/*- * Copyright (C) 2010, Romain Tartiere. * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see * * $Id$ */ /* * This implementation was written based on information provided by the * following documents: * * NIST Special Publication 800-38B * Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication * May 2005 */ #include "desfire_crypto.h" #include #include #include #include "commonutil.h" #include "crc32.h" #include "mbedtls/aes.h" //#include "mbedtls/des.h" #include "ui.h" #include "crc.h" #include "crc16.h" // crc16 ccitt const uint8_t sbox[256] = { /* S-box 1 */ 0xE4, 0xD1, 0x2F, 0xB8, 0x3A, 0x6C, 0x59, 0x07, 0x0F, 0x74, 0xE2, 0xD1, 0xA6, 0xCB, 0x95, 0x38, 0x41, 0xE8, 0xD6, 0x2B, 0xFC, 0x97, 0x3A, 0x50, 0xFC, 0x82, 0x49, 0x17, 0x5B, 0x3E, 0xA0, 0x6D, /* S-box 2 */ 0xF1, 0x8E, 0x6B, 0x34, 0x97, 0x2D, 0xC0, 0x5A, 0x3D, 0x47, 0xF2, 0x8E, 0xC0, 0x1A, 0x69, 0xB5, 0x0E, 0x7B, 0xA4, 0xD1, 0x58, 0xC6, 0x93, 0x2F, 0xD8, 0xA1, 0x3F, 0x42, 0xB6, 0x7C, 0x05, 0xE9, /* S-box 3 */ 0xA0, 0x9E, 0x63, 0xF5, 0x1D, 0xC7, 0xB4, 0x28, 0xD7, 0x09, 0x34, 0x6A, 0x28, 0x5E, 0xCB, 0xF1, 0xD6, 0x49, 0x8F, 0x30, 0xB1, 0x2C, 0x5A, 0xE7, 0x1A, 0xD0, 0x69, 0x87, 0x4F, 0xE3, 0xB5, 0x2C, /* S-box 4 */ 0x7D, 0xE3, 0x06, 0x9A, 0x12, 0x85, 0xBC, 0x4F, 0xD8, 0xB5, 0x6F, 0x03, 0x47, 0x2C, 0x1A, 0xE9, 0xA6, 0x90, 0xCB, 0x7D, 0xF1, 0x3E, 0x52, 0x84, 0x3F, 0x06, 0xA1, 0xD8, 0x94, 0x5B, 0xC7, 0x2E, /* S-box 5 */ 0x2C, 0x41, 0x7A, 0xB6, 0x85, 0x3F, 0xD0, 0xE9, 0xEB, 0x2C, 0x47, 0xD1, 0x50, 0xFA, 0x39, 0x86, 0x42, 0x1B, 0xAD, 0x78, 0xF9, 0xC5, 0x63, 0x0E, 0xB8, 0xC7, 0x1E, 0x2D, 0x6F, 0x09, 0xA4, 0x53, /* S-box 6 */ 0xC1, 0xAF, 0x92, 0x68, 0x0D, 0x34, 0xE7, 0x5B, 0xAF, 0x42, 0x7C, 0x95, 0x61, 0xDE, 0x0B, 0x38, 0x9E, 0xF5, 0x28, 0xC3, 0x70, 0x4A, 0x1D, 0xB6, 0x43, 0x2C, 0x95, 0xFA, 0xBE, 0x17, 0x60, 0x8D, /* S-box 7 */ 0x4B, 0x2E, 0xF0, 0x8D, 0x3C, 0x97, 0x5A, 0x61, 0xD0, 0xB7, 0x49, 0x1A, 0xE3, 0x5C, 0x2F, 0x86, 0x14, 0xBD, 0xC3, 0x7E, 0xAF, 0x68, 0x05, 0x92, 0x6B, 0xD8, 0x14, 0xA7, 0x95, 0x0F, 0xE2, 0x3C, /* S-box 8 */ 0xD2, 0x84, 0x6F, 0xB1, 0xA9, 0x3E, 0x50, 0xC7, 0x1F, 0xD8, 0xA3, 0x74, 0xC5, 0x6B, 0x0E, 0x92, 0x7B, 0x41, 0x9C, 0xE2, 0x06, 0xAD, 0xF3, 0x58, 0x21, 0xE7, 0x4A, 0x8D, 0xFC, 0x90, 0x35, 0x6B }; const uint8_t e_permtab[] = { 4, 6, /* 4 bytes in 6 bytes out*/ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; const uint8_t p_permtab[] = { 4, 4, /* 32 bit -> 32 bit */ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; const uint8_t ip_permtab[] = { 8, 8, /* 64 bit -> 64 bit */ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; const uint8_t inv_ip_permtab[] = { 8, 8, /* 64 bit -> 64 bit */ 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; const uint8_t pc1_permtab[] = { 8, 7, /* 64 bit -> 56 bit*/ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; const uint8_t pc2_permtab[] = { 7, 6, /* 56 bit -> 48 bit */ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; const uint8_t splitin6bitword_permtab[] = { 8, 8, /* 64 bit -> 64 bit */ 64, 64, 1, 6, 2, 3, 4, 5, 64, 64, 7, 12, 8, 9, 10, 11, 64, 64, 13, 18, 14, 15, 16, 17, 64, 64, 19, 24, 20, 21, 22, 23, 64, 64, 25, 30, 26, 27, 28, 29, 64, 64, 31, 36, 32, 33, 34, 35, 64, 64, 37, 42, 38, 39, 40, 41, 64, 64, 43, 48, 44, 45, 46, 47 }; const uint8_t shiftkey_permtab[] = { 7, 7, /* 56 bit -> 56 bit */ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 1, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 29 }; const uint8_t shiftkeyinv_permtab[] = { 7, 7, 28, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 }; /* 1 0 1 0 2 1 2 1 2 1 2 1 2 1 2 1 ---- 1 0 2 1 2 1 2 1 2 1 2 1 2 1 1 0 */ #define ROTTABLE 0x7EFC #define ROTTABLE_INV 0x3F7E /******************************************************************************/ void permute(const uint8_t *ptable, const uint8_t *in, uint8_t *out) { uint8_t ob; /* in-bytes and out-bytes */ uint8_t byte, bit; /* counter for bit and byte */ ob = ptable[1]; ptable = &(ptable[2]); for (byte = 0; byte < ob; ++byte) { uint8_t t = 0; for (bit = 0; bit < 8; ++bit) { uint8_t x = *ptable++ - 1; t <<= 1; if ((in[x / 8]) & (0x80 >> (x % 8))) { t |= 0x01; } } out[byte] = t; } } /******************************************************************************/ void changeendian32(uint32_t *a) { *a = (*a & 0x000000FF) << 24 | (*a & 0x0000FF00) << 8 | (*a & 0x00FF0000) >> 8 | (*a & 0xFF000000) >> 24; } /******************************************************************************/ static inline void shiftkey(uint8_t *key) { uint8_t k[7]; memcpy(k, key, 7); permute((uint8_t *)shiftkey_permtab, k, key); } /******************************************************************************/ static inline void shiftkey_inv(uint8_t *key) { uint8_t k[7]; memcpy(k, key, 7); permute((uint8_t *)shiftkeyinv_permtab, k, key); } /******************************************************************************/ static inline uint64_t splitin6bitwords(uint64_t a) { uint64_t ret = 0; a &= 0x0000ffffffffffffLL; permute((uint8_t *)splitin6bitword_permtab, (uint8_t *)&a, (uint8_t *)&ret); return ret; } /******************************************************************************/ static inline uint8_t substitute(uint8_t a, uint8_t *sbp) { uint8_t x; x = sbp[a >> 1]; x = (a & 1) ? x & 0x0F : x >> 4; return x; } /******************************************************************************/ uint32_t des_f(uint32_t r, uint8_t *kr) { uint8_t i; uint32_t t = 0, ret; uint64_t data = 0; uint8_t *sbp; /* sboxpointer */ permute((uint8_t *)e_permtab, (uint8_t *)&r, (uint8_t *)&data); for (i = 0; i < 6; ++i) ((uint8_t *)&data)[i] ^= kr[i]; /* Sbox substitution */ data = splitin6bitwords(data); sbp = (uint8_t *)sbox; for (i = 0; i < 8; ++i) { uint8_t x; x = substitute(((uint8_t *)&data)[i], sbp); t <<= 4; t |= x; sbp += 32; } changeendian32(&t); permute((uint8_t *)p_permtab, (uint8_t *)&t, (uint8_t *)&ret); return ret; } /******************************************************************************/ typedef struct { union { uint8_t v8[8]; uint32_t v32[2]; } d; } des_data_t; #define R (des_data.d.v32[1]) #define L (des_data.d.v32[0]) void des_enc(void *out, const void *in, const void *key) { uint8_t kr[6], k[7]; uint8_t i; des_data_t des_data; permute((uint8_t *)ip_permtab, (uint8_t *)in, des_data.d.v8); permute((uint8_t *)pc1_permtab, (const uint8_t *)key, k); for (i = 0; i < 8; ++i) { shiftkey(k); if (ROTTABLE & ((1 << ((i << 1) + 0)))) shiftkey(k); permute((uint8_t *)pc2_permtab, k, kr); L ^= des_f(R, kr); shiftkey(k); if (ROTTABLE & ((1 << ((i << 1) + 1)))) shiftkey(k); permute((uint8_t *)pc2_permtab, k, kr); R ^= des_f(L, kr); } /* L <-> R*/ R ^= L; L ^= R; R ^= L; permute((uint8_t *)inv_ip_permtab, des_data.d.v8, (uint8_t *)out); } /******************************************************************************/ void des_dec(void *out, const void *in, const void *key) { uint8_t kr[6], k[7]; int8_t i; des_data_t des_data; permute((uint8_t *)ip_permtab, (uint8_t *)in, des_data.d.v8); permute((uint8_t *)pc1_permtab, (const uint8_t *)key, k); for (i = 7; i >= 0; --i) { permute((uint8_t *)pc2_permtab, k, kr); L ^= des_f(R, kr); shiftkey_inv(k); if (ROTTABLE & ((1 << ((i << 1) + 1)))) { shiftkey_inv(k); } permute((uint8_t *)pc2_permtab, k, kr); R ^= des_f(L, kr); shiftkey_inv(k); if (ROTTABLE & ((1 << ((i << 1) + 0)))) { shiftkey_inv(k); } } /* L <-> R*/ R ^= L; L ^= R; R ^= L; permute((uint8_t *)inv_ip_permtab, des_data.d.v8, (uint8_t *)out); } #undef R #undef L /******************************************************************************/ #ifndef AddCrc14A # define AddCrc14A(data, len) compute_crc(CRC_14443_A, (data), (len), (data)+(len), (data)+(len)+1) #endif #define htole32(x) (x) #define CRC32_PRESET 0xFFFFFFFF static void crc32_byte(uint32_t *crc, const uint8_t value); static void crc32_byte(uint32_t *crc, const uint8_t value) { /* x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 */ const uint32_t poly = 0xEDB88320; *crc ^= value; for (int current_bit = 7; current_bit >= 0; current_bit--) { int bit_out = (*crc) & 0x00000001; *crc >>= 1; if (bit_out) *crc ^= poly; } } void crc32_ex(const uint8_t *data, const size_t len, uint8_t *crc) { uint32_t desfire_crc = CRC32_PRESET; for (size_t i = 0; i < len; i++) { crc32_byte(&desfire_crc, data[i]); } *((uint32_t *)(crc)) = htole32(desfire_crc); } void crc32_append(uint8_t *data, const size_t len) { crc32_ex(data, len, data + len); } static inline void update_key_schedules(desfirekey_t key); static inline void update_key_schedules(desfirekey_t key) { // DES_set_key ((DES_cblock *)key->data, &(key->ks1)); // DES_set_key ((DES_cblock *)(key->data + 8), &(key->ks2)); // if (T_3K3DES == key->type) { // DES_set_key ((DES_cblock *)(key->data + 16), &(key->ks3)); // } } /******************************************************************************/ /*void des_enc(void *out, const void *in, const void *key) { mbedtls_des_context ctx; mbedtls_des_setkey_enc(&ctx, key); mbedtls_des_crypt_ecb(&ctx, in, out); mbedtls_des_free(&ctx); } void des_dec(void *out, const void *in, const void *key) { mbedtls_des_context ctx; mbedtls_des_setkey_dec(&ctx, key); mbedtls_des_crypt_ecb(&ctx, in, out); mbedtls_des_free(&ctx); } */ void tdes_3key_enc(void *out, void *in, const void *key) { des_enc(out, in, (uint8_t *)key + 0); des_dec(out, out, (uint8_t *)key + 8); des_enc(out, out, (uint8_t *)key + 16); } void tdes_3key_dec(void *out, void *in, const uint8_t *key) { des_dec(out, in, (uint8_t *)key + 16); des_enc(out, out, (uint8_t *)key + 8); des_dec(out, out, (uint8_t *)key + 0); } void tdes_2key_enc(void *out, void *in, const void *key) { des_enc(out, in, (uint8_t *)key + 0); des_dec(out, out, (uint8_t *)key + 8); des_enc(out, out, (uint8_t *)key + 0); } void tdes_2key_dec(void *out, void *in, const uint8_t *key) { des_dec(out, in, (uint8_t *)key + 0); des_enc(out, out, (uint8_t *)key + 8); des_dec(out, out, (uint8_t *)key + 0); } void tdes_nxp_receive(const void *in, void *out, size_t length, const void *key, unsigned char iv[8], int keymode) { if (length % 8) return; uint8_t i; unsigned char temp[8]; uint8_t *tin = (uint8_t *) in; uint8_t *tout = (uint8_t *) out; while (length > 0) { memcpy(temp, tin, 8); if (keymode == 2) tdes_2key_dec(tout, tin, key); else if (keymode == 3) tdes_3key_dec(tout, tin, key); for (i = 0; i < 8; i++) tout[i] = (unsigned char)(tout[i] ^ iv[i]); memcpy(iv, temp, 8); tin += 8; tout += 8; length -= 8; } } void tdes_nxp_send(const void *in, void *out, size_t length, const void *key, unsigned char iv[8], int keymode) { if (length % 8) return; uint8_t i; uint8_t *tin = (uint8_t *) in; uint8_t *tout = (uint8_t *) out; while (length > 0) { for (i = 0; i < 8; i++) tin[i] = (unsigned char)(tin[i] ^ iv[i]); if (keymode == 2) tdes_2key_enc(tout, tin, key); else if (keymode == 3) tdes_3key_enc(tout, tin, key); memcpy(iv, tout, 8); tin += 8; tout += 8; length -= 8; } } void Desfire_des_key_new(const uint8_t value[8], desfirekey_t key) { uint8_t data[8]; memcpy(data, value, 8); for (int n = 0; n < 8; n++) data[n] &= 0xfe; Desfire_des_key_new_with_version(data, key); } void Desfire_des_key_new_with_version(const uint8_t value[8], desfirekey_t key) { if (key != NULL) { key->type = T_DES; memcpy(key->data, value, 8); memcpy(key->data + 8, value, 8); update_key_schedules(key); } } void Desfire_3des_key_new(const uint8_t value[16], desfirekey_t key) { uint8_t data[16]; memcpy(data, value, 16); for (int n = 0; n < 8; n++) data[n] &= 0xfe; for (int n = 8; n < 16; n++) data[n] |= 0x01; Desfire_3des_key_new_with_version(data, key); } void Desfire_3des_key_new_with_version(const uint8_t value[16], desfirekey_t key) { if (key != NULL) { key->type = T_3DES; memcpy(key->data, value, 16); update_key_schedules(key); } } void Desfire_3k3des_key_new(const uint8_t value[24], desfirekey_t key) { uint8_t data[24]; memcpy(data, value, 24); for (int n = 0; n < 8; n++) data[n] &= 0xfe; Desfire_3k3des_key_new_with_version(data, key); } void Desfire_3k3des_key_new_with_version(const uint8_t value[24], desfirekey_t key) { if (key != NULL) { key->type = T_3K3DES; memcpy(key->data, value, 24); update_key_schedules(key); } } void Desfire_aes_key_new(const uint8_t value[16], desfirekey_t key) { Desfire_aes_key_new_with_version(value, 0, key); } void Desfire_aes_key_new_with_version(const uint8_t value[16], uint8_t version, desfirekey_t key) { if (key != NULL) { memcpy(key->data, value, 16); key->type = T_AES; key->aes_version = version; } } uint8_t Desfire_key_get_version(desfirekey_t key) { uint8_t version = 0; for (int n = 0; n < 8; n++) { version |= ((key->data[n] & 1) << (7 - n)); } return version; } void Desfire_key_set_version(desfirekey_t key, uint8_t version) { for (int n = 0; n < 8; n++) { uint8_t version_bit = ((version & (1 << (7 - n))) >> (7 - n)); key->data[n] &= 0xfe; key->data[n] |= version_bit; if (key->type == T_DES) { key->data[n + 8] = key->data[n]; } else { // Write ~version to avoid turning a 3DES key into a DES key key->data[n + 8] &= 0xfe; key->data[n + 8] |= ~version_bit; } } } void Desfire_session_key_new(const uint8_t rnda[], const uint8_t rndb[], desfirekey_t authkey, desfirekey_t key) { uint8_t buffer[24]; switch (authkey->type) { case T_DES: memcpy(buffer, rnda, 4); memcpy(buffer + 4, rndb, 4); Desfire_des_key_new_with_version(buffer, key); break; case T_3DES: memcpy(buffer, rnda, 4); memcpy(buffer + 4, rndb, 4); memcpy(buffer + 8, rnda + 4, 4); memcpy(buffer + 12, rndb + 4, 4); Desfire_3des_key_new_with_version(buffer, key); break; case T_3K3DES: memcpy(buffer, rnda, 4); memcpy(buffer + 4, rndb, 4); memcpy(buffer + 8, rnda + 6, 4); memcpy(buffer + 12, rndb + 6, 4); memcpy(buffer + 16, rnda + 12, 4); memcpy(buffer + 20, rndb + 12, 4); Desfire_3k3des_key_new(buffer, key); break; case T_AES: memcpy(buffer, rnda, 4); memcpy(buffer + 4, rndb, 4); memcpy(buffer + 8, rnda + 12, 4); memcpy(buffer + 12, rndb + 12, 4); Desfire_aes_key_new(buffer, key); break; } } static void xor(const uint8_t *ivect, uint8_t *data, const size_t len); static size_t key_macing_length(desfirekey_t key); // iceman, see memxor inside string.c, dest/src swapped.. static void xor(const uint8_t *ivect, uint8_t *data, const size_t len) { for (size_t i = 0; i < len; i++) { data[i] ^= ivect[i]; } } void cmac_generate_subkeys(desfirekey_t key) { int kbs = key_block_size(key); const uint8_t R = (kbs == 8) ? 0x1B : 0x87; uint8_t l[kbs]; memset(l, 0, kbs); uint8_t ivect[kbs]; memset(ivect, 0, kbs); mifare_cypher_blocks_chained(NULL, key, ivect, l, kbs, MCD_RECEIVE, MCO_ENCYPHER); bool xor = false; // Used to compute CMAC on complete blocks memcpy(key->cmac_sk1, l, kbs); xor = l[0] & 0x80; lsl(key->cmac_sk1, kbs); if (xor) key->cmac_sk1[kbs - 1] ^= R; // Used to compute CMAC on the last block if non-complete memcpy(key->cmac_sk2, key->cmac_sk1, kbs); xor = key->cmac_sk1[0] & 0x80; lsl(key->cmac_sk2, kbs); if (xor) key->cmac_sk2[kbs - 1] ^= R; } void cmac(const desfirekey_t key, uint8_t *ivect, const uint8_t *data, size_t len, uint8_t *cmac) { int kbs = key_block_size(key); uint8_t *buffer = malloc(padded_data_length(len, kbs)); memcpy(buffer, data, len); if ((!len) || (len % kbs)) { buffer[len++] = 0x80; while (len % kbs) { buffer[len++] = 0x00; } xor(key->cmac_sk2, buffer + len - kbs, kbs); } else { xor(key->cmac_sk1, buffer + len - kbs, kbs); } mifare_cypher_blocks_chained(NULL, key, ivect, buffer, len, MCD_SEND, MCO_ENCYPHER); memcpy(cmac, ivect, kbs); free(buffer); } size_t key_block_size(const desfirekey_t key) { if (key == NULL) return 0; size_t block_size = 8; switch (key->type) { case T_DES: case T_3DES: case T_3K3DES: block_size = 8; break; case T_AES: block_size = 16; break; } return block_size; } /* * Size of MACing produced with the key. */ static size_t key_macing_length(const desfirekey_t key) { size_t mac_length = MAC_LENGTH; switch (key->type) { case T_DES: case T_3DES: mac_length = MAC_LENGTH; break; case T_3K3DES: case T_AES: mac_length = CMAC_LENGTH; break; } return mac_length; } /* * Size required to store nbytes of data in a buffer of size n*block_size. */ size_t padded_data_length(const size_t nbytes, const size_t block_size) { if ((!nbytes) || (nbytes % block_size)) return ((nbytes / block_size) + 1) * block_size; else return nbytes; } /* * Buffer size required to MAC nbytes of data */ size_t maced_data_length(const desfirekey_t key, const size_t nbytes) { return nbytes + key_macing_length(key); } /* * Buffer size required to encipher nbytes of data and a two bytes CRC. */ size_t enciphered_data_length(const desfiretag_t tag, const size_t nbytes, int communication_settings) { size_t crc_length = 0; if (!(communication_settings & NO_CRC)) { switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: crc_length = 2; break; case AS_NEW: crc_length = 4; break; } } size_t block_size = DESFIRE(tag)->session_key ? key_block_size(DESFIRE(tag)->session_key) : 1; return padded_data_length(nbytes + crc_length, block_size); } void *mifare_cryto_preprocess_data(desfiretag_t tag, void *data, size_t *nbytes, size_t offset, int communication_settings) { uint8_t *res = data; uint8_t mac[4]; size_t edl; bool append_mac = true; desfirekey_t key = DESFIRE(tag)->session_key; if (!key) return data; switch (communication_settings & MDCM_MASK) { case MDCM_PLAIN: if (AS_LEGACY == DESFIRE(tag)->authentication_scheme) break; /* * When using new authentication methods, PLAIN data transmission from * the PICC to the PCD are CMACed, so we have to maintain the * cryptographic initialisation vector up-to-date to check data * integrity later. * * The only difference with CMACed data transmission is that the CMAC * is not apended to the data send by the PCD to the PICC. */ append_mac = false; /* pass through */ case MDCM_MACED: switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: if (!(communication_settings & MAC_COMMAND)) break; /* pass through */ edl = padded_data_length(*nbytes - offset, key_block_size(DESFIRE(tag)->session_key)) + offset; // Fill in the crypto buffer with data ... memcpy(res, data, *nbytes); // ... and 0 padding memset(res + *nbytes, 0, edl - *nbytes); mifare_cypher_blocks_chained(tag, NULL, NULL, res + offset, edl - offset, MCD_SEND, MCO_ENCYPHER); memcpy(mac, res + edl - 8, 4); // Copy again provided data (was overwritten by mifare_cypher_blocks_chained) memcpy(res, data, *nbytes); if (!(communication_settings & MAC_COMMAND)) break; // Append MAC size_t bla = maced_data_length(DESFIRE(tag)->session_key, *nbytes - offset) + offset; bla++; memcpy(res + *nbytes, mac, 4); *nbytes += 4; break; case AS_NEW: if (!(communication_settings & CMAC_COMMAND)) break; cmac(key, DESFIRE(tag)->ivect, res, *nbytes, DESFIRE(tag)->cmac); if (append_mac) { size_t len = maced_data_length(key, *nbytes); ++len; memcpy(res, data, *nbytes); memcpy(res + *nbytes, DESFIRE(tag)->cmac, CMAC_LENGTH); *nbytes += CMAC_LENGTH; } break; } break; case MDCM_ENCIPHERED: /* |<-------------- data -------------->| * |<--- offset -->| | * +---------------+--------------------+-----+---------+ * | CMD + HEADERS | DATA TO BE SECURED | CRC | PADDING | * +---------------+--------------------+-----+---------+ ---------------- * | |<~~~~v~~~~~~~~~~~~~>| ^ | | (DES / 3DES) * | | `---- crc16() ----' | | * | | | ^ | | ----- *or* ----- * |<~~~~~~~~~~~~~~~~~~~~v~~~~~~~~~~~~~>| ^ | | (3K3DES / AES) * | `---- crc32() ----' | | * | | ---- *then* ---- * |<---------------------------------->| * encypher()/decypher() */ if (!(communication_settings & ENC_COMMAND)) break; edl = enciphered_data_length(tag, *nbytes - offset, communication_settings) + offset; // Fill in the crypto buffer with data ... memcpy(res, data, *nbytes); if (!(communication_settings & NO_CRC)) { // ... CRC ... switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: AddCrc14A(res + offset, *nbytes - offset); *nbytes += 2; break; case AS_NEW: crc32_append(res, *nbytes); *nbytes += 4; break; } } // ... and padding memset(res + *nbytes, 0, edl - *nbytes); *nbytes = edl; mifare_cypher_blocks_chained(tag, NULL, NULL, res + offset, *nbytes - offset, MCD_SEND, (AS_NEW == DESFIRE(tag)->authentication_scheme) ? MCO_ENCYPHER : MCO_DECYPHER); break; default: *nbytes = -1; res = NULL; break; } return res; } void *mifare_cryto_postprocess_data(desfiretag_t tag, void *data, size_t *nbytes, int communication_settings) { void *res = data; void *edata = NULL; uint8_t first_cmac_byte = 0x00; desfirekey_t key = DESFIRE(tag)->session_key; if (!key) return data; // Return directly if we just have a status code. if (1 == *nbytes) return res; switch (communication_settings & MDCM_MASK) { case MDCM_PLAIN: if (AS_LEGACY == DESFIRE(tag)->authentication_scheme) break; /* pass through */ case MDCM_MACED: switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: if (communication_settings & MAC_VERIFY) { *nbytes -= key_macing_length(key); if (*nbytes == 0) { *nbytes = -1; res = NULL; #ifdef WITH_DEBUG Dbprintf("No room for MAC!"); #endif break; } size_t edl = enciphered_data_length(tag, *nbytes - 1, communication_settings); edata = malloc(edl); memcpy(edata, data, *nbytes - 1); memset((uint8_t *)edata + *nbytes - 1, 0, edl - *nbytes + 1); mifare_cypher_blocks_chained(tag, NULL, NULL, edata, edl, MCD_SEND, MCO_ENCYPHER); if (0 != memcmp((uint8_t *)data + *nbytes - 1, (uint8_t *)edata + edl - 8, 4)) { #ifdef WITH_DEBUG Dbprintf("MACing not verified"); hexdump((uint8_t *)data + *nbytes - 1, key_macing_length(key), "Expect ", 0); hexdump((uint8_t *)edata + edl - 8, key_macing_length(key), "Actual ", 0); #endif DESFIRE(tag)->last_pcd_error = CRYPTO_ERROR; *nbytes = -1; res = NULL; } } break; case AS_NEW: if (!(communication_settings & CMAC_COMMAND)) break; if (communication_settings & CMAC_VERIFY) { if (*nbytes < 9) { *nbytes = -1; res = NULL; break; } first_cmac_byte = ((uint8_t *)data)[*nbytes - 9]; ((uint8_t *)data)[*nbytes - 9] = ((uint8_t *)data)[*nbytes - 1]; } int n = (communication_settings & CMAC_VERIFY) ? 8 : 0; cmac(key, DESFIRE(tag)->ivect, ((uint8_t *)data), *nbytes - n, DESFIRE(tag)->cmac); if (communication_settings & CMAC_VERIFY) { ((uint8_t *)data)[*nbytes - 9] = first_cmac_byte; if (0 != memcmp(DESFIRE(tag)->cmac, (uint8_t *)data + *nbytes - 9, 8)) { #ifdef WITH_DEBUG Dbprintf("CMAC NOT verified :-("); hexdump((uint8_t *)data + *nbytes - 9, 8, "Expect ", 0); hexdump(DESFIRE(tag)->cmac, 8, "Actual ", 0); #endif DESFIRE(tag)->last_pcd_error = CRYPTO_ERROR; *nbytes = -1; res = NULL; } else { *nbytes -= 8; } } break; } free(edata); break; case MDCM_ENCIPHERED: (*nbytes)--; bool verified = false; int crc_pos = 0x00; int end_crc_pos = 0x00; uint8_t x; /* * AS_LEGACY: * ,-----------------+-------------------------------+--------+ * \ BLOCK n-1 | BLOCK n | STATUS | * / PAYLOAD | CRC0 | CRC1 | 0x80? | 0x000000000000 | 0x9100 | * `-----------------+-------------------------------+--------+ * * <------------ DATA ------------> * FRAME = PAYLOAD + CRC(PAYLOAD) + PADDING * * AS_NEW: * ,-------------------------------+-----------------------------------------------+--------+ * \ BLOCK n-1 | BLOCK n | STATUS | * / PAYLOAD | CRC0 | CRC1 | CRC2 | CRC3 | 0x80? | 0x0000000000000000000000000000 | 0x9100 | * `-------------------------------+-----------------------------------------------+--------+ * <----------------------------------- DATA ------------------------------------->| * * <----------------- DATA ----------------> * FRAME = PAYLOAD + CRC(PAYLOAD + STATUS) + PADDING + STATUS * `------------------' */ mifare_cypher_blocks_chained(tag, NULL, NULL, res, *nbytes, MCD_RECEIVE, MCO_DECYPHER); /* * Look for the CRC and ensure it is followed by NULL padding. We * can't start by the end because the CRC is supposed to be 0 when * verified, and accumulating 0's in it should not change it. */ switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: crc_pos = *nbytes - 8 - 1; // The CRC can be over two blocks if (crc_pos < 0) { /* Single block */ crc_pos = 0; } break; case AS_NEW: /* Move status between payload and CRC */ res = DESFIRE(tag)->crypto_buffer; memcpy(res, data, *nbytes); crc_pos = (*nbytes) - 16 - 3; if (crc_pos < 0) { /* Single block */ crc_pos = 0; } memcpy((uint8_t *)res + crc_pos + 1, (uint8_t *)res + crc_pos, *nbytes - crc_pos); ((uint8_t *)res)[crc_pos] = 0x00; crc_pos++; *nbytes += 1; break; } do { uint16_t crc_16 = 0x00; uint32_t crc = 0x00; switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: AddCrc14A((uint8_t *)res, end_crc_pos); end_crc_pos = crc_pos + 2; // crc = crc_16; break; case AS_NEW: end_crc_pos = crc_pos + 4; crc32_ex(res, end_crc_pos, (uint8_t *)&crc); break; } if (!crc) { verified = true; for (int n = end_crc_pos; n < *nbytes - 1; n++) { uint8_t byte = ((uint8_t *)res)[n]; if (!((0x00 == byte) || ((0x80 == byte) && (n == end_crc_pos)))) verified = false; } } if (verified) { *nbytes = crc_pos; switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: ((uint8_t *)data)[(*nbytes)++] = 0x00; break; case AS_NEW: /* The status byte was already before the CRC */ break; } } else { switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: break; case AS_NEW: x = ((uint8_t *)res)[crc_pos - 1]; ((uint8_t *)res)[crc_pos - 1] = ((uint8_t *)res)[crc_pos]; ((uint8_t *)res)[crc_pos] = x; break; } crc_pos++; } } while (!verified && (end_crc_pos < *nbytes)); if (!verified) { #ifdef WITH_DEBUG /* FIXME In some configurations, the file is transmitted PLAIN */ Dbprintf("CRC not verified in decyphered stream"); #endif DESFIRE(tag)->last_pcd_error = CRYPTO_ERROR; *nbytes = -1; res = NULL; } break; default: PrintAndLogEx(ERR, "Unknown communication settings"); *nbytes = -1; res = NULL; break; } return res; } void mifare_cypher_single_block(desfirekey_t key, uint8_t *data, uint8_t *ivect, MifareCryptoDirection direction, MifareCryptoOperation operation, size_t block_size) { uint8_t ovect[MAX_CRYPTO_BLOCK_SIZE]; if (direction == MCD_SEND) { xor(ivect, data, block_size); } else { memcpy(ovect, data, block_size); } uint8_t edata[MAX_CRYPTO_BLOCK_SIZE]; switch (key->type) { case T_DES: switch (operation) { case MCO_ENCYPHER: //DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_ENCRYPT); des_enc(edata, data, key->data); break; case MCO_DECYPHER: //DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_DECRYPT); des_dec(edata, data, key->data); break; } break; case T_3DES: switch (operation) { case MCO_ENCYPHER: // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_ENCRYPT); // DES_ecb_encrypt ((DES_cblock *) edata, (DES_cblock *) data, &(key->ks2), DES_DECRYPT); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_ENCRYPT); tdes_2key_enc(edata, data, key->data); break; case MCO_DECYPHER: // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_DECRYPT); // DES_ecb_encrypt ((DES_cblock *) edata, (DES_cblock *) data, &(key->ks2), DES_ENCRYPT); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_DECRYPT); tdes_2key_dec(data, edata, key->data); break; } break; case T_3K3DES: switch (operation) { case MCO_ENCYPHER: tdes_3key_enc(edata, data, key->data); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_ENCRYPT); // DES_ecb_encrypt ((DES_cblock *) edata, (DES_cblock *) data, &(key->ks2), DES_DECRYPT); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks3), DES_ENCRYPT); break; case MCO_DECYPHER: tdes_3key_enc(data, edata, key->data); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks3), DES_DECRYPT); // DES_ecb_encrypt ((DES_cblock *) edata, (DES_cblock *) data, &(key->ks2), DES_ENCRYPT); // DES_ecb_encrypt ((DES_cblock *) data, (DES_cblock *) edata, &(key->ks1), DES_DECRYPT); break; } break; case T_AES: switch (operation) { case MCO_ENCYPHER: { mbedtls_aes_context ctx; mbedtls_aes_init(&ctx); mbedtls_aes_setkey_enc(&ctx, key->data, 128); mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_ENCRYPT, sizeof(edata), ivect, data, edata); mbedtls_aes_free(&ctx); break; } case MCO_DECYPHER: { mbedtls_aes_context ctx; mbedtls_aes_init(&ctx); mbedtls_aes_setkey_dec(&ctx, key->data, 128); mbedtls_aes_crypt_cbc(&ctx, MBEDTLS_AES_DECRYPT, sizeof(edata), ivect, edata, data); mbedtls_aes_free(&ctx); break; } } break; } memcpy(data, edata, block_size); if (direction == MCD_SEND) { memcpy(ivect, data, block_size); } else { xor(ivect, data, block_size); memcpy(ivect, ovect, block_size); } } /* * This function performs all CBC cyphering / deciphering. * * The tag argument may be NULL, in which case both key and ivect shall be set. * When using the tag session_key and ivect for processing data, these * arguments should be set to NULL. * * Because the tag may contain additional data, one may need to call this * function with tag, key and ivect defined. */ void mifare_cypher_blocks_chained(desfiretag_t tag, desfirekey_t key, uint8_t *ivect, uint8_t *data, size_t data_size, MifareCryptoDirection direction, MifareCryptoOperation operation) { size_t block_size; if (tag) { if (!key) key = DESFIRE(tag)->session_key; if (!ivect) ivect = DESFIRE(tag)->ivect; switch (DESFIRE(tag)->authentication_scheme) { case AS_LEGACY: memset(ivect, 0, MAX_CRYPTO_BLOCK_SIZE); break; case AS_NEW: break; } } block_size = key_block_size(key); size_t offset = 0; while (offset < data_size) { mifare_cypher_single_block(key, data + offset, ivect, direction, operation, block_size); offset += block_size; } }