//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency Legic commands //----------------------------------------------------------------------------- #include "cmdhflegic.h" static int CmdHelp(const char *Cmd); #define MAX_LENGTH 1024 int usage_legic_calccrc(void){ PrintAndLogEx(NORMAL, "Calculates the legic crc8/crc16 on the given data."); PrintAndLogEx(NORMAL, "There must be an even number of hexsymbols as input."); PrintAndLogEx(NORMAL, "Usage: hf legic crc [h] d u c <8|16>"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " d : (hex symbols) bytes to calculate crc over"); PrintAndLogEx(NORMAL, " u : MCC hexbyte"); PrintAndLogEx(NORMAL, " c <8|16> : Crc type"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic crc d deadbeef1122"); PrintAndLogEx(NORMAL, " hf legic crc d deadbeef1122 u 9A c 16"); return 0; } int usage_legic_rdmem(void){ PrintAndLogEx(NORMAL, "Read data from a legic tag."); PrintAndLogEx(NORMAL, "Usage: hf legic rdmem [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " : (hex) offset in data array to start download from"); PrintAndLogEx(NORMAL, " : (hex) number of bytes to read"); PrintAndLogEx(NORMAL, " : (hex) (optional) Initialization vector to use. Must be odd and 7bits max"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic rdmem 0 16 - reads from byte[0] 0x16 bytes(system header)"); PrintAndLogEx(NORMAL, " hf legic rdmem 0 4 55 - reads from byte[0] 0x4 bytes with IV 0x55"); PrintAndLogEx(NORMAL, " hf legic rdmem 0 100 55 - reads 0x100 bytes with IV 0x55"); return 0; } int usage_legic_sim(void){ PrintAndLogEx(NORMAL, "Simulates a LEGIC Prime tag. MIM22, MIM256, MIM1024 types can be emulated"); PrintAndLogEx(NORMAL, "Use ELOAD/ESAVE to upload a dump into emulator memory"); PrintAndLogEx(NORMAL, "Usage: hf legic sim [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " : 0 = MIM22"); PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)"); PrintAndLogEx(NORMAL, " : 2 = MIM1024"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic sim 2"); return 0; } int usage_legic_write(void){ PrintAndLogEx(NORMAL, "Write data to a LEGIC Prime tag. It autodetects tagsize to make sure size"); PrintAndLogEx(NORMAL, "Usage: hf legic write [h] o d "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " o : (hex) offset in data array to start writing"); //PrintAndLogEx(NORMAL, " : (optional) Initialization vector to use (ODD and 7bits)"); PrintAndLogEx(NORMAL, " d : (hex symbols) bytes to write "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic write o 10 d 11223344 - Write 0x11223344 starting from offset 0x10"); return 0; } int usage_legic_reader(void){ PrintAndLogEx(NORMAL, "Read UID and type information from a legic tag."); PrintAndLogEx(NORMAL, "Usage: hf legic reader [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic reader"); return 0; } int usage_legic_info(void){ PrintAndLogEx(NORMAL, "Reads information from a legic prime tag."); PrintAndLogEx(NORMAL, "Shows systemarea, user areas etc"); PrintAndLogEx(NORMAL, "Usage: hf legic info [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic info"); return 0; } int usage_legic_dump(void){ PrintAndLogEx(NORMAL, "Reads all pages from LEGIC Prime MIM22, MIM256, MIM1024"); PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`"); PrintAndLogEx(NORMAL, "It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf legic dump [h] o "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " o : filename w/o '.bin' to dump bytes"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic dump"); PrintAndLogEx(NORMAL, " hf legic dump o myfile"); return 0; } int usage_legic_restore(void){ PrintAndLogEx(NORMAL, "Reads binary file and it autodetects card type and verifies that the file has the same size"); PrintAndLogEx(NORMAL, "Then write the data back to card. All bytes except the first 7bytes [UID(4) MCC(1) DCF(2)]\n"); PrintAndLogEx(NORMAL, "Usage: hf legic restore [h] i "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " i : filename w/o '.bin' to restore bytes on to card from"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic restore i myfile"); return 0; } int usage_legic_eload(void){ PrintAndLogEx(NORMAL, "It loads binary dump from the file `filename.bin`"); PrintAndLogEx(NORMAL, "Usage: hf legic eload [h] [card memory] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " [card memory] : 0 = MIM22"); PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)"); PrintAndLogEx(NORMAL, " : 2 = MIM1024"); PrintAndLogEx(NORMAL, " : filename w/o .bin to load"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic eload 2 myfile"); return 0; } int usage_legic_esave(void){ PrintAndLogEx(NORMAL, "It saves binary dump into the file `filename.bin` or `cardID.bin`"); PrintAndLogEx(NORMAL, " Usage: hf legic esave [h] [card memory] [file name w/o `.bin`]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " [card memory] : 0 = MIM22"); PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)"); PrintAndLogEx(NORMAL, " : 2 = MIM1024"); PrintAndLogEx(NORMAL, " : filename w/o .bin to load"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic esave 2 myfile"); return 0; } int usage_legic_wipe(void){ PrintAndLogEx(NORMAL, "Fills a legic tag memory with zeros. From byte7 and to the end."); PrintAndLogEx(NORMAL, " Usage: hf legic wipe [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf legic wipe"); return 0; } /* * Output BigBuf and deobfuscate LEGIC RF tag data. * This is based on information given in the talk held * by Henryk Ploetz and Karsten Nohl at 26c3 */ int CmdLegicInfo(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' ) return usage_legic_info(); int i = 0, k = 0, segmentNum = 0, segment_len = 0, segment_flag = 0; int crc = 0, wrp = 0, wrc = 0; uint8_t stamp_len = 0; uint16_t datalen = 0; char token_type[5] = {0,0,0,0,0}; int dcf = 0; int bIsSegmented = 0; // tagtype legic_card_select_t card; if (legic_get_type(&card)) { PrintAndLogEx(WARNING, "Failed to identify tagtype"); return 1; } PrintAndLogEx(NORMAL, "Reading tag memory %d b...", card.cardsize); // allocate receiver buffer uint8_t *data = calloc(card.cardsize, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Cannot allocate memory"); return 2; } int status = legic_read_mem(0, card.cardsize, 0x55, data, &datalen); if ( status > 0 ) { PrintAndLogEx(WARNING, "Failed reading memory"); free(data); return 3; } // Output CDF System area (9 bytes) plus remaining header area (12 bytes) crc = data[4]; uint32_t calc_crc = CRC8Legic(data, 4); PrintAndLogEx(NORMAL, "\nCDF: System Area"); PrintAndLogEx(NORMAL, "------------------------------------------------------"); PrintAndLogEx(NORMAL, "MCD: %02x, MSN: %02x %02x %02x, MCC: %02x %s", data[0], data[1], data[2], data[3], data[4], (calc_crc == crc) ? "OK":"Fail" ); // MCD = Manufacturer ID (should be list meaning something?) token_type[0] = 0; dcf = ((int)data[6] << 8) | (int)data[5]; // New unwritten media? if (dcf == 0xFFFF) { PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=NM (New Media)", dcf, data[5], data[6] ); } else if (dcf > 60000) { // Master token? int fl = 0; if (data[6] == 0xec) { strncpy(token_type, "XAM", sizeof(token_type)); fl = 1; stamp_len = 0x0c - (data[5] >> 4); } else { switch (data[5] & 0x7f) { case 0x00 ... 0x2f: strncpy(token_type, "IAM", sizeof(token_type)); fl = (0x2f - (data[5] & 0x7f)) + 1; break; case 0x30 ... 0x6f: strncpy(token_type, "SAM", sizeof(token_type)); fl = (0x6f - (data[5] & 0x7f)) + 1; break; case 0x70 ... 0x7f: strncpy(token_type, "GAM", sizeof(token_type)); fl = (0x7f - (data[5] & 0x7f)) + 1; break; } stamp_len = 0xfc - data[6]; } PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=%s (OLE=%01u), OL=%02u, FL=%02u", dcf, data[5], data[6], token_type, (data[5] & 0x80 )>> 7, stamp_len, fl ); } else { // Is IM(-S) type of card... if (data[7] == 0x9F && data[8] == 0xFF) { bIsSegmented = 1; strncpy(token_type, "IM-S", sizeof(token_type)); } else { strncpy(token_type, "IM", sizeof(token_type)); } PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=%s (OLE=%01u)", dcf, data[5], data[6], token_type, (data[5]&0x80) >> 7 ); } // Makes no sence to show this on blank media... if (dcf != 0xFFFF) { if (bIsSegmented) { PrintAndLogEx(NORMAL, "WRP=%02u, WRC=%01u, RD=%01u, SSC=%02x", data[7] & 0x0f, (data[7] & 0x70) >> 4, (data[7] & 0x80) >> 7, data[8] ); } // Header area is only available on IM-S cards, on master tokens this data is the master token data itself if (bIsSegmented || dcf > 60000) { if (dcf > 60000) { PrintAndLogEx(NORMAL, "Master token data"); PrintAndLogEx(NORMAL, "%s", sprint_hex(data+8, 14)); } else { PrintAndLogEx(NORMAL, "Remaining Header Area"); PrintAndLogEx(NORMAL, "%s", sprint_hex(data+9, 13)); } } } uint8_t segCrcBytes[8] = {0,0,0,0,0,0,0,0}; uint32_t segCalcCRC = 0; uint32_t segCRC = 0; // Not Data card? if (dcf > 60000) goto out; PrintAndLogEx(NORMAL, "\nADF: User Area"); PrintAndLogEx(NORMAL, "------------------------------------------------------"); if(bIsSegmented) { // Data start point on segmented cards i = 22; // decode segments for (segmentNum=1; segmentNum < 128; segmentNum++ ) { segment_len = ((data[i+1] ^ crc) & 0x0f) * 256 + (data[i] ^ crc); segment_flag = ((data[i+1] ^ crc) & 0xf0) >> 4; wrp = (data[i+2] ^ crc); wrc = ((data[i+3] ^ crc) & 0x70) >> 4; bool hasWRC = (wrc > 0); bool hasWRP = (wrp > wrc); int wrp_len = (wrp - wrc); int remain_seg_payload_len = (segment_len - wrp - 5); // validate segment-crc segCrcBytes[0]=data[0]; //uid0 segCrcBytes[1]=data[1]; //uid1 segCrcBytes[2]=data[2]; //uid2 segCrcBytes[3]=data[3]; //uid3 segCrcBytes[4]=(data[i] ^ crc); //hdr0 segCrcBytes[5]=(data[i+1] ^ crc); //hdr1 segCrcBytes[6]=(data[i+2] ^ crc); //hdr2 segCrcBytes[7]=(data[i+3] ^ crc); //hdr3 segCalcCRC = CRC8Legic(segCrcBytes, 8); segCRC = data[i+4] ^ crc; PrintAndLogEx(NORMAL, "Segment %02u \nraw header | 0x%02X 0x%02X 0x%02X 0x%02X \nSegment len: %u, Flag: 0x%X (valid:%01u, last:%01u), WRP: %02u, WRC: %02u, RD: %01u, CRC: 0x%02X (%s)", segmentNum, data[i] ^ crc, data[i+1] ^ crc, data[i+2] ^ crc, data[i+3] ^ crc, segment_len, segment_flag, (segment_flag & 0x4) >> 2, (segment_flag & 0x8) >> 3, wrp, wrc, ((data[i+3]^crc) & 0x80) >> 7, segCRC, ( segCRC == segCalcCRC ) ? "OK" : "fail" ); i += 5; if ( hasWRC ) { PrintAndLogEx(NORMAL, "WRC protected area: (I %d | K %d| WRC %d)", i, k, wrc); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); for ( k=i; k < (i + wrc); ++k) data[k] ^= crc; print_hex_break( data+i, wrc, 16); i += wrc; } if ( hasWRP ) { PrintAndLogEx(NORMAL, "Remaining write protected area: (I %d | K %d | WRC %d | WRP %d WRP_LEN %d)",i, k, wrc, wrp, wrp_len); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); for (k=i; k < (i+wrp_len); ++k) data[k] ^= crc; print_hex_break( data+i, wrp_len, 16); i += wrp_len; // does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...) if( wrp_len == 8 ) PrintAndLogEx(NORMAL, "Card ID: %2X%02X%02X", data[i-4]^crc, data[i-3]^crc, data[i-2]^crc); } PrintAndLogEx(NORMAL, "Remaining segment payload: (I %d | K %d | Remain LEN %d)", i, k, remain_seg_payload_len); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); for ( k=i; k < (i+remain_seg_payload_len); ++k) data[k] ^= crc; print_hex_break( data+i, remain_seg_payload_len, 16); i += remain_seg_payload_len; PrintAndLogEx(NORMAL, "-----+------------------------------------------------\n"); // end with last segment if (segment_flag & 0x8) goto out; } // end for loop } else { // Data start point on unsegmented cards i = 8; wrp = data[7] & 0x0F; wrc = (data[7] & 0x70) >> 4; bool hasWRC = (wrc > 0); bool hasWRP = (wrp > wrc); int wrp_len = (wrp - wrc); int remain_seg_payload_len = (1024 - 22 - wrp); // Any chance to get physical card size here!? PrintAndLogEx(NORMAL, "Unsegmented card - WRP: %02u, WRC: %02u, RD: %01u", wrp, wrc, (data[7] & 0x80) >> 7 ); if ( hasWRC ) { PrintAndLogEx(NORMAL, "WRC protected area: (I %d | WRC %d)", i, wrc); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); print_hex_break( data+i, wrc, 16); i += wrc; } if ( hasWRP ) { PrintAndLogEx(NORMAL, "Remaining write protected area: (I %d | WRC %d | WRP %d | WRP_LEN %d)", i, wrc, wrp, wrp_len); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); print_hex_break( data + i, wrp_len, 16); i += wrp_len; // does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...) if( wrp_len == 8 ) PrintAndLogEx(NORMAL, "Card ID: %2X%02X%02X", data[i-4], data[i-3], data[i-2]); } PrintAndLogEx(NORMAL, "Remaining segment payload: (I %d | Remain LEN %d)", i, remain_seg_payload_len); PrintAndLogEx(NORMAL, "\nrow | data"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------"); print_hex_break( data + i, remain_seg_payload_len, 16); i += remain_seg_payload_len; PrintAndLogEx(NORMAL, "-----+------------------------------------------------\n"); } out: free(data); return 0; } // params: // offset in data memory // number of bytes to read int CmdLegicRdmem(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' ) return usage_legic_rdmem(); uint32_t offset = 0, len = 0, iv = 1; uint16_t datalen = 0; sscanf(Cmd, "%x %x %x", &offset, &len, &iv); // sanity checks if ( len + offset >= MAX_LENGTH ) { PrintAndLogEx(WARNING, "Out-of-bounds, Cardsize = %d, [offset+len = %d ]", MAX_LENGTH, len + offset); return -1; } PrintAndLogEx(SUCCESS, "Reading %d bytes, from offset %d", len, offset); // allocate receiver buffer uint8_t *data = calloc(len, sizeof(uint8_t)); if ( !data ){ PrintAndLogEx(WARNING, "Cannot allocate memory"); return -2; } int status = legic_read_mem(offset, len, iv, data, &datalen); if ( status == 0 ) { PrintAndLogEx(NORMAL, "\n ## | 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F"); PrintAndLogEx(NORMAL, "-----+------------------------------------------------------------------------------------------------"); print_hex_break(data, datalen, 32); } free(data); return status; } int CmdLegicRfSim(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if ( strlen(Cmd) == 0 || cmdp == 'h' ) return usage_legic_sim(); UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {1}}; sscanf(Cmd, " %" SCNi64, &c.arg[0]); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLegicRfWrite(const char *Cmd) { uint8_t *data = NULL; uint8_t cmdp = 0; bool errors = false; int len = 0, bg, en; uint32_t offset = 0, IV = 0x55; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'd': // peek at length of the input string so we can // figure out how many elements to malloc in "data" bg=en=0; if (param_getptr(Cmd, &bg, &en, cmdp+1)) { errors = true; break; } len = (en - bg + 1); // check that user entered even number of characters // for hex data string if (len & 1) { errors = true; break; } // limit number of bytes to write. This is not a 'restore' command. if ( (len >> 1) > 100 ){ PrintAndLogEx(WARNING, "Max bound on 100bytes to write a one time."); PrintAndLogEx(WARNING, "Use the 'hf legic restore' command if you want to write the whole tag at once"); errors = true; } // it's possible for user to accidentally enter "b" parameter // more than once - we have to clean previous malloc if (data) free(data); data = calloc(len >> 1, sizeof(uint8_t)); if ( data == NULL ) { PrintAndLogEx(WARNING, "Can't allocate memory. exiting"); errors = true; break; } if (param_gethex(Cmd, cmdp+1, data, len)) { errors = true; break; } len >>= 1; cmdp += 2; break; case 'o': offset = param_get32ex(Cmd, cmdp+1, 4, 16); cmdp += 2; break; case 'h': errors = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0){ if (data) free(data); return usage_legic_write(); } // tagtype legic_card_select_t card; if (legic_get_type(&card)) { PrintAndLogEx(WARNING, "Failed to identify tagtype"); return -1; } legic_print_type(card.cardsize, 0); // OUT-OF-BOUNDS checks // UID 4+1 bytes can't be written to. if ( offset < 5 ) { PrintAndLogEx(WARNING, "Out-of-bounds, bytes 0-1-2-3-4 can't be written to. Offset = %d", offset); return -2; } if ( len + offset >= card.cardsize ) { PrintAndLogEx(WARNING, "Out-of-bounds, Cardsize = %d, [offset+len = %d ]", card.cardsize, len + offset); return -2; } if (offset == 5 || offset == 6) { PrintAndLogEx(NORMAL, "############# DANGER ################"); PrintAndLogEx(NORMAL, "# changing the DCF is irreversible #"); PrintAndLogEx(NORMAL, "#####################################"); char *answer = NULL; answer = readline("do you really want to continue? y(es) n(o) : "); bool overwrite = (answer[0] == 'y' || answer[0] == 'Y'); if (!overwrite){ PrintAndLogEx(NORMAL, "command cancelled"); return 0; } } legic_chk_iv(&IV); PrintAndLogEx(SUCCESS, "Writing to tag"); UsbCommand c = {CMD_WRITER_LEGIC_RF, {offset, len, IV}}; memcpy(c.d.asBytes, data, len); UsbCommand resp; clearCommandBuffer(); SendCommand(&c); uint8_t timeout = 0; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { ++timeout; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(WARNING, "\ncommand execution time out"); return 1; } } PrintAndLogEx(NORMAL, "\n"); uint8_t isOK = resp.arg[0] & 0xFF; if ( !isOK ) { PrintAndLogEx(WARNING, "Failed writing tag"); return 1; } return 0; } int CmdLegicCalcCrc(const char *Cmd){ uint8_t *data = NULL; uint8_t cmdp = 0, uidcrc = 0, type=0; bool errors = false; int len = 0; int bg, en; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'd': // peek at length of the input string so we can // figure out how many elements to malloc in "data" bg=en=0; if (param_getptr(Cmd, &bg, &en, cmdp+1)) { errors = true; break; } len = (en - bg + 1); // check that user entered even number of characters // for hex data string if (len & 1) { errors = true; break; } // it's possible for user to accidentally enter "b" parameter // more than once - we have to clean previous malloc if (data) free(data); data = calloc(len >> 1, sizeof(uint8_t) ); if ( data == NULL ) { PrintAndLogEx(WARNING, "Can't allocate memory. exiting"); errors = true; break; } if (param_gethex(Cmd, cmdp+1, data, len)) { errors = true; break; } len >>= 1; cmdp += 2; break; case 'u': uidcrc = param_get8ex(Cmd, cmdp+1, 0, 16); cmdp += 2; break; case 'c': type = param_get8ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'h': errors = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0){ if (data) free(data); return usage_legic_calccrc(); } switch (type){ case 16: init_table(CRC_LEGIC); PrintAndLogEx(SUCCESS, "Legic crc16: %X", crc16_legic(data, len, uidcrc)); break; default: PrintAndLogEx(SUCCESS, "Legic crc8: %X", CRC8Legic(data, len) ); break; } if (data) free(data); return 0; } int legic_read_mem(uint32_t offset, uint32_t len, uint32_t iv, uint8_t *out, uint16_t *outlen) { legic_chk_iv(&iv); UsbCommand c = {CMD_READER_LEGIC_RF, {offset, len, iv}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; uint8_t timeout = 0; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { ++timeout; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(WARNING, "\ncommand execution time out"); return 1; } } PrintAndLogEx(NORMAL, "\n"); uint8_t isOK = resp.arg[0] & 0xFF; *outlen = resp.arg[1]; if ( !isOK ) { PrintAndLogEx(WARNING, "Failed reading tag"); return 2; } if ( *outlen != len ) PrintAndLogEx(WARNING, "Fail, only managed to read %u bytes", *outlen); // copy data from device if ( !GetFromDevice( BIG_BUF_EML, out, *outlen, 0, NULL, 2500, false) ) { PrintAndLogEx(WARNING, "Fail, transfer from device time-out"); return 4; } return 0; } int legic_print_type(uint32_t tagtype, uint8_t spaces){ char spc[11] = " "; spc[10]=0x00; char *spacer = spc + (10-spaces); if ( tagtype == 22 ) PrintAndLogEx(SUCCESS, "%sTYPE : MIM%d card (outdated)", spacer, tagtype); else if ( tagtype == 256 ) PrintAndLogEx(SUCCESS, "%sTYPE : MIM%d card (234 bytes)", spacer, tagtype); else if ( tagtype == 1024 ) PrintAndLogEx(SUCCESS, "%sTYPE : MIM%d card (1002 bytes)", spacer, tagtype); else PrintAndLogEx(INFO, "%sTYPE : Unknown %06x", spacer, tagtype); return 0; } int legic_get_type(legic_card_select_t *card){ if ( card == NULL ) return 1; UsbCommand c = {CMD_LEGIC_INFO, {0,0,0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return 2; uint8_t isOK = resp.arg[0] & 0xFF; if ( !isOK ) return 3; memcpy(card, (legic_card_select_t *)resp.d.asBytes, sizeof(legic_card_select_t)); return 0; } void legic_chk_iv(uint32_t *iv){ if ( (*iv & 0x7F) != *iv ){ *iv &= 0x7F; PrintAndLogEx(INFO, "Truncating IV to 7bits, %u", *iv); } // IV must be odd if ( (*iv & 1) == 0 ){ *iv |= 0x01; PrintAndLogEx(INFO, "LSB of IV must be SET %u", *iv); } } void legic_seteml(uint8_t *src, uint32_t offset, uint32_t numofbytes) { size_t len = 0; UsbCommand c = {CMD_LEGIC_ESET, {0, 0, 0}}; for(size_t i = offset; i < numofbytes; i += USB_CMD_DATA_SIZE) { len = MIN((numofbytes - i), USB_CMD_DATA_SIZE); c.arg[0] = i; // offset c.arg[1] = len; // number of bytes memcpy(c.d.asBytes, src+i, len); clearCommandBuffer(); SendCommand(&c); } } int HFLegicReader(const char *Cmd, bool verbose) { char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' ) return usage_legic_reader(); legic_card_select_t card; switch (legic_get_type(&card)){ case 1: return 2; case 2: if ( verbose ) PrintAndLogEx(WARNING, "command execution time out"); return 1; case 3: if ( verbose ) PrintAndLogEx(WARNING, "legic card select failed"); return 2; default: break; } PrintAndLogEx(SUCCESS, " UID : %s", sprint_hex(card.uid, sizeof(card.uid))); legic_print_type(card.cardsize, 0); return 0; } int CmdLegicReader(const char *Cmd){ return HFLegicReader(Cmd, true); } int CmdLegicDump(const char *Cmd){ FILE *f; char filename[FILE_PATH_SIZE] = {0x00}; char *fnameptr = filename; size_t fileNlen = 0; bool errors = false; uint16_t dumplen; uint8_t cmdp = 0; memset(filename, 0, sizeof(filename)); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_legic_dump(); case 'o': fileNlen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); if (!fileNlen) errors = true; if (fileNlen > FILE_PATH_SIZE-5) fileNlen = FILE_PATH_SIZE-5; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_legic_dump(); // tagtype legic_card_select_t card; if (legic_get_type(&card)) { PrintAndLogEx(WARNING, "Failed to identify tagtype"); return -1; } dumplen = card.cardsize; legic_print_type(dumplen, 0); PrintAndLogEx(SUCCESS, "Reading tag memory %d b...", dumplen); UsbCommand c = {CMD_READER_LEGIC_RF, {0x00, dumplen, 0x55}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; uint8_t timeout = 0; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { ++timeout; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(WARNING, "\ncommand execution time out"); return 1; } } PrintAndLogEx(NORMAL, "\n"); uint8_t isOK = resp.arg[0] & 0xFF; if ( !isOK ) { PrintAndLogEx(WARNING, "Failed dumping tag data"); return 2; } uint16_t readlen = resp.arg[1]; uint8_t *data = calloc(readlen, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 3; } if ( readlen != dumplen ) PrintAndLogEx(WARNING, "Fail, only managed to read 0x%02X bytes of 0x%02X", readlen, dumplen); // copy data from device if (!GetFromDevice( BIG_BUF_EML, data, readlen, 0, NULL, 2500, false) ) { PrintAndLogEx(WARNING, "Fail, transfer from device time-out"); free(data); return 4; } // user supplied filename? if (fileNlen < 1) sprintf(fnameptr,"%02X%02X%02X%02X.bin", data[0], data[1], data[2], data[3]); else sprintf(fnameptr + fileNlen,".bin"); f = fopen(filename, "wb"); if (!f) { PrintAndLogEx(WARNING, "Could not create file name %s", filename); if (data) free(data); return 5; } fwrite(data, 1, readlen, f); fflush(f); fclose(f); free(data); PrintAndLogEx(SUCCESS, "Wrote %d bytes to %s", readlen, filename); return 0; } int CmdLegicRestore(const char *Cmd){ FILE *f; char filename[FILE_PATH_SIZE] = {0x00}; char *fnameptr = filename; size_t fileNlen = 0; bool errors = false; uint16_t numofbytes; uint8_t cmdp = 0; memset(filename, 0, sizeof(filename)); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': errors = true; break; case 'i': fileNlen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); if (!fileNlen) errors = true; if (fileNlen > FILE_PATH_SIZE-5) fileNlen = FILE_PATH_SIZE-5; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_legic_restore(); // tagtype legic_card_select_t card; if (legic_get_type(&card)) { PrintAndLogEx(WARNING, "Failed to identify tagtype"); return 1; } numofbytes = card.cardsize; // set up buffer uint8_t *data = calloc(numofbytes, sizeof(uint8_t) ); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 2; } legic_print_type(numofbytes, 0); // set up file fnameptr += fileNlen; sprintf(fnameptr, ".bin"); f = fopen(filename,"rb"); if (!f) { PrintAndLogEx(WARNING, "File %s not found or locked", filename); return 3; } // verify size of dumpfile is the same as card. fseek(f, 0, SEEK_END); // seek to end of file size_t filesize = ftell(f); // get current file pointer fseek(f, 0, SEEK_SET); // seek back to beginning of file if ( filesize != numofbytes) { PrintAndLogEx(WARNING, "Fail, filesize and cardsize is not equal. [%u != %u]", filesize, numofbytes); free(data); fclose(f); return 4; } // load file size_t bytes_read = fread(data, 1, numofbytes, f); fclose(f); if ( bytes_read == 0){ PrintAndLogEx(WARNING, "File reading error"); free(data); return 2; } PrintAndLogEx(SUCCESS, "Restoring to card"); // transfer to device size_t len = 0; UsbCommand c = {CMD_WRITER_LEGIC_RF, {0, 0, 0x55}}; UsbCommand resp; for(size_t i = 7; i < numofbytes; i += USB_CMD_DATA_SIZE) { len = MIN((numofbytes - i), USB_CMD_DATA_SIZE); c.arg[0] = i; // offset c.arg[1] = len; // number of bytes memcpy(c.d.asBytes, data+i, len); clearCommandBuffer(); SendCommand(&c); uint8_t timeout = 0; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { ++timeout; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(WARNING, "\ncommand execution time out"); free(data); return 1; } } PrintAndLogEx(NORMAL, "\n"); uint8_t isOK = resp.arg[0] & 0xFF; if ( !isOK ) { PrintAndLogEx(WARNING, "Failed writing tag [msg = %u]", resp.arg[1] & 0xFF); free(data); return 1; } PrintAndLogEx(SUCCESS, "Wrote chunk [offset %d | len %d | total %d", i, len, i+len); } free(data); PrintAndLogEx(SUCCESS, "\nWrote %d bytes to card from file %s", numofbytes, filename); return 0; } int CmdLegicELoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char *fnameptr = filename; int len, numofbytes; int nameParamNo = 1; char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' || cmdp == 0x00) return usage_legic_eload(); switch (cmdp) { case '0' : numofbytes = 22; break; case '1' : case '\0': numofbytes = 256; break; case '2' : numofbytes = 1024; break; default : numofbytes = 256; nameParamNo = 0;break; } // set up buffer uint8_t *data = calloc(numofbytes, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 3; } // set up file len = param_getstr(Cmd, nameParamNo, filename, FILE_PATH_SIZE); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; fnameptr += len; sprintf(fnameptr, ".bin"); // open file f = fopen(filename,"rb"); if (!f) { PrintAndLogEx(WARNING, "File %s not found or locked", filename); free(data); return 1; } // load file size_t bytes_read = fread(data, 1, numofbytes, f); if ( bytes_read == 0){ PrintAndLogEx(WARNING, "File reading error"); free(data); fclose(f); f = NULL; return 2; } fclose(f); f = NULL; // transfer to device legic_seteml(data, 0, numofbytes); free(data); PrintAndLogEx(SUCCESS, "\nLoaded %d bytes from file: %s to emulator memory", numofbytes, filename); return 0; } int CmdLegicESave(const char *Cmd) { char filename[FILE_PATH_SIZE]; char *fnameptr = filename; int fileNlen, numofbytes, nameParamNo = 1; memset(filename, 0, sizeof(filename)); char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' || cmdp == 0x00) return usage_legic_esave(); switch (cmdp) { case '0' : numofbytes = 22; break; case '1' : case '\0': numofbytes = 256; break; case '2' : numofbytes = 1024; break; default : numofbytes = 256; nameParamNo = 0; break; } fileNlen = param_getstr(Cmd, nameParamNo, filename, FILE_PATH_SIZE); if (fileNlen > FILE_PATH_SIZE - 5) fileNlen = FILE_PATH_SIZE - 5; // set up buffer uint8_t *data = calloc(numofbytes, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 3; } // download emulator memory PrintAndLogEx(SUCCESS, "Reading emulator memory..."); if (!GetFromDevice( BIG_BUF_EML, data, numofbytes, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "Fail, transfer from device time-out"); free(data); return 4; } // user supplied filename? if (fileNlen < 1) sprintf(fnameptr,"%02X%02X%02X%02X.bin", data[0], data[1], data[2], data[3]); else sprintf(fnameptr + fileNlen,".bin"); saveFileEML(filename, "eml", data, numofbytes, 8); saveFile(filename, "bin", data, numofbytes); return 0; } int CmdLegicWipe(const char *Cmd){ char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h') return usage_legic_wipe(); // tagtype legic_card_select_t card; if (legic_get_type(&card)) { PrintAndLogEx(WARNING, "Failed to identify tagtype"); return 1; } // set up buffer uint8_t *data = calloc(card.cardsize, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 2; } legic_print_type(card.cardsize, 0); PrintAndLogEx(SUCCESS, "Erasing"); // transfer to device size_t len = 0; UsbCommand c = {CMD_WRITER_LEGIC_RF, {0, 0, 0x55}}; UsbCommand resp; for(size_t i = 7; i < card.cardsize; i += USB_CMD_DATA_SIZE) { printf("."); fflush(stdout); len = MIN((card.cardsize - i), USB_CMD_DATA_SIZE); c.arg[0] = i; // offset c.arg[1] = len; // number of bytes memcpy(c.d.asBytes, data+i, len); clearCommandBuffer(); SendCommand(&c); uint8_t timeout = 0; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { ++timeout; printf("."); fflush(stdout); if (timeout > 7) { PrintAndLogEx(WARNING, "\ncommand execution time out"); free(data); return 3; } } PrintAndLogEx(NORMAL, "\n"); uint8_t isOK = resp.arg[0] & 0xFF; if ( !isOK ) { PrintAndLogEx(WARNING, "Failed writing tag [msg = %u]", resp.arg[1] & 0xFF); free(data); return 4; } } PrintAndLogEx(SUCCESS, "ok\n"); return 0; } int CmdLegicList(const char *Cmd) { CmdTraceList("legic"); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"reader", CmdLegicReader, 1, "LEGIC Prime Reader UID and tag info"}, {"info", CmdLegicInfo, 0, "Display deobfuscated and decoded LEGIC Prime tag data"}, {"dump", CmdLegicDump, 0, "Dump LEGIC Prime tag to binary file"}, {"restore", CmdLegicRestore, 0, "Restore a dump file onto a LEGIC Prime tag"}, {"rdmem", CmdLegicRdmem, 0, "Read bytes from a LEGIC Prime tag"}, {"sim", CmdLegicRfSim, 0, "Start tag simulator"}, {"write", CmdLegicRfWrite, 0, "Write data to a LEGIC Prime tag"}, {"crc", CmdLegicCalcCrc, 1, "Calculate Legic CRC over given bytes"}, {"eload", CmdLegicELoad, 1, "Load binary dump to emulator memory"}, {"esave", CmdLegicESave, 1, "Save emulator memory to binary file"}, {"list", CmdLegicList, 1, "[Deprecated] List LEGIC history"}, {"wipe", CmdLegicWipe, 1, "Wipe a LEGIC Prime tag"}, {NULL, NULL, 0, NULL} }; int CmdHFLegic(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }