//----------------------------------------------------------------------------- // Copyright (C) Merlok - 2017 // iceman 2018 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Command: hf mf list. It shows data from arm buffer. //----------------------------------------------------------------------------- #include "cmdhflist.h" #include #include #include #include "commonutil.h" // ARRAYLEN #include "mifare/mifarehost.h" #include "mifare/mifaredefault.h" #include "parity.h" // oddparity #include "ui.h" #include "crc16.h" #include "crapto1/crapto1.h" #include "protocols.h" enum MifareAuthSeq { masNone, masNt, masNrAr, masAt, masAuthComplete, masFirstData, masData, masError, }; static enum MifareAuthSeq MifareAuthState; static TAuthData AuthData; void ClearAuthData() { AuthData.uid = 0; AuthData.nt = 0; AuthData.first_auth = true; AuthData.ks2 = 0; AuthData.ks3 = 0; } /** * @brief iso14443A_CRC_check Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443A_CRC_check(bool isResponse, uint8_t *d, uint8_t n) { if (n < 3) return 2; if (isResponse && (n < 6)) return 2; if (n > 2 && d[1] == 0x50 && d[0] >= ISO14443A_CMD_ANTICOLL_OR_SELECT && d[0] <= ISO14443A_CMD_ANTICOLL_OR_SELECT_3) return 2; return check_crc(CRC_14443_A, d, n); } uint8_t mifare_CRC_check(bool isResponse, uint8_t *data, uint8_t len) { switch (MifareAuthState) { case masNone: case masError: return iso14443A_CRC_check(isResponse, data, len); case masNt: case masNrAr: case masAt: case masAuthComplete: case masFirstData: case masData: break; } return 2; } /** * @brief iso14443B_CRC_check Checks CRC * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443B_CRC_check(uint8_t *d, uint8_t n) { return check_crc(CRC_14443_B, d, n); } uint8_t iso15693_CRC_check(uint8_t *d, uint8_t n) { return check_crc(CRC_15693, d, n); } uint8_t felica_CRC_check(uint8_t *d, uint8_t n) { return check_crc(CRC_FELICA, d, n); } /** * @brief iclass_CRC_Ok Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iclass_CRC_check(bool isResponse, uint8_t *d, uint8_t n) { //CRC commands (and responses) are all at least 4 bytes if (n < 4) return 2; //Commands to tag //Don't include the command byte if (!isResponse) { /** These commands should have CRC. Total length leftmost 4 READ 4 READ4 12 UPDATE - unsecured, ends with CRC16 14 UPDATE - secured, ends with signature instead 4 PAGESEL **/ //Covers three of them if (n == 4 || n == 12) { return check_crc(CRC_ICLASS, d + 1, n - 1); } return 2; } /** These tag responses should have CRC. Total length leftmost 10 READ data[8] crc[2] 34 READ4 data[32]crc[2] 10 UPDATE data[8] crc[2] 10 SELECT csn[8] crc[2] 10 IDENTIFY asnb[8] crc[2] 10 PAGESEL block1[8] crc[2] 10 DETECT csn[8] crc[2] These should not 4 CHECK chip_response[4] 8 READCHECK data[8] 1 ACTALL sof[1] 1 ACT sof[1] In conclusion, without looking at the command; any response of length 10 or 34 should have CRC **/ if (n != 10 && n != 34) return true; return check_crc(CRC_ICLASS, d, n); } int applyIso14443a(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { switch (cmd[0]) { case ISO14443A_CMD_WUPA: snprintf(exp, size, "WUPA"); break; case ISO14443A_CMD_ANTICOLL_OR_SELECT: { // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) // 93 50 = Bit oriented anti-collision (usage: 9350+ up to 5bytes, 9350 answer - up to 5bytes UID+BCC) // 93 70 = Select (usage: 9370+5bytes 9370 answer - answer: 1byte SAK) if (cmd[1] == 0x70) snprintf(exp, size, "SELECT_UID"); else if (cmd[1] == 0x20 || cmd[1] == 0x50) snprintf(exp, size, "ANTICOLL"); else snprintf(exp, size, "SELECT_XXX"); break; } case ISO14443A_CMD_ANTICOLL_OR_SELECT_2: { //95 20 = Anticollision of cascade level2 //95 50 = Bit oriented anti-collision level2 //95 70 = Select of cascade level2 if (cmd[1] == 0x70) snprintf(exp, size, "SELECT_UID-2"); else if (cmd[1] == 0x20 || cmd[1] == 0x50) snprintf(exp, size, "ANTICOLL-2"); else snprintf(exp, size, "SELECT_XXX-2"); break; } case ISO14443A_CMD_ANTICOLL_OR_SELECT_3: { //97 20 = Anticollision of cascade level3 //97 50 = Bit oriented anti-collision level3 //97 70 = Select of cascade level3 if (cmd[1] == 0x70) snprintf(exp, size, "SELECT_UID-3"); else if (cmd[1] == 0x20 || cmd[1] == 0x50) snprintf(exp, size, "ANTICOLL-3"); else snprintf(exp, size, "SELECT_XXX-3"); break; } case ISO14443A_CMD_REQA: snprintf(exp, size, "REQA"); break; case ISO14443A_CMD_READBLOCK: snprintf(exp, size, "READBLOCK(%d)", cmd[1]); break; case ISO14443A_CMD_WRITEBLOCK: snprintf(exp, size, "WRITEBLOCK(%d)", cmd[1]); break; case ISO14443A_CMD_HALT: snprintf(exp, size, "HALT"); MifareAuthState = masNone; break; case ISO14443A_CMD_RATS: snprintf(exp, size, "RATS"); break; case ISO14443A_CMD_OPTS: snprintf(exp, size, "OPTIONAL TIMESLOT"); break; case MIFARE_CMD_INC: snprintf(exp, size, "INC(%d)", cmd[1]); break; case MIFARE_CMD_DEC: snprintf(exp, size, "DEC(%d)", cmd[1]); break; case MIFARE_CMD_RESTORE: snprintf(exp, size, "RESTORE(%d)", cmd[1]); break; case MIFARE_CMD_TRANSFER: snprintf(exp, size, "TRANSFER(%d)", cmd[1]); break; case MIFARE_AUTH_KEYA: { if (cmdsize > 3) { snprintf(exp, size, "AUTH-A(%d)", cmd[1]); MifareAuthState = masNt; } else { // case MIFARE_ULEV1_VERSION : both 0x60. snprintf(exp, size, "EV1 VERSION"); } break; } case MIFARE_AUTH_KEYB: { MifareAuthState = masNt; snprintf(exp, size, "AUTH-B(%d)", cmd[1]); break; } case MIFARE_MAGICWUPC1: snprintf(exp, size, "MAGIC WUPC1"); break; case MIFARE_MAGICWUPC2: snprintf(exp, size, "MAGIC WUPC2"); break; case MIFARE_MAGICWIPEC: snprintf(exp, size, "MAGIC WIPEC"); break; case MIFARE_ULC_AUTH_1: snprintf(exp, size, "AUTH "); break; case MIFARE_ULC_AUTH_2: snprintf(exp, size, "AUTH_ANSW"); break; case MIFARE_ULEV1_AUTH: if (cmdsize == 7) snprintf(exp, size, "PWD-AUTH KEY: " _YELLOW_("0x%02x%02x%02x%02x"), cmd[1], cmd[2], cmd[3], cmd[4]); else snprintf(exp, size, "PWD-AUTH"); break; case MIFARE_ULEV1_FASTREAD : { if (cmdsize >= 3 && cmd[2] <= 0xE6) snprintf(exp, size, "READ RANGE (%d-%d)", cmd[1], cmd[2]); else // outside limits, useful for some tags... snprintf(exp, size, "READ RANGE (%d-%d) (?)", cmd[1], cmd[2]); break; } case MIFARE_ULC_WRITE : { if (cmd[1] < 0x21) snprintf(exp, size, "WRITEBLOCK(%d)", cmd[1]); else // outside limits, useful for some tags... snprintf(exp, size, "WRITEBLOCK(%d) (?)", cmd[1]); break; } case MIFARE_ULEV1_READ_CNT : { if (cmd[1] < 5) snprintf(exp, size, "READ CNT(%d)", cmd[1]); else snprintf(exp, size, "?"); break; } case MIFARE_ULEV1_INCR_CNT : { if (cmd[1] < 5) snprintf(exp, size, "INCR(%d)", cmd[1]); else snprintf(exp, size, "?"); break; } case MIFARE_ULEV1_READSIG: snprintf(exp, size, "READ SIG"); break; case MIFARE_ULEV1_CHECKTEAR: snprintf(exp, size, "CHK TEARING(%d)", cmd[1]); break; case MIFARE_ULEV1_VCSL: snprintf(exp, size, "VCSL"); break; case MIFARE_ULNANO_WRITESIG: snprintf(exp, size, "WRITE SIG"); break; case MIFARE_ULNANO_LOCKSIF: { if (cmd[1] == 0) snprintf(exp, size, "UNLOCK SIG"); else if (cmd[1] == 2) snprintf(exp, size, "LOCK SIG"); else snprintf(exp, size, "?"); break; } default: return 0; } return 1; } void annotateIso14443a(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { applyIso14443a(exp, size, cmd, cmdsize); } void annotateIclass(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { uint8_t c = cmd[0] & 0x0F; uint8_t parity = 0; for (uint8_t i = 0; i < 7; i++) { parity ^= (cmd[0] >> i) & 1; } switch (c) { case ICLASS_CMD_HALT: snprintf(exp, size, "HALT"); break; case ICLASS_CMD_SELECT: snprintf(exp, size, "SELECT"); break; case ICLASS_CMD_ACTALL: snprintf(exp, size, "ACTALL"); break; case ICLASS_CMD_DETECT: snprintf(exp, size, "DETECT"); break; case ICLASS_CMD_CHECK: snprintf(exp, size, "CHECK"); break; case ICLASS_CMD_READ4: snprintf(exp, size, "READ4(%d)", cmd[1]); break; case ICLASS_CMD_READ_OR_IDENTIFY: { if (cmdsize > 1) { snprintf(exp, size, "READ(%d)", cmd[1]); } else { snprintf(exp, size, "IDENTIFY"); } break; } case ICLASS_CMD_PAGESEL: snprintf(exp, size, "PAGESEL(%d)", cmd[1]); break; case ICLASS_CMD_UPDATE: snprintf(exp, size, "UPDATE(%d)", cmd[1]); break; case ICLASS_CMD_READCHECK: if (ICLASS_CREDIT(cmd[0])) { snprintf(exp, size, "READCHECK[Kc](%d)", cmd[1]); } else { snprintf(exp, size, "READCHECK[Kd](%d)", cmd[1]); } break; case ICLASS_CMD_ACT: snprintf(exp, size, "ACT"); break; default: snprintf(exp, size, "?"); break; } return; } void annotateIso15693(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { switch (cmd[1]) { case ISO15693_INVENTORY: snprintf(exp, size, "INVENTORY"); return; case ISO15693_STAYQUIET: snprintf(exp, size, "STAY_QUIET"); return; case ISO15693_READBLOCK: snprintf(exp, size, "READBLOCK"); return; case ISO15693_WRITEBLOCK: snprintf(exp, size, "WRITEBLOCK"); return; case ISO15693_LOCKBLOCK: snprintf(exp, size, "LOCKBLOCK"); return; case ISO15693_READ_MULTI_BLOCK: snprintf(exp, size, "READ_MULTI_BLOCK"); return; case ISO15693_SELECT: snprintf(exp, size, "SELECT"); return; case ISO15693_RESET_TO_READY: snprintf(exp, size, "RESET_TO_READY"); return; case ISO15693_WRITE_AFI: snprintf(exp, size, "WRITE_AFI"); return; case ISO15693_LOCK_AFI: snprintf(exp, size, "LOCK_AFI"); return; case ISO15693_WRITE_DSFID: snprintf(exp, size, "WRITE_DSFID"); return; case ISO15693_LOCK_DSFID: snprintf(exp, size, "LOCK_DSFID"); return; case ISO15693_GET_SYSTEM_INFO: snprintf(exp, size, "GET_SYSTEM_INFO"); return; case ISO15693_READ_MULTI_SECSTATUS: snprintf(exp, size, "READ_MULTI_SECSTATUS"); return; default: break; } if (cmd[1] >= 0x2D && cmd[1] <= 0x9F) snprintf(exp, size, "Optional RFU"); else if (cmd[1] >= 0xA0 && cmd[1] <= 0xDF) snprintf(exp, size, "Cust IC MFG dependent"); else if (cmd[1] >= 0xE0 && cmd[1] <= 0xFF) snprintf(exp, size, "Proprietary IC MFG dependent"); else snprintf(exp, size, "?"); } void annotateTopaz(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { switch (cmd[0]) { case TOPAZ_REQA: snprintf(exp, size, "REQA"); break; case TOPAZ_WUPA: snprintf(exp, size, "WUPA"); break; case TOPAZ_RID: snprintf(exp, size, "RID"); break; case TOPAZ_RALL: snprintf(exp, size, "RALL"); break; case TOPAZ_READ: snprintf(exp, size, "READ"); break; case TOPAZ_WRITE_E: snprintf(exp, size, "WRITE-E"); break; case TOPAZ_WRITE_NE: snprintf(exp, size, "WRITE-NE"); break; case TOPAZ_RSEG: snprintf(exp, size, "RSEG"); break; case TOPAZ_READ8: snprintf(exp, size, "READ8"); break; case TOPAZ_WRITE_E8: snprintf(exp, size, "WRITE-E8"); break; case TOPAZ_WRITE_NE8: snprintf(exp, size, "WRITE-NE8"); break; default: snprintf(exp, size, "?"); break; } } // iso 7816-3 void annotateIso7816(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { // S-block if ((cmd[0] & 0xC0) && (cmdsize == 3)) { switch ((cmd[0] & 0x3f)) { case 0x00 : snprintf(exp, size, "S-block RESYNCH req"); break; case 0x20 : snprintf(exp, size, "S-block RESYNCH resp"); break; case 0x01 : snprintf(exp, size, "S-block IFS req"); break; case 0x21 : snprintf(exp, size, "S-block IFS resp"); break; case 0x02 : snprintf(exp, size, "S-block ABORT req"); break; case 0x22 : snprintf(exp, size, "S-block ABORT resp"); break; case 0x03 : snprintf(exp, size, "S-block WTX reqt"); break; case 0x23 : snprintf(exp, size, "S-block WTX resp"); break; default : snprintf(exp, size, "S-block"); break; } } // R-block (ack) else if (((cmd[0] & 0xD0) == 0x80) && (cmdsize > 2)) { if ((cmd[0] & 0x10) == 0) snprintf(exp, size, "R-block ACK"); else snprintf(exp, size, "R-block NACK"); } // I-block else { int pos = 0; switch (cmd[0]) { case 2: case 3: pos = 2; break; case 0: pos = 1; break; default: pos = 3; break; } switch (cmd[pos]) { case ISO7816_READ_BINARY: snprintf(exp, size, "READ BIN"); break; case ISO7816_WRITE_BINARY: snprintf(exp, size, "WRITE BIN"); break; case ISO7816_UPDATE_BINARY: snprintf(exp, size, "UPDATE BIN"); break; case ISO7816_ERASE_BINARY: snprintf(exp, size, "ERASE BIN"); break; case ISO7816_READ_RECORDS: snprintf(exp, size, "READ RECORDS"); break; case ISO7816_WRITE_RECORDS: snprintf(exp, size, "WRITE RECORDS"); break; case ISO7816_APPEND_RECORD: snprintf(exp, size, "APPEND RECORD"); break; case ISO7816_UPDATE_RECORD: snprintf(exp, size, "UPDATE RECORD"); break; case ISO7816_GET_DATA: snprintf(exp, size, "GET DATA"); break; case ISO7816_PUT_DATA: snprintf(exp, size, "PUT DATA"); break; case ISO7816_SELECT_FILE: snprintf(exp, size, "SELECT FILE"); break; case ISO7816_VERIFY: snprintf(exp, size, "VERIFY"); break; case ISO7816_INTERNAL_AUTHENTICATION: snprintf(exp, size, "INTERNAL AUTH"); break; case ISO7816_EXTERNAL_AUTHENTICATION: snprintf(exp, size, "EXTERNAL AUTH"); break; case ISO7816_GET_CHALLENGE: snprintf(exp, size, "GET CHALLENGE"); break; case ISO7816_MANAGE_CHANNEL: snprintf(exp, size, "MANAGE CHANNEL"); break; case ISO7816_GET_RESPONSE: snprintf(exp, size, "GET RESPONSE"); break; default: snprintf(exp, size, "?"); break; } } } // MIFARE DESFire void annotateMfDesfire(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { // it's basically a ISO14443a tag, so try annotation from there if (!applyIso14443a(exp, size, cmd, cmdsize)) { // S-block 11xxx010 if ((cmd[0] & 0xC0) && (cmdsize == 3)) { switch ((cmd[0] & 0x30)) { case 0x30: snprintf(exp, size, "S-block DESELECT"); break; case 0x00: snprintf(exp, size, "S-block WTX"); break; default: snprintf(exp, size, "S-block"); break; } } // R-block (ack) 101xx01x else if (((cmd[0] & 0xB0) == 0xA0) && (cmdsize > 2)) { if ((cmd[0] & 0x10) == 0) snprintf(exp, size, "R-block ACK(%d)", (cmd[0] & 0x01)); else snprintf(exp, size, "R-block NACK(%d)", (cmd[0] & 0x01)); } // I-block 000xCN1x else if ((cmd[0] & 0xC0) == 0x00) { // PCB [CID] [NAD] [INF] CRC CRC int pos = 1; if ((cmd[0] & 0x08) == 0x08) // cid byte following pos = pos + 1; if ((cmd[0] & 0x04) == 0x04) // nad byte following pos = pos + 1; switch (cmd[pos]) { case MFDES_CREATE_APPLICATION: snprintf(exp, size, "CREATE APPLICATION"); break; case MFDES_DELETE_APPLICATION: snprintf(exp, size, "DELETE APPLICATION"); break; case MFDES_GET_APPLICATION_IDS: snprintf(exp, size, "GET APPLICATION IDS"); break; case MFDES_SELECT_APPLICATION: snprintf(exp, size, "SELECT APPLICATION"); break; case MFDES_FORMAT_PICC: snprintf(exp, size, "FORMAT PICC"); break; case MFDES_GET_VERSION: snprintf(exp, size, "GET VERSION"); break; case MFDES_READ_DATA: snprintf(exp, size, "READ DATA"); break; case MFDES_WRITE_DATA: snprintf(exp, size, "WRITE DATA"); break; case MFDES_GET_VALUE: snprintf(exp, size, "GET VALUE"); break; case MFDES_CREDIT: snprintf(exp, size, "CREDIT"); break; case MFDES_DEBIT: snprintf(exp, size, "DEBIT"); break; case MFDES_LIMITED_CREDIT: snprintf(exp, size, "LIMITED CREDIT"); break; case MFDES_WRITE_RECORD: snprintf(exp, size, "WRITE RECORD"); break; case MFDES_READ_RECORDS: snprintf(exp, size, "READ RECORDS"); break; case MFDES_CLEAR_RECORD_FILE: snprintf(exp, size, "CLEAR RECORD FILE"); break; case MFDES_COMMIT_TRANSACTION: snprintf(exp, size, "COMMIT TRANSACTION"); break; case MFDES_ABORT_TRANSACTION: snprintf(exp, size, "ABORT TRANSACTION"); break; case MFDES_GET_FREE_MEMORY: snprintf(exp, size, "GET FREE MEMORY"); break; case MFDES_GET_FILE_IDS: snprintf(exp, size, "GET FILE IDS"); break; case MFDES_GET_ISOFILE_IDS: snprintf(exp, size, "GET ISOFILE IDS"); break; case MFDES_GET_FILE_SETTINGS: snprintf(exp, size, "GET FILE SETTINGS"); break; case MFDES_CHANGE_FILE_SETTINGS: snprintf(exp, size, "CHANGE FILE SETTINGS"); break; case MFDES_CREATE_STD_DATA_FILE: snprintf(exp, size, "CREATE STD DATA FILE"); break; case MFDES_CREATE_BACKUP_DATA_FILE: snprintf(exp, size, "CREATE BACKUP DATA FILE"); break; case MFDES_CREATE_VALUE_FILE: snprintf(exp, size, "CREATE VALUE FILE"); break; case MFDES_CREATE_LINEAR_RECORD_FILE: snprintf(exp, size, "CREATE LINEAR RECORD FILE"); break; case MFDES_CREATE_CYCLIC_RECORD_FILE: snprintf(exp, size, "CREATE CYCLIC RECORD FILE"); break; case MFDES_DELETE_FILE: snprintf(exp, size, "DELETE FILE"); break; case MFDES_AUTHENTICATE: snprintf(exp, size, "AUTH NATIVE (keyNo %d)", cmd[pos + 1]); break; // AUTHENTICATE_NATIVE case MFDES_AUTHENTICATE_ISO: snprintf(exp, size, "AUTH ISO (keyNo %d)", cmd[pos + 1]); break; // AUTHENTICATE_STANDARD case MFDES_AUTHENTICATE_AES: snprintf(exp, size, "AUTH AES (keyNo %d)", cmd[pos + 1]); break; case MFDES_CHANGE_KEY_SETTINGS: snprintf(exp, size, "CHANGE KEY SETTINGS"); break; case MFDES_GET_KEY_SETTINGS: snprintf(exp, size, "GET KEY SETTINGS"); break; case MFDES_CHANGE_KEY: snprintf(exp, size, "CHANGE KEY"); break; case MFDES_GET_KEY_VERSION: snprintf(exp, size, "GET KEY VERSION"); break; case MFDES_AUTHENTICATION_FRAME: snprintf(exp, size, "AUTH FRAME / NEXT FRAME"); break; default: break; } } else { // anything else snprintf(exp, size, "?"); } } } /** 06 00 = INITIATE 0E xx = SELECT ID (xx = Chip-ID) 0B = Get UID 08 yy = Read Block (yy = block number) 09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written) 0C = Reset to Inventory 0F = Completion 0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate) **/ void annotateIso14443b(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { switch (cmd[0]) { case ISO14443B_REQB : { switch (cmd[2] & 0x07) { case 0: snprintf(exp, size, "1 slot "); break; case 1: snprintf(exp, size, "2 slots "); break; case 2: snprintf(exp, size, "4 slots "); break; case 3: snprintf(exp, size, "8 slots "); break; default: snprintf(exp, size, "16 slots "); break; } if ((cmd[2] & 0x8)) snprintf(exp, size, "WUPB"); else snprintf(exp, size, "REQB"); break; } case ISO14443B_ATTRIB: snprintf(exp, size, "ATTRIB"); break; case ISO14443B_HALT: snprintf(exp, size, "HALT"); break; case ISO14443B_INITIATE: snprintf(exp, size, "INITIATE"); break; case ISO14443B_SELECT: snprintf(exp, size, "SELECT(%d)", cmd[1]); break; case ISO14443B_GET_UID: snprintf(exp, size, "GET UID"); break; case ISO14443B_READ_BLK: snprintf(exp, size, "READ_BLK(%d)", cmd[1]); break; case ISO14443B_WRITE_BLK: snprintf(exp, size, "WRITE_BLK(%d)", cmd[1]); break; case ISO14443B_RESET: snprintf(exp, size, "RESET"); break; case ISO14443B_COMPLETION: snprintf(exp, size, "COMPLETION"); break; case ISO14443B_AUTHENTICATE: snprintf(exp, size, "AUTHENTICATE"); break; case ISO14443B_PING: snprintf(exp, size, "PING"); break; case ISO14443B_PONG: snprintf(exp, size, "PONG"); break; default: snprintf(exp, size, "?"); break; } } // LEGIC // 1 = read // 0 = write // Quite simpel tag void annotateLegic(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { uint8_t bitsend = cmd[0]; uint8_t cmdBit = (cmd[1] & 1); switch (bitsend) { case 7: snprintf(exp, size, "IV 0x%02X", cmd[1]); break; case 6: { switch (cmd[1]) { case LEGIC_MIM_22: snprintf(exp, size, "MIM22"); break; case LEGIC_MIM_256: snprintf(exp, size, "MIM256"); break; case LEGIC_MIM_1024: snprintf(exp, size, "MIM1024"); break; case LEGIC_ACK_22: snprintf(exp, size, "ACK 22"); break; case LEGIC_ACK_256: snprintf(exp, size, "ACK 256/1024"); break; } break; } case 9: case 11: { uint16_t address = (cmd[2] << 7) | cmd[1] >> 1; if (cmdBit == LEGIC_READ) snprintf(exp, size, "READ Byte(%d)", address); if (cmdBit == LEGIC_WRITE) snprintf(exp, size, "WRITE Byte(%d)", address); break; } case 21: { if (cmdBit == LEGIC_WRITE) { uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0xFF; uint8_t val = (cmd[3] & 1) << 7 | cmd[2] >> 1; snprintf(exp, size, "WRITE Byte(%d) %02X", address, val); } break; } case 23: { if (cmdBit == LEGIC_WRITE) { uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0x3FF; uint8_t val = (cmd[3] & 0x7) << 5 | cmd[2] >> 3; snprintf(exp, size, "WRITE Byte(%d) %02X", address, val); } break; } case 12: default: break; } } void annotateFelica(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize) { switch (cmd[3]) { case FELICA_POLL_REQ: snprintf(exp, size, "POLLING"); break; case FELICA_POLL_ACK: snprintf(exp, size, "POLL ACK"); break; case FELICA_REQSRV_REQ: snprintf(exp, size, "REQUEST SERVICE"); break; case FELICA_REQSRV_ACK: snprintf(exp, size, "REQ SERV ACK"); break; case FELICA_REQRESP_REQ: snprintf(exp, size, "REQUEST RESPONSE"); break; case FELICA_REQRESP_ACK: snprintf(exp, size, "REQ RESP ACK"); break; case FELICA_RDBLK_REQ: snprintf(exp, size, "READ BLK"); break; case FELICA_RDBLK_ACK: snprintf(exp, size, "READ BLK ACK"); break; case FELICA_WRTBLK_REQ: snprintf(exp, size, "WRITE BLK"); break; case FELICA_WRTBLK_ACK: snprintf(exp, size, "WRITE BLK ACK"); break; case FELICA_SRCHSYSCODE_REQ: snprintf(exp, size, "SEARCH SERVICE CODE"); break; case FELICA_SRCHSYSCODE_ACK: snprintf(exp, size, "SSC ACK"); break; case FELICA_REQSYSCODE_REQ: snprintf(exp, size, "REQUEST SYSTEM CODE"); break; case FELICA_REQSYSCODE_ACK: snprintf(exp, size, "RSC ACK"); break; case FELICA_AUTH1_REQ: snprintf(exp, size, "AUTH 1"); break; case FELICA_AUTH1_ACK: snprintf(exp, size, "AUTH 1 ACK"); break; case FELICA_AUTH2_REQ: snprintf(exp, size, "AUTH 2"); break; case FELICA_AUTH2_ACK: snprintf(exp, size, "AUTH 2 ACK"); break; case FELICA_RDSEC_REQ: snprintf(exp, size, "READ"); break; case FELICA_RDSEC_ACK: snprintf(exp, size, "READ ACK"); break; case FELICA_WRTSEC_REQ: snprintf(exp, size, "WRITE"); break; case FELICA_WRTSEC_ACK: snprintf(exp, size, "WRITE ACK"); break; case FELICA_REQSRV2_REQ: snprintf(exp, size, "REQUEST SERVICE v2"); break; case FELICA_REQSRV2_ACK: snprintf(exp, size, "REQ SERV v2 ACK"); break; case FELICA_GETSTATUS_REQ: snprintf(exp, size, "GET STATUS"); break; case FELICA_GETSTATUS_ACK: snprintf(exp, size, "GET STATUS ACK"); break; case FELICA_OSVER_REQ: snprintf(exp, size, "REQUEST SPECIFIC VERSION"); break; case FELICA_OSVER_ACK: snprintf(exp, size, "RSV ACK"); break; case FELICA_RESET_MODE_REQ: snprintf(exp, size, "RESET MODE"); break; case FELICA_RESET_MODE_ACK: snprintf(exp, size, "RESET MODE ACK"); break; case FELICA_AUTH1V2_REQ: snprintf(exp, size, "AUTH 1 v2"); break; case FELICA_AUTH1V2_ACK: snprintf(exp, size, "AUTH 1 v2 ACK"); break; case FELICA_AUTH2V2_REQ: snprintf(exp, size, "AUTH 2 v2"); break; case FELICA_AUTH2V2_ACK: snprintf(exp, size, "AUTH 2 v2 ACK"); break; case FELICA_RDSECV2_REQ: snprintf(exp, size, "READ v2"); break; case FELICA_RDSECV2_ACK: snprintf(exp, size, "READ v2 ACK"); break; case FELICA_WRTSECV2_REQ: snprintf(exp, size, "WRITE v2"); break; case FELICA_WRTSECV2_ACK: snprintf(exp, size, "WRITE v2 ACK"); break; case FELICA_UPDATE_RNDID_REQ: snprintf(exp, size, "UPDATE RANDOM ID"); break; case FELICA_UPDATE_RNDID_ACK: snprintf(exp, size, "URI ACK"); break; default : snprintf(exp, size, "?"); break; } } void annotateMifare(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, uint8_t paritysize, bool isResponse) { if (!isResponse && cmdsize == 1) { switch (cmd[0]) { case ISO14443A_CMD_WUPA: case ISO14443A_CMD_REQA: MifareAuthState = masNone; break; default: break; } } // get UID if (MifareAuthState == masNone) { if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } } switch (MifareAuthState) { case masNt: if (cmdsize == 4 && isResponse) { snprintf(exp, size, "AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)"); MifareAuthState = masNrAr; if (AuthData.first_auth) { AuthData.nt = bytes_to_num(cmd, 4); } else { AuthData.nt_enc = bytes_to_num(cmd, 4); AuthData.nt_enc_par = parity[0]; } return; } else { MifareAuthState = masError; } break; case masNrAr: if (cmdsize == 8 && !isResponse) { snprintf(exp, size, "AUTH: nr ar (enc)"); MifareAuthState = masAt; AuthData.nr_enc = bytes_to_num(cmd, 4); AuthData.ar_enc = bytes_to_num(&cmd[4], 4); AuthData.ar_enc_par = parity[0] << 4; return; } else { MifareAuthState = masError; } break; case masAt: if (cmdsize == 4 && isResponse) { snprintf(exp, size, "AUTH: at (enc)"); MifareAuthState = masAuthComplete; AuthData.at_enc = bytes_to_num(cmd, 4); AuthData.at_enc_par = parity[0]; return; } else { MifareAuthState = masError; } break; case masNone: case masError: case masAuthComplete: case masFirstData: case masData: break; } if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError))) annotateIso14443a(exp, size, cmd, cmdsize); } bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) { static struct Crypto1State *traceCrypto1; *mfDataLen = 0; if (MifareAuthState == masAuthComplete) { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } MifareAuthState = masFirstData; return false; } if (cmdsize > 32) return false; if (MifareAuthState == masFirstData) { static uint64_t mfLastKey; if (AuthData.first_auth) { AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64); AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96); mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLogEx(NORMAL, " | | * |%48s %012"PRIx64" prng %s | |", "key", mfLastKey, validate_prng_nonce(AuthData.nt) ? _GREEN_("WEAK") : _YELLOW_("HARD")); AuthData.first_auth = false; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); } else { if (traceCrypto1) { crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; } // check last used key if (mfLastKey) { if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) { PrintAndLogEx(NORMAL, " | | * |%60s %012"PRIx64"| |", "last used key", mfLastKey); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); }; } // check default keys if (!traceCrypto1) { for (int i = 0; i < ARRAYLEN(g_mifare_default_keys); i++) { if (NestedCheckKey(g_mifare_default_keys[i], &AuthData, cmd, cmdsize, parity)) { PrintAndLogEx(NORMAL, " | | * |%61s %012"PRIx64"| |", "key", g_mifare_default_keys[i]); mfLastKey = g_mifare_default_keys[i]; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; }; } } // nested if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) { uint32_t ntx = prng_successor(AuthData.nt, 90); for (int i = 0; i < 16383; i++) { ntx = prng_successor(ntx, 1); if (NTParityChk(&AuthData, ntx)) { uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(pcs, mfData, cmdsize, 0); crypto1_destroy(pcs); if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && check_crc(CRC_14443_A, mfData, cmdsize)) { AuthData.ks2 = ks2; AuthData.ks3 = ks3; AuthData.nt = ntx; mfLastKey = GetCrypto1ProbableKey(&AuthData); PrintAndLogEx(NORMAL, " | | * | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |", mfLastKey, AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; } } } } //hardnested if (!traceCrypto1) { PrintAndLogEx(NORMAL, "hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc); MifareAuthState = masError; /* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests uint32_t t = msclock(); uint32_t t1 = t; int n = 0; for (uint32_t i = 0; i < 0xFFFFFFFF; i++) { if (NTParityChk(&AuthData, i)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); n++; if (!(n % 100000)) { PrintAndLogEx(NORMAL, "delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3); t1 = msclock(); } } } PrintAndLogEx(NORMAL, "delta=%d n=%d\n", msclock() - t, n); */ } } MifareAuthState = masData; } if (MifareAuthState == masData && traceCrypto1) { memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0); *mfDataLen = cmdsize; } return *mfDataLen > 0; } bool NTParityChk(TAuthData *ad, uint32_t ntx) { if ( (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) || (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) || (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01)) ) return false; uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) || (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) || (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01)) ) return false; uint32_t at = prng_successor(ntx, 96); if ( (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) || (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) || (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) || (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01)) ) return false; return true; } bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) { uint8_t buf[32] = {0}; struct Crypto1State *pcs; AuthData.ks2 = 0; AuthData.ks3 = 0; pcs = crypto1_create(key); uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc; uint32_t ar = prng_successor(nt1, 64); uint32_t at = prng_successor(nt1, 96); crypto1_word(pcs, ad->nr_enc, 1); // uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc; uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc; if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) { crypto1_destroy(pcs); return false; } memcpy(buf, cmd, cmdsize); mf_crypto1_decrypt(pcs, buf, cmdsize, 0); crypto1_destroy(pcs); if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity)) return false; if (!check_crc(CRC_14443_A, buf, cmdsize)) return false; AuthData.nt = nt1; AuthData.ks2 = AuthData.ar_enc ^ ar; AuthData.ks3 = AuthData.at_enc ^ at; return true; } bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) { for (int i = 0; i < cmdsize - 1; i++) { if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01)) return false; } return true; } // Another implementation of mfkey64 attack, more "valid" than "probable" // uint64_t GetCrypto1ProbableKey(TAuthData *ad) { struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, ad->nr_enc, 1); lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0); uint64_t key = 0; crypto1_get_lfsr(revstate, &key); crypto1_destroy(revstate); return key; }