//----------------------------------------------------------------------------- // Copyright (C) Gerhard de Koning Gans - May 2008 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Work with mifare cards. //----------------------------------------------------------------------------- #include "mifareutil.h" #include "appmain.h" // tearoff hook #include "string.h" #include "BigBuf.h" #include "iso14443a.h" #include "ticks.h" #include "dbprint.h" #include "parity.h" #include "commonutil.h" #include "crc16.h" #include "protocols.h" #include "desfire_crypto.h" // crypto1 helpers void mf_crypto1_decryptEx(struct Crypto1State *pcs, const uint8_t *data_in, int len, uint8_t *data_out) { if (len != 1) { for (int i = 0; i < len; i++) data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i]; } else { uint8_t bt = 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], 0)) << 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], 1)) << 1; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], 2)) << 2; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], 3)) << 3; data_out[0] = bt; } return; } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len) { mf_crypto1_decryptEx(pcs, data, len, data); } void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) { mf_crypto1_encryptEx(pcs, data, NULL, data, len, par); } void mf_crypto1_encryptEx(struct Crypto1State *pcs, const uint8_t *data_in, uint8_t *keystream, uint8_t *data_out, uint16_t len, uint8_t *par) { int i; par[0] = 0; for (i = 0; i < len; i++) { uint8_t bt = data_in[i]; data_out[i] = crypto1_byte(pcs, keystream ? keystream[i] : 0x00, 0) ^ data_in[i]; if ((i & 0x0007) == 0) par[ i >> 3 ] = 0; par[ i >> 3 ] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01) << (7 - (i & 0x0007))); } } uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) { uint8_t bt = 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 0)) << 0; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 1)) << 1; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 2)) << 2; bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, 3)) << 3; return bt; } // send X byte basic commands uint16_t mifare_sendcmd(uint8_t cmd, uint8_t *data, uint8_t data_size, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[data_size + 3]; dcmd[0] = cmd; if (data_size > 0) memcpy(dcmd + 1, data, data_size); AddCrc14A(dcmd, data_size + 1); ReaderTransmit(dcmd, sizeof(dcmd), timing); uint16_t len = ReaderReceive(answer, answer_parity); if (len == 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("%02X Cmd failed. Card timeout.", cmd); len = ReaderReceive(answer, answer_parity); } return len; } // send 2 byte commands uint16_t mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) { uint16_t pos; uint8_t dcmd[4] = {cmd, data, 0x00, 0x00}; uint8_t ecmd[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t par[1] = {0x00}; // 1 Byte parity is enough here AddCrc14A(dcmd, 2); memcpy(ecmd, dcmd, sizeof(dcmd)); if (pcs && crypted) { par[0] = 0; for (pos = 0; pos < 4; pos++) { ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos]; par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7 - pos)); } ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing); } else { ReaderTransmit(dcmd, sizeof(dcmd), timing); } uint16_t len = ReaderReceive(answer, par); if (answer_parity) *answer_parity = par[0]; if (pcs && (crypted == CRYPT_ALL)) { if (len == 1) { uint16_t res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], 3)) << 3; answer[0] = res; } else { for (pos = 0; pos < len; pos++) answer[pos] = crypto1_byte(pcs, 0x00, 0) ^ answer[pos]; } } return len; } // mifare classic commands int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) { return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL); } int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) { return mifare_classic_authex_2(pcs, uid, blockNo, keyType, ui64Key, isNested, ntptr, timing, false); } int mifare_classic_authex_2(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing, bool is_gdm) { // "random" reader nonce: uint8_t nr[4]; num_to_bytes(prng_successor(GetTickCount(), 32), 4, nr); uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // Transmit MIFARE_CLASSIC_AUTH 0x60, 0x61 or GDM 0x80 uint8_t cmdbyte = (is_gdm) ? MIFARE_MAGIC_GDM_AUTH_KEY : MIFARE_AUTH_KEYA + (keyType & 0x01); int len = mifare_sendcmd_short(pcs, isNested, cmdbyte, blockNo, receivedAnswer, receivedAnswerPar, timing); if (len != 4) return 1; // Save the tag nonce (nt) uint32_t nt = bytes_to_num(receivedAnswer, 4); // ----------------------------- crypto1 create if (isNested) crypto1_deinit(pcs); // Init cipher with key crypto1_init(pcs, ui64Key); if (isNested == AUTH_NESTED) { // decrypt nt with help of new key nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt; } else { // Load (plain) uid^nt into the cipher crypto1_word(pcs, nt ^ uid, 0); } // some statistic if (!ntptr && (g_dbglevel >= DBG_EXTENDED)) Dbprintf("auth uid: %08x | nr: %02x%02x%02x%02x | nt: %08x", uid, nr[0], nr[1], nr[2], nr[3], nt); // save Nt if (ntptr) *ntptr = nt; // Generate (encrypted) nr+parity by loading it into the cipher (Nr) uint32_t pos; uint8_t par[1] = {0x00}; uint8_t mf_nr_ar[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; for (pos = 0; pos < 4; pos++) { mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos]; par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7 - pos)); } // Skip 32 bits in pseudo random generator nt = prng_successor(nt, 32); // ar+parity for (pos = 4; pos < 8; pos++) { nt = prng_successor(nt, 8); mf_nr_ar[pos] = crypto1_byte(pcs, 0x00, 0) ^ (nt & 0xff); par[0] |= (((filter(pcs->odd) ^ oddparity8(nt & 0xff)) & 0x01) << (7 - pos)); } // Transmit reader nonce and reader answer ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); // save standard timeout uint32_t save_timeout = iso14a_get_timeout(); // set timeout for authentication response if (save_timeout > 103) iso14a_set_timeout(103); // Receive 4 byte tag answer len = ReaderReceive(receivedAnswer, receivedAnswerPar); iso14a_set_timeout(save_timeout); if (!len) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Authentication failed. Card timeout"); return 2; } // Supplied tag nonce uint32_t ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0, 0); if (ntpp != bytes_to_num(receivedAnswer, 4)) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Authentication failed. Error card response"); return 3; } return 0; } int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) { return mifare_classic_readblock_ex(pcs, uid, blockNo, blockData, ISO14443A_CMD_READBLOCK); } int mifare_classic_readblock_ex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData, uint8_t iso_byte) { uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint16_t len = mifare_sendcmd_short(pcs, 1, iso_byte, blockNo, receivedAnswer, receivedAnswerPar, NULL); if (len == 1) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error %02x", receivedAnswer[0]); return 1; } if (len != 18) { if (g_dbglevel >= DBG_ERROR) Dbprintf("wrong response len %d (expected 18)", len); return 2; } uint8_t bt[2] = {0x00, 0x00}; memcpy(bt, receivedAnswer + 16, 2); AddCrc14A(receivedAnswer, 16); if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (g_dbglevel >= DBG_INFO) Dbprintf("CRC response error"); return 3; } memcpy(blockData, receivedAnswer, 16); return 0; } // mifare ultralight commands int mifare_ul_ev1_auth(uint8_t *keybytes, uint8_t *pack) { uint16_t len = 0; uint8_t resp[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t respPar[1] = {0x00}; uint8_t key[4] = {0x00, 0x00, 0x00, 0x00}; memcpy(key, keybytes, 4); if (g_dbglevel >= DBG_EXTENDED) Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]); len = mifare_sendcmd(MIFARE_ULEV1_AUTH, key, sizeof(key), resp, respPar, NULL); if (len != 4) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x %u", resp[0], len); return 0; } if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Auth Resp: %02x%02x%02x%02x", resp[0], resp[1], resp[2], resp[3]); memcpy(pack, resp, 4); return 1; } int mifare_ultra_auth(uint8_t *keybytes) { /// 3des2k uint8_t random_a[8] = {1, 1, 1, 1, 1, 1, 1, 1}; uint8_t random_b[8] = {0x00}; uint8_t enc_random_b[8] = {0x00}; uint8_t rnd_ab[16] = {0x00}; uint8_t IV[8] = {0x00}; uint8_t key[16] = {0x00}; memcpy(key, keybytes, 16); uint16_t len = 0; uint8_t resp[19] = {0x00}; uint8_t respPar[3] = {0, 0, 0}; // REQUEST AUTHENTICATION len = mifare_sendcmd_short(NULL, CRYPT_NONE, MIFARE_ULC_AUTH_1, 0x00, resp, respPar, NULL); if (len != 11) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", resp[0]); return 0; } // tag nonce. memcpy(enc_random_b, resp + 1, 8); // decrypt nonce. tdes_nxp_receive((void *)enc_random_b, (void *)random_b, sizeof(random_b), (const void *)key, IV, 2); rol(random_b, 8); memcpy(rnd_ab, random_a, 8); memcpy(rnd_ab + 8, random_b, 8); if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("enc_B: %02x %02x %02x %02x %02x %02x %02x %02x", enc_random_b[0], enc_random_b[1], enc_random_b[2], enc_random_b[3], enc_random_b[4], enc_random_b[5], enc_random_b[6], enc_random_b[7]); Dbprintf(" B: %02x %02x %02x %02x %02x %02x %02x %02x", random_b[0], random_b[1], random_b[2], random_b[3], random_b[4], random_b[5], random_b[6], random_b[7]); Dbprintf("rnd_ab: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[0], rnd_ab[1], rnd_ab[2], rnd_ab[3], rnd_ab[4], rnd_ab[5], rnd_ab[6], rnd_ab[7]); Dbprintf("rnd_ab: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[8], rnd_ab[9], rnd_ab[10], rnd_ab[11], rnd_ab[12], rnd_ab[13], rnd_ab[14], rnd_ab[15]); } // encrypt out, in, length, key, iv tdes_nxp_send(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b, 2); len = mifare_sendcmd(MIFARE_ULC_AUTH_2, rnd_ab, sizeof(rnd_ab), resp, respPar, NULL); if (len != 11) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", resp[0]); return 0; } uint8_t enc_resp[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t resp_random_a[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; memcpy(enc_resp, resp + 1, 8); // decrypt out, in, length, key, iv tdes_nxp_receive(enc_resp, resp_random_a, 8, key, enc_random_b, 2); if (memcmp(resp_random_a, random_a, 8) != 0) { if (g_dbglevel >= DBG_ERROR) Dbprintf("failed authentication"); return 0; } if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[0], rnd_ab[1], rnd_ab[2], rnd_ab[3], rnd_ab[4], rnd_ab[5], rnd_ab[6], rnd_ab[7]); Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", rnd_ab[8], rnd_ab[9], rnd_ab[10], rnd_ab[11], rnd_ab[12], rnd_ab[13], rnd_ab[14], rnd_ab[15]); Dbprintf("a: %02x %02x %02x %02x %02x %02x %02x %02x", random_a[0], random_a[1], random_a[2], random_a[3], random_a[4], random_a[5], random_a[6], random_a[7]); Dbprintf("b: %02x %02x %02x %02x %02x %02x %02x %02x", resp_random_a[0], resp_random_a[1], resp_random_a[2], resp_random_a[3], resp_random_a[4], resp_random_a[5], resp_random_a[6], resp_random_a[7]); } return 1; } static int mifare_ultra_readblockEx(uint8_t blockNo, uint8_t *blockData) { uint16_t len = 0; uint8_t bt[2] = {0x00, 0x00}; uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL); if (len == 1) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } if (len != 18) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: card timeout. len: %x", len); return 2; } memcpy(bt, receivedAnswer + 16, 2); AddCrc14A(receivedAnswer, 16); if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd CRC response error."); return 3; } memcpy(blockData, receivedAnswer, 16); return 0; } int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData) { #define MFU_MAX_RETRIES 5 uint8_t res; for (uint8_t retries = 0; retries < MFU_MAX_RETRIES; ++retries) { res = mifare_ultra_readblockEx(blockNo, blockData); // break if OK, or NACK. switch (res) { case 0: case 1: return res; default: continue; } } return res; } int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) { return mifare_classic_writeblock_ex(pcs, uid, blockNo, blockData, false); } int mifare_classic_writeblock_ex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData, bool is_gdm) { // variables uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // command MIFARE_MAGIC_GDM_WRITEBLOCK uint16_t len; if (is_gdm) { len = mifare_sendcmd_short(pcs, 1, MIFARE_MAGIC_GDM_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL); } else { len = mifare_sendcmd_short(pcs, 1, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL); } if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } uint8_t d_block[18], d_block_enc[18]; memcpy(d_block, blockData, 16); AddCrc14A(d_block, 16); // enough for 18 Bytes to send uint8_t par[3] = {0x00, 0x00, 0x00}; // crypto for (uint32_t pos = 0; pos < 18; pos++) { d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; par[pos >> 3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos & 0x0007))); } ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); // tearoff occurred if (tearoff_hook() == PM3_ETEAROFF) { return PM3_ETEAROFF; } else { // Receive the response len = ReaderReceive(receivedAnswer, receivedAnswerPar); uint8_t res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 3)) << 3; if ((len != 1) || (res != 0x0A)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd send data2 Error: %02x", res); return 2; } } return 0; } int mifare_classic_write_cfg_block_gdm(struct Crypto1State *pcs, uint32_t uid, uint8_t *blockData) { // variables uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint16_t len = mifare_sendcmd_short(pcs, 1, MIFARE_MAGIC_GDM_WRITE_CFG, 0, receivedAnswer, receivedAnswerPar, NULL); if ((len != 1) || (receivedAnswer[0] != 0x0A)) { return 1; } uint8_t d_block[18], d_block_enc[18]; memcpy(d_block, blockData, 16); AddCrc14A(d_block, 16); // enough for 18 Bytes to send uint8_t par[3] = {0x00, 0x00, 0x00}; // crypto for (uint32_t pos = 0; pos < 18; pos++) { d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; par[pos >> 3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos & 0x0007))); } ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL); // tearoff occurred if (tearoff_hook() == PM3_ETEAROFF) { return PM3_ETEAROFF; } else { // Receive the response len = ReaderReceive(receivedAnswer, receivedAnswerPar); uint8_t res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 3)) << 3; if ((len != 1) || (res != 0x0A)) { return 2; } } return 0; } int mifare_classic_value(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData, uint8_t action) { // variables uint16_t len = 0; uint32_t pos = 0; uint8_t par[3] = {0x00, 0x00, 0x00}; // enough for 18 Bytes to send uint8_t d_block[18], d_block_enc[18]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t command = MIFARE_CMD_INC; if (action == 0x01) command = MIFARE_CMD_DEC; if (action == 0x02) command = MIFARE_CMD_RESTORE; // Send increment or decrement command len = mifare_sendcmd_short(pcs, 1, command, blockNo, receivedAnswer, receivedAnswerPar, NULL); if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } memcpy(d_block, blockData, 4); AddCrc14A(d_block, 4); // crypto for (pos = 0; pos < 6; pos++) { d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos]; par[pos >> 3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos & 0x0007))); } ReaderTransmitPar(d_block_enc, 6, par, NULL); // Receive the response NO Response means OK ... i.e. NOT NACK len = ReaderReceive(receivedAnswer, receivedAnswerPar); if (len != 0) { // Something not right, len == 0 (no response is ok as its waiting for transfer uint8_t res = 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 0)) << 0; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 1)) << 1; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 2)) << 2; res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], 3)) << 3; if ((len != 1) || (res != 0x0A)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd send data2 Error: %02x", res); return 2; } } return 0; } int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) { // variables uint16_t len = 0; uint8_t d_block[18]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL); if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0], len); return 1; } memcpy(d_block, blockData, 16); AddCrc14A(d_block, 16); ReaderTransmit(d_block, sizeof(d_block), NULL); // Receive the response len = ReaderReceive(receivedAnswer, receivedAnswerPar); if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Send Data Error: %02x %d", receivedAnswer[0], len); return 2; } return 0; } int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData) { uint16_t len = 0; uint8_t block[5] = {blockNo, 0x00, 0x00, 0x00, 0x00 }; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; // command MIFARE_CLASSIC_WRITEBLOCK memcpy(block + 1, blockData, 4); len = mifare_sendcmd(MIFARE_ULC_WRITE, block, sizeof(block), receivedAnswer, receivedAnswerPar, NULL); if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0], len); return 1; } return 0; } int mifare_classic_halt_ex(struct Crypto1State *pcs) { uint8_t receivedAnswer[4] = {0x00, 0x00, 0x00, 0x00}; uint16_t len = mifare_sendcmd_short(pcs, (pcs == NULL) ? CRYPT_NONE : CRYPT_ALL, ISO14443A_CMD_HALT, 0x00, receivedAnswer, NULL, NULL); if (len != 0) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("halt warning. response len: %x", len); return 1; } return 0; } int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) { return mifare_classic_halt_ex(pcs); } int mifare_ultra_halt(void) { uint16_t len = 0; uint8_t receivedAnswer[4] = {0x00, 0x00, 0x00, 0x00}; len = mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_HALT, 0x00, receivedAnswer, NULL, NULL); if (len != 0) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("halt warning. response len: %x", len); return 1; } return 0; } // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // plus evtl. 8 sectors with 16 blocks each (4k cards) uint8_t NumBlocksPerSector(uint8_t sectorNo) { return (sectorNo < 32) ? 4 : 16; } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) return sectorNo * 4; else return 32 * 4 + (sectorNo - 32) * 16; } // work with emulator memory void emlSetMem(uint8_t *data, int blockNum, int blocksCount) { emlSetMem_xt(data, blockNum, blocksCount, 16); } void emlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) { uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(emCARD + blockNum * blockBtWidth, data, blocksCount * blockBtWidth); } void emlGetMem(uint8_t *data, int blockNum, int blocksCount) { uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(data, emCARD + blockNum * 16, blocksCount * 16); } void emlGetMemBt(uint8_t *data, int offset, int byteCount) { uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(data, emCARD + offset, byteCount); } int emlCheckValBl(int blockNum) { uint8_t *emCARD = BigBuf_get_EM_addr(); uint8_t *data = emCARD + blockNum * 16; if ((data[0] != (data[4] ^ 0xff)) || (data[0] != data[8]) || (data[1] != (data[5] ^ 0xff)) || (data[1] != data[9]) || (data[2] != (data[6] ^ 0xff)) || (data[2] != data[10]) || (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) || (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) || (data[12] != (data[15] ^ 0xff)) ) return 1; return 0; } int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) { uint8_t *emCARD = BigBuf_get_EM_addr(); uint8_t *data = emCARD + blockNum * 16; if (emlCheckValBl(blockNum)) return 1; memcpy(blReg, data, 4); *blBlock = data[12]; return 0; } int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) { uint8_t *emCARD = BigBuf_get_EM_addr(); uint8_t *data = emCARD + blockNum * 16; memcpy(data + 0, &blReg, 4); memcpy(data + 8, &blReg, 4); blReg = blReg ^ 0xffffffff; memcpy(data + 4, &blReg, 4); data[12] = blBlock; data[13] = blBlock ^ 0xff; data[14] = blBlock; data[15] = blBlock ^ 0xff; return 0; } uint64_t emlGetKey(int sectorNum, int keyType) { uint8_t key[6] = {0x00}; uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6); return bytes_to_num(key, 6); } void emlClearMem(void) { const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04}; uint8_t *emCARD = BigBuf_get_EM_addr(); memset(emCARD, 0, CARD_MEMORY_SIZE); // fill sectors trailer data for (uint16_t b = 3; b < MIFARE_4K_MAXBLOCK; ((b < MIFARE_2K_MAXBLOCK - 4) ? (b += 4) : (b += 16))) emlSetMem((uint8_t *)trailer, b, 1); // uid emlSetMem((uint8_t *)uid, 0, 1); return; } uint8_t SectorTrailer(uint8_t blockNo) { if (blockNo <= MIFARE_2K_MAXBLOCK) { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Sector Trailer for block %d : %d", blockNo, (blockNo | 0x03)); return (blockNo | 0x03); } else { if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Sector Trailer for block %d : %d", blockNo, (blockNo | 0x0f)); return (blockNo | 0x0f); } } bool IsSectorTrailer(uint8_t blockNo) { return (blockNo == SectorTrailer(blockNo)); } // Mifare desfire commands int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t *data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[5] = {cmd, data[0], data[1], 0x00, 0x00}; AddCrc14A(dcmd, 3); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, answer_parity); if (!len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed. Card timeout."); return 1; } return len; } int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t *data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing) { uint8_t dcmd[20] = {0x00}; dcmd[0] = cmd; memcpy(dcmd + 1, data, 17); AddCrc14A(dcmd, 18); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, answer_parity); if (!len) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed. Card timeout."); return 1; } return len; } int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData) { int len; // load key, keynumber uint8_t data[2] = {MFDES_AUTHENTICATE, 0x00}; uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer, receivedAnswerPar, NULL); if (len == 1) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]); return 1; } if (len == 12) { if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", receivedAnswer[0], receivedAnswer[1], receivedAnswer[2], receivedAnswer[3], receivedAnswer[4], receivedAnswer[5], receivedAnswer[6], receivedAnswer[7], receivedAnswer[8], receivedAnswer[9], receivedAnswer[10], receivedAnswer[11]); } memcpy(blockData, receivedAnswer, 12); return 0; } return 1; } int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData) { int len; uint8_t data[17] = {MFDES_ADDITIONAL_FRAME}; memcpy(data + 1, key, 16); uint8_t receivedAnswer[MAX_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_PARITY_SIZE] = {0x00}; len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar, NULL); if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) { if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]); return 1; } if (len == 12) { if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", receivedAnswer[0], receivedAnswer[1], receivedAnswer[2], receivedAnswer[3], receivedAnswer[4], receivedAnswer[5], receivedAnswer[6], receivedAnswer[7], receivedAnswer[8], receivedAnswer[9], receivedAnswer[10], receivedAnswer[11]); } memcpy(blockData, receivedAnswer, 12); return 0; } return 1; }