount = counter[1] << 8 | counter[0];

    if (pwdCount == 0 || pwdCount == 0xFFFF)
        goto OUT;

    isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET + 2, pwds, pwdCount * 4);
    if (isok != pwdCount * 4)
        goto OUT;

    Dbprintf("[=] Password dictionary count %d ", pwdCount);
#endif

    uint32_t pwd = 0, curr = 0, prev = 0;
    for (uint16_t i = 0; i < pwdCount; ++i) {

        if (BUTTON_PRESS() && !usb_poll_validate_length()) {
            goto OUT;
        }

        pwd = bytes_to_num(pwds + i * 4, 4);


        T55xxReadBlock(5, 0, pwd);

        // calc mean of BigBuf 1024 samples.
        uint32_t sum = 0;
        for (uint16_t j = 0; j < 1024; ++j) {
            sum += buf[j];
        }

        sum *= sum;
        sum >>= 8;

        int32_t tmp = (sum - baseline);
        curr = ABS(tmp);

        Dbprintf("[=] Pwd %08X  | ABS %u", pwd, curr);

        if (curr > prev) {


            Dbprintf("[=]  --> ABS %u  Candidate %08X <--", curr, pwd);
            candidate = pwd;
            prev = curr;
        }
    }

    if (candidate)
        ret = 1;

OUT:
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    cmd_send(CMD_ACK, ret, candidate, 0, 0, 0);
    LEDsoff();
}

void T55xxWakeUp(uint32_t Pwd) {
    LED_B_ON();
    uint32_t i = 0;

    // Set up FPGA, 125kHz
    LFSetupFPGAForADC(95, true);
    // make sure tag is fully powered up...
    WaitMS(4);

    // Trigger T55x7 Direct Access Mode
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    WaitUS(t_config.start_gap);

    // Opcode 10
    T55xxWriteBit(1);
    T55xxWriteBit(0); //Page 0

    // Send Pwd
    for (i = 0x80000000; i != 0; i >>= 1)
        T55xxWriteBit(Pwd & i);

    // Turn and leave field on to let the begin repeating transmission
    TurnReadLFOn(20 * 1000);
}

/*-------------- Cloning routines -----------*/
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
    // write last block first and config block last (if included)
    for (uint8_t i = numblocks + startblock; i > startblock; i--)
        T55xxWriteBlockExt(blockdata[i - 1], i - 1, 0, 0);
}

// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
    uint32_t data[] = {0, 0, 0, 0, 0, 0, 0};
    uint8_t last_block = 0;

    if (longFMT) {
        // Ensure no more than 84 bits supplied
        if (hi2 > 0xFFFFF) {
            DbpString("Tags can only have 84 bits.");
            return;
        }
        // Build the 6 data blocks for supplied 84bit ID
        last_block = 6;
        // load preamble (1D) & long format identifier (9E manchester encoded)
        data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
        // load raw id from hi2, hi, lo to data blocks (manchester encoded)
        data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
        data[3] = manchesterEncode2Bytes(hi >> 16);
        data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
        data[5] = manchesterEncode2Bytes(lo >> 16);
        data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
    } else {
        // Ensure no more than 44 bits supplied
        if (hi > 0xFFF) {
            DbpString("Tags can only have 44 bits.");
            return;
        }
        // Build the 3 data blocks for supplied 44bit ID
        last_block = 3;
        // load preamble
        data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
        data[2] = manchesterEncode2Bytes(lo >> 16);
        data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
    }
    // load chip config block
    data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;

    //TODO add selection of chip for Q5 or T55x7
    // data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;

    LED_D_ON();
    WriteT55xx(data, 0, last_block + 1);
    LED_D_OFF();
}

void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
    uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
    //TODO add selection of chip for Q5 or T55x7
    // data[0] = T5555_SET_BITRATE(64) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;

    LED_D_ON();
    // Program the data blocks for supplied ID
    // and the block 0 config
    WriteT55xx(data, 0, 3);
    LED_D_OFF();
}

// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
    //Program the 2 data blocks for supplied 64bit UID
    // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
    uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
    //TODO add selection of chip for Q5 or T55x7
    // data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
    LED_D_ON();
    WriteT55xx(data, 0, 3);
    //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
    // T5567WriteBlock(0x603E1042,0);
    LED_D_OFF();
}
// Clone Indala 224-bit tag by UID to T55x7
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
    //Program the 7 data blocks for supplied 224bit UID
    uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
    // and the block 0 for Indala224 format
    //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
    data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
    //TODO add selection of chip for Q5 or T55x7
    // data[0] =  T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
    LED_D_ON();
    WriteT55xx(data, 0, 8);
    //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
    // T5567WriteBlock(0x603E10E2,0);
    LED_D_OFF();
}
// clone viking tag to T55xx
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
    uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
    if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
    // Program the data blocks for supplied ID and the block 0 config
    WriteT55xx(data, 0, 3);
    LED_D_OFF();
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}

// Define 9bit header for EM410x tags
#define EM410X_HEADER    0x1FF
#define EM410X_ID_LENGTH 40

void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
    int i, id_bit;
    uint64_t id = EM410X_HEADER;
    uint64_t rev_id = 0; // reversed ID
    int c_parity[4];     // column parity
    int r_parity = 0;    // row parity
    uint32_t clock = 0;

    // Reverse ID bits given as parameter (for simpler operations)
    for (i = 0; i < EM410X_ID_LENGTH; ++i) {
        if (i < 32) {
            rev_id = (rev_id << 1) | (id_lo & 1);
            id_lo >>= 1;
        } else {
            rev_id = (rev_id << 1) | (id_hi & 1);
            id_hi >>= 1;
        }
    }

    for (i = 0; i < EM410X_ID_LENGTH; ++i) {
        id_bit = rev_id & 1;

        if (i % 4 == 0) {
            // Don't write row parity bit at start of parsing
            if (i)
                id = (id << 1) | r_parity;
            // Start counting parity for new row
            r_parity = id_bit;
        } else {
            // Count row parity
            r_parity ^= id_bit;
        }

        // First elements in column?
        if (i < 4)
            // Fill out first elements
            c_parity[i] = id_bit;
        else
            // Count column parity
            c_parity[i % 4] ^= id_bit;

        // Insert ID bit
        id = (id << 1) | id_bit;
        rev_id >>= 1;
    }

    // Insert parity bit of last row
    id = (id << 1) | r_parity;

    // Fill out column parity at the end of tag
    for (i = 0; i < 4; ++i)
        id = (id << 1) | c_parity[i];

    // Add stop bit
    id <<= 1;

    Dbprintf("Started writing %s tag ...", card ? "T55x7" : "T5555");
    LED_D_ON();

    // Write EM410x ID
    uint32_t data[] = {0, (uint32_t)(id >> 32), (uint32_t)(id & 0xFFFFFFFF)};

    clock = (card & 0xFF00) >> 8;
    clock = (clock == 0) ? 64 : clock;
    Dbprintf("Clock rate: %d", clock);
    if (card & 0xFF) { //t55x7
        clock = GetT55xxClockBit(clock);
        if (clock == 0) {
            Dbprintf("Invalid clock rate: %d", clock);
            return;
        }
        data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
    } else { //t5555 (Q5)
        data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
    }

    WriteT55xx(data, 0, 3);

    LED_D_OFF();
    Dbprintf("Tag %s written with 0x%08x%08x\n",
             card ? "T55x7" : "T5555",
             (uint32_t)(id >> 32),
             (uint32_t)id);
}

//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
// Below given command set.
// Commands are including the even parity, binary mirrored
#define FWD_CMD_LOGIN   0xC
#define FWD_CMD_WRITE   0xA
#define FWD_CMD_READ    0x9
#define FWD_CMD_DISABLE 0x5

uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t *forward_ptr;  //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
uint8_t *fwd_write_ptr;  //forwardlink bit pointer

//====================================================================
// prepares command bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
//  VALUES TAKEN FROM EM4x function: SendForward
//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
//  WRITE_GAP = 128;       (16*8)
//  WRITE_1   = 256 32*8;  (32*8)

//  These timings work for 4469/4269/4305 (with the 55*8 above)
//  WRITE_0 = 23*8 , 9*8

uint8_t Prepare_Cmd(uint8_t cmd) {

    *forward_ptr++ = 0; //start bit
    *forward_ptr++ = 0; //second pause for 4050 code

    *forward_ptr++ = cmd;
    cmd >>= 1;
    *forward_ptr++ = cmd;
    cmd >>= 1;
    *forward_ptr++ = cmd;
    cmd >>= 1;
    *forward_ptr++ = cmd;

    return 6; //return number of emited bits
}

//====================================================================
// prepares address bits
// see EM4469 spec
//====================================================================
uint8_t Prepare_Addr(uint8_t addr) {

    register uint8_t line_parity;

    uint8_t i;
    line_parity = 0;
    for (i = 0; i < 6; i++) {
        *forward_ptr++ = addr;
        line_parity ^= addr;
        addr >>= 1;
    }

    *forward_ptr++ = (line_parity & 1);

    return 7; //return number of emited bits
}

//====================================================================
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
uint8_t Prepare_Data(uint16_t data_low, uint16_t data_hi) {

    register uint8_t line_parity;
    register uint8_t column_parity;
    register uint8_t i, j;
    register uint16_t data;

    data = data_low;
    column_parity = 0;

    for (i = 0; i < 4; i++) {
        line_parity = 0;
        for (j = 0; j < 8; j++) {
            line_parity ^= data;
            column_parity ^= (data & 1) << j;
            *forward_ptr++ = data;
            data >>= 1;
        }
        *forward_ptr++ = line_parity;
        if (i == 1)
            data = data_hi;
    }

    for (j = 0; j < 8; j++) {
        *forward_ptr++ = column_parity;
        column_parity >>= 1;
    }
    *forward_ptr = 0;

    return 45; //return number of emited bits
}

//====================================================================
// Forward Link send function
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
// fwd_bit_count set with number of bits to be sent
//====================================================================
void SendForward(uint8_t fwd_bit_count) {

// iceman,   21.3us increments for the USclock verification.
// 55FC * 8us == 440us / 21.3 === 20.65 steps.  could be too short. Go for 56FC instead
// 32FC * 8us == 256us / 21.3 ==  12.018 steps. ok
// 16FC * 8us == 128us / 21.3 ==  6.009 steps. ok
#ifndef EM_START_GAP
#define EM_START_GAP 55*8
#endif

    fwd_write_ptr = forwardLink_data;
    fwd_bit_sz = fwd_bit_count;

    // Set up FPGA, 125kHz or 95 divisor
    LFSetupFPGAForADC(95, true);

    // force 1st mod pulse (start gap must be longer for 4305)
    fwd_bit_sz--; //prepare next bit modulation
    fwd_write_ptr++;

    TurnReadLF_off(EM_START_GAP);
    TurnReadLFOn(18 * 8);

    // now start writting with bitbanging the antenna.
    while (fwd_bit_sz-- > 0) { //prepare next bit modulation
        if (((*fwd_write_ptr++) & 1) == 1) {
            WaitUS(32 * 8);
        } else {
            TurnReadLF_off(23 * 8);
            TurnReadLFOn(18 * 8);
        }
    }
}

void EM4xLogin(uint32_t pwd) {
    uint8_t len;
    forward_ptr = forwardLink_data;
    len = Prepare_Cmd(FWD_CMD_LOGIN);
    len += Prepare_Data(pwd & 0xFFFF, pwd >> 16);
    SendForward(len);
    //WaitUS(20); // no wait for login command.
    // should receive
    // 0000 1010 ok.
    // 0000 0001 fail
}

void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {

    LED_A_ON();
    uint8_t len;

    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_ext(false);

    StartTicks();
    /* should we read answer from Logincommand?
    *
    * should receive
    * 0000 1010 ok.
    * 0000 0001 fail
    **/
    if (usepwd) EM4xLogin(pwd);

    forward_ptr = forwardLink_data;
    len = Prepare_Cmd(FWD_CMD_READ);
    len += Prepare_Addr(addr);

    SendForward(len);

    WaitUS(400);

    DoPartialAcquisition(20, true, 6000, 1000);

    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
    LED_A_OFF();
}

void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {

    LED_A_ON();

    bool usePwd = (flag & 0xF);
    uint8_t addr = (flag >> 8) & 0xFF;
    uint8_t len;

    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_ext(false);
    StartTicks();
    /* should we read answer from Logincommand?
    *
    * should receive
    * 0000 1010 ok.
    * 0000 0001 fail
    **/
    if (usePwd) EM4xLogin(pwd);

    forward_ptr = forwardLink_data;
    len = Prepare_Cmd(FWD_CMD_WRITE);
    len += Prepare_Addr(addr);
    len += Prepare_Data(data & 0xFFFF, data >> 16);

    SendForward(len);

    //Wait 20ms for write to complete?
    WaitMS(7);

    DoPartialAcquisition(20, true, 6000, 1000);

    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
    LED_A_OFF();
}

/*
Reading a COTAG.

COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
because of this, we can "sample" the data signal but we interpreate it to Manchester direct.

READER START SEQUENCE:
burst 800 us,    gap   2.2 msecs
burst 3.6 msecs  gap   2.2 msecs
burst 800 us     gap   2.2 msecs
pulse 3.6 msecs

This triggers a COTAG tag to response
*/
void Cotag(uint32_t arg0) {
#ifndef OFF
# define OFF(x)  { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS((x)); }
#endif
#ifndef ON
# define ON(x)   { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
#endif
    uint8_t rawsignal = arg0 & 0xF;

    LED_A_ON();

    LFSetupFPGAForADC(89, true);

    //clear buffer now so it does not interfere with timing later
    BigBuf_Clear_ext(false);

    //send COTAG start pulse
    ON(740)  OFF(2035)
    ON(3330) OFF(2035)
    ON(740)  OFF(2035)
    ON(1000)

    switch (rawsignal) {
        case 0:
            doCotagAcquisition(50000);
            break;
        case 1:
            doCotagAcquisitionManchester();
            break;
        case 2:
            DoAcquisition_config(true, 0);
            break;
    }

    // Turn the field off
    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
    cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
    LEDsoff();
}

/*
* EM4305 support
*/