//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include #include #include #include "proxusb.h" #include "ui.h" #include "graph.h" #include "cmdparser.h" #include "cmddata.h" #include "cmdlf.h" #include "cmdlfem4x.h" static int CmdHelp(const char *Cmd); /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xRead(const char *Cmd) { int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low; int parity[4]; char id[11]; int retested = 0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]; high = low = 0; /* Detect high and lows and clock */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* get clock */ clock = GetClock(Cmd, high, 0); /* parity for our 4 columns */ parity[0] = parity[1] = parity[2] = parity[3] = 0; header = rows = 0; /* manchester demodulate */ bit = bit2idx = 0; for (i = 0; i < (int)(GraphTraceLen / clock); i++) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; j++) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; BitStream[bit2idx++] = bit; } retest: /* We go till 5 before the graph ends because we'll get that far below */ for (i = 1; i < bit2idx - 5; i++) { /* Step 2: We have our header but need our tag ID */ if (header == 9 && rows < 10) { /* Confirm parity is correct */ if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4]) { /* Read another byte! */ sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3])); rows++; /* Keep parity info */ parity[0] ^= BitStream[i]; parity[1] ^= BitStream[i+1]; parity[2] ^= BitStream[i+2]; parity[3] ^= BitStream[i+3]; /* Move 4 bits ahead */ i += 4; } /* Damn, something wrong! reset */ else { PrintAndLog("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i); /* Start back rows * 5 + 9 header bits, -1 to not start at same place */ i -= 9 + (5 * rows) - 5; rows = header = 0; } } /* Step 3: Got our 40 bits! confirm column parity */ else if (rows == 10) { /* We need to make sure our 4 bits of parity are correct and we have a stop bit */ if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] && BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] && BitStream[i+4] == 0) { /* Sweet! */ PrintAndLog("EM410x Tag ID: %s", id); /* Stop any loops */ return 1; } /* Crap! Incorrect parity or no stop bit, start all over */ else { rows = header = 0; /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */ i -= 59; } } /* Step 1: get our header */ else if (header < 9) { /* Need 9 consecutive 1's */ if (BitStream[i] == 1) header++; /* We don't have a header, not enough consecutive 1 bits */ else header = 0; } } /* if we've already retested after flipping bits, return */ if (retested++) return 0; /* if this didn't work, try flipping bits */ for (i = 0; i < bit2idx; i++) BitStream[i] ^= 1; goto retest; } /* emulate an EM410X tag * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xSim(const char *Cmd) { int i, n, j, h, binary[4], parity[4]; /* clock is 64 in EM410x tags */ int clock = 64; /* clear our graph */ ClearGraph(0); /* write it out a few times */ for (h = 0; h < 4; h++) { /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(0, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++) { /* read each hex char */ sscanf(&Cmd[i], "%1x", &n); for (j = 3; j >= 0; j--, n/= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(0, clock, binary[0]); AppendGraph(0, clock, binary[1]); AppendGraph(0, clock, binary[2]); AppendGraph(0, clock, binary[3]); /* append parity bit */ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(0, clock, parity[0]); AppendGraph(0, clock, parity[1]); AppendGraph(0, clock, parity[2]); AppendGraph(0, clock, parity[3]); /* stop bit */ AppendGraph(0, clock, 0); } /* modulate that biatch */ CmdManchesterMod(""); /* booyah! */ RepaintGraphWindow(); CmdLFSim(""); return 0; } /* Function is equivalent of loread + losamples + em410xread * looped until an EM410x tag is detected */ int CmdEM410xWatch(const char *Cmd) { do { CmdLFRead(""); CmdSamples("2000"); } while ( ! CmdEM410xRead("")); return 0; } /* Read the transmitted data of an EM4x50 tag * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ int CmdEM4x50Read(const char *Cmd) { int i, j, startblock, skip, block, start, end, low, high; bool complete= false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; char tmp[6]; high= low= 0; memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); /* first get high and low values */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* populate a buffer with pulse lengths */ i= 0; j= 0; while (i < GraphTraceLen) { // measure from low to low while ((GraphBuffer[i] > low) && (i low) && (i(MAX_GRAPH_TRACE_LEN/64)) { break; } tmpbuff[j++]= i - start; } /* look for data start - should be 2 pairs of LW (pulses of 192,128) */ start= -1; skip= 0; for (i= 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) { start= i + 3; break; } } startblock= i + 3; /* skip over the remainder of the LW */ skip += tmpbuff[i+1]+tmpbuff[i+2]; while (skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low) ++skip; skip += 8; /* now do it again to find the end */ end= start; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) { complete= true; break; } } if (start >= 0) PrintAndLog("Found data at sample: %i",skip); else { PrintAndLog("No data found!"); PrintAndLog("Try again with more samples."); return 0; } if (!complete) { PrintAndLog("*** Warning!"); PrintAndLog("Partial data - no end found!"); PrintAndLog("Try again with more samples."); } /* get rid of leading crap */ sprintf(tmp,"%i",skip); CmdLtrim(tmp); /* now work through remaining buffer printing out data blocks */ block= 0; i= startblock; while (block < 6) { PrintAndLog("Block %i:", block); // mandemod routine needs to be split so we can call it for data // just print for now for debugging CmdManchesterDemod("i 64"); skip= 0; /* look for LW before start of next block */ for ( ; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) break; } while (GraphBuffer[skip] > low) ++skip; skip += 8; sprintf(tmp,"%i",skip); CmdLtrim(tmp); start += skip; block++; } return 0; } int CmdEM410xWrite(const char *Cmd) { uint64_t id = 0; unsigned int card; sscanf(Cmd, "%" PRIx64 " %d", &id, &card); if (id >= 0x10000000000) { PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } if (card > 1) { PrintAndLog("Error! Bad card type selected.\n"); return 0; } PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, card ? "T55x7":"T5555", id); UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"}, {"em410xsim", CmdEM410xSim, 0, " -- Simulate EM410x tag"}, {"em410xwatch", CmdEM410xWatch, 0, "Watches for EM410x tags"}, {"em410xwrite", CmdEM410xWrite, 1, " <'0' T5555> <'1' T55x7> -- Write EM410x UID to T5555(Q5) or T55x7 tag"}, {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"}, {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }