//----------------------------------------------------------------------------- // Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura // 2015,2016,2017 Iceman, Marshmellow // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE ULTRALIGHT (C) commands //----------------------------------------------------------------------------- #include "cmdhfmfu.h" #define MAX_UL_BLOCKS 0x0f #define MAX_ULC_BLOCKS 0x2b #define MAX_ULEV1a_BLOCKS 0x13 #define MAX_ULEV1b_BLOCKS 0x28 #define MAX_NTAG_203 0x29 #define MAX_NTAG_210 0x13 #define MAX_NTAG_212 0x28 #define MAX_NTAG_213 0x2c #define MAX_NTAG_215 0x86 #define MAX_NTAG_216 0xe6 #define MAX_MY_D_NFC 0xff #define MAX_MY_D_MOVE 0x25 #define MAX_MY_D_MOVE_LEAN 0x0f #define PUBLIC_ECDA_KEYLEN 33 uint8_t public_ecda_key[PUBLIC_ECDA_KEYLEN] = { 0x04, 0x49, 0x4e, 0x1a, 0x38, 0x6d, 0x3d, 0x3c, 0xfe, 0x3d, 0xc1, 0x0e, 0x5d, 0xe6, 0x8a, 0x49, 0x9b, 0x1c, 0x20, 0x2d, 0xb5, 0xb1, 0x32, 0x39, 0x3e, 0x89, 0xed, 0x19, 0xfe, 0x5b, 0xe8, 0xbc, 0x61 }; #define KEYS_3DES_COUNT 7 uint8_t default_3des_keys[KEYS_3DES_COUNT][16] = { { 0x42,0x52,0x45,0x41,0x4b,0x4d,0x45,0x49,0x46,0x59,0x4f,0x55,0x43,0x41,0x4e,0x21 },// 3des std key { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },// all zeroes { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f },// 0x00-0x0F { 0x49,0x45,0x4D,0x4B,0x41,0x45,0x52,0x42,0x21,0x4E,0x41,0x43,0x55,0x4F,0x59,0x46 },// NFC-key { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },// all ones { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF },// all FF { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF } // 11 22 33 }; #define KEYS_PWD_COUNT 1 uint8_t default_pwd_pack[KEYS_PWD_COUNT][4] = { {0xFF,0xFF,0xFF,0xFF}, // PACK 0x00,0x00 -- factory default }; #define MAX_UL_TYPES 18 uint32_t UL_TYPES_ARRAY[MAX_UL_TYPES] = { UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_203, NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_NFC, MY_D_MOVE_LEAN, FUDAN_UL}; uint8_t UL_MEMORY_ARRAY[MAX_UL_TYPES] = { MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_ULEV1b_BLOCKS, MAX_NTAG_203, MAX_NTAG_203, MAX_NTAG_210, MAX_NTAG_212, MAX_NTAG_213, MAX_NTAG_215, MAX_NTAG_216, MAX_UL_BLOCKS, MAX_MY_D_NFC, MAX_MY_D_MOVE, MAX_MY_D_MOVE, MAX_MY_D_MOVE_LEAN, MAX_UL_BLOCKS}; //------------------------------------ // Pwd & Pack generation Stuff //------------------------------------ const uint32_t c_D[] = { 0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8, 0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9, 0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79, 0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20, 0x5728B869, 0x30726D5A }; void transform_D(uint8_t* ru) { //Transform uint8_t i; uint8_t p = 0; uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++]; uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++]; for (i = 0; i < 12; i += 2) { uint32_t t1 = ROTL(v1 ^ v2, v2 & 0x1F) + c_D[p++]; uint32_t t2 = ROTL(v2 ^ t1, t1 & 0x1F) + c_D[p++]; v1 = ROTL(t1 ^ t2, t2 & 0x1F) + c_D[p++]; v2 = ROTL(t2 ^ v1, v1 & 0x1F) + c_D[p++]; } //Re-use ru ru[0] = v1 & 0xFF; ru[1] = (v1 >> 8) & 0xFF; ru[2] = (v1 >> 16) & 0xFF; ru[3] = (v1 >> 24) & 0xFF; ru[4] = v2 & 0xFF; ru[5] = (v2 >> 8) & 0xFF; ru[6] = (v2 >> 16) & 0xFF; ru[7] = (v2 >> 24) & 0xFF; } // Certain pwd generation algo nickname A. uint32_t ul_ev1_pwdgenA(uint8_t* uid) { uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32; uint32_t xortable[] = { 0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3, 0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7, 0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC, 0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0 }; uint8_t entry[] = {0x00,0x00,0x00,0x00}; uint8_t pwd[] = {0x00,0x00,0x00,0x00}; num_to_bytes( xortable[pos], 4, entry); pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3]; pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4]; pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5]; pwd[3] = entry[3] ^ uid[6]; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname B. (very simple) uint32_t ul_ev1_pwdgenB(uint8_t* uid) { uint8_t pwd[] = {0x00,0x00,0x00,0x00}; pwd[0] = uid[1] ^ uid[3] ^ 0xAA; pwd[1] = uid[2] ^ uid[4] ^ 0x55; pwd[2] = uid[3] ^ uid[5] ^ 0xAA; pwd[3] = uid[4] ^ uid[6] ^ 0x55; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname C. uint32_t ul_ev1_pwdgenC(uint8_t* uid){ uint32_t pwd = 0; uint8_t base[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x63, 0x29, 0x20, 0x43, 0x6f, 0x70, 0x79, 0x72, 0x69, 0x67, 0x68, 0x74, 0x20, 0x4c, 0x45, 0x47, 0x4f, 0x20, 0x32, 0x30, 0x31, 0x34, 0xaa, 0xaa }; memcpy(base, uid, 7); for (int i = 0; i < 32; i += 4) { uint32_t b = *(uint32_t *)(base + i); pwd = b + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd; } return BSWAP_32(pwd); } // Certain pwd generation algo nickname D. // a.k.a xzy uint32_t ul_ev1_pwdgenD(uint8_t* uid){ uint8_t i; //Rotate uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc key uint32_t pwd = 0; //Key as int r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; //Offset for (i = 0; i < 4; i++) pwd = ru[i + r] + (pwd << 8); return BSWAP_32(pwd); } // pack generation for algo 1-3 uint16_t ul_ev1_packgenA(uint8_t* uid){ uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8); return pack; } uint16_t ul_ev1_packgenB(uint8_t* uid){ return 0x8080; } uint16_t ul_ev1_packgenC(uint8_t* uid){ return 0xaa55; } uint16_t ul_ev1_packgenD(uint8_t* uid){ uint8_t i; //Rotate uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc pack uint32_t p = 0; for (i = 0; i < 8; i++) p += ru[i] * 13; p ^= 0x5555; return BSWAP_16( p & 0xFFFF ); } int ul_ev1_pwdgen_selftest(){ uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10}; uint32_t pwd1 = ul_ev1_pwdgenA(uid1); PrintAndLog("UID | %s | %08X | %s", sprint_hex(uid1,7), pwd1, (pwd1 == 0x8432EB17)?"OK":"->8432EB17<-"); uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81}; uint32_t pwd2 = ul_ev1_pwdgenB(uid2); PrintAndLog("UID | %s | %08X | %s", sprint_hex(uid2,7), pwd2, (pwd2 == 0x5fd37eca)?"OK":"->5fd37eca<--"); uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80}; uint32_t pwd3 = ul_ev1_pwdgenC(uid3); PrintAndLog("UID | %s | %08X | %s", sprint_hex(uid3,7), pwd3, (pwd3 == 0x5a349515)?"OK":"->5a349515<--"); uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80}; uint32_t pwd4 = ul_ev1_pwdgenD(uid4); PrintAndLog("UID | %s | %08X | %s", sprint_hex(uid4,7), pwd4, (pwd4 == 0x72B1EC61)?"OK":"->72B1EC61<--"); return 0; } //------------------------------------ static int CmdHelp(const char *Cmd); // get version nxp product type char *getProductTypeStr( uint8_t id){ static char buf[20]; char *retStr = buf; switch(id) { case 3: sprintf(retStr, "%02X, Ultralight", id); break; case 4: sprintf(retStr, "%02X, NTAG", id); break; default: sprintf(retStr, "%02X, unknown", id); break; } return buf; } /* The 7 MSBits (=n) code the storage size itself based on 2^n, the LSBit is set to '0' if the size is exactly 2^n and set to '1' if the storage size is between 2^n and 2^(n+1). */ char *getUlev1CardSizeStr( uint8_t fsize ){ static char buf[40]; char *retStr = buf; memset(buf, 0, sizeof(buf)); uint16_t usize = 1 << ((fsize >>1) + 1); uint16_t lsize = 1 << (fsize >>1); // is LSB set? if ( fsize & 1 ) sprintf(retStr, "%02X, (%u <-> %u bytes)",fsize, usize, lsize); else sprintf(retStr, "%02X, (%u bytes)", fsize, lsize); return buf; } static void ul_switch_on_field(void) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); } static int ul_send_cmd_raw( uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength ) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC | ISO14A_NO_RATS, cmdlen, 0}}; memcpy(c.d.asBytes, cmd, cmdlen); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; if (!resp.arg[0] && responseLength) return -1; uint16_t resplen = (resp.arg[0] < responseLength) ? resp.arg[0] : responseLength; memcpy(response, resp.d.asBytes, resplen); return resplen; } static int ul_select( iso14a_card_select_t *card ){ ul_switch_on_field(); UsbCommand resp; bool ans = false; ans = WaitForResponseTimeout(CMD_ACK, &resp, 1500); if (!ans || resp.arg[0] < 1) { PrintAndLog("iso14443a card select failed"); DropField(); return 0; } memcpy(card, resp.d.asBytes, sizeof(iso14a_card_select_t)); return 1; } // This read command will at least return 16bytes. static int ul_read( uint8_t page, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {ISO14443A_CMD_READBLOCK, page}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ul_comp_write( uint8_t page, uint8_t *data, uint8_t datalen ){ uint8_t cmd[18]; memset(cmd, 0x00, sizeof(cmd)); datalen = ( datalen > 16) ? 16 : datalen; cmd[0] = ISO14443A_CMD_WRITEBLOCK; cmd[1] = page; memcpy(cmd+2, data, datalen); uint8_t response[1] = {0xff}; ul_send_cmd_raw(cmd, 2+datalen, response, sizeof(response)); // ACK if ( response[0] == 0x0a ) return 0; // NACK return -1; } static int ulc_requestAuthentication( uint8_t *nonce, uint16_t nonceLength ){ uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength); return len; } static int ulc_authentication( uint8_t *key, bool switch_off_field ){ UsbCommand c = {CMD_MIFAREUC_AUTH, {switch_off_field}}; memcpy(c.d.asBytes, key, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) return 0; if ( resp.arg[0] == 1 ) return 1; return 0; } static int ulev1_requestAuthentication( uint8_t *pwd, uint8_t *pack, uint16_t packLength ){ uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength); // NACK tables different tags, but between 0-9 is a NEGATIVE response. // ACK == 0xA if ( len == 1 && pack[0] <= 0x09 ) return -1; return len; } static int ul_auth_select( iso14a_card_select_t *card, TagTypeUL_t tagtype, bool hasAuthKey, uint8_t *authkey, uint8_t *pack, uint8_t packSize){ if ( hasAuthKey && (tagtype & UL_C)) { //will select card automatically and close connection on error if (!ulc_authentication(authkey, false)) { PrintAndLog("Error: Authentication Failed UL-C"); return 0; } } else { if ( !ul_select(card) ) return 0; if (hasAuthKey) { if ( ulev1_requestAuthentication(authkey, pack, packSize) == -1 ) { DropField(); PrintAndLog("Error: Authentication Failed UL-EV1/NTAG"); return 0; } } } return 1; } static int ulev1_getVersion( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_VERSION}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readCounter( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readTearing( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readSignature( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } // Fudan check checks for which error is given for a command with incorrect crc // NXP UL chip responds with 01, fudan 00. // other possible checks: // send a0 + crc // UL responds with 00, fudan doesn't respond // or // send a200 + crc // UL doesn't respond, fudan responds with 00 // or // send 300000 + crc (read with extra byte(s)) // UL responds with read of page 0, fudan doesn't respond. // // make sure field is off before calling this function static int ul_fudan_check( void ){ iso14a_card_select_t card; if ( !ul_select(&card) ) return UL_ERROR; UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 4, 0}}; uint8_t cmd[4] = {0x30,0x00,0x02,0xa7}; //wrong crc on purpose should be 0xa8 memcpy(c.d.asBytes, cmd, 4); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return UL_ERROR; if (resp.arg[0] != 1) return UL_ERROR; return (!resp.d.asBytes[0]) ? FUDAN_UL : UL; //if response == 0x00 then Fudan, else Genuine NXP } static int ul_print_default( uint8_t *data){ uint8_t uid[7]; uid[0] = data[0]; uid[1] = data[1]; uid[2] = data[2]; uid[3] = data[4]; uid[4] = data[5]; uid[5] = data[6]; uid[6] = data[7]; PrintAndLog(" UID : %s ", sprint_hex(uid, 7)); PrintAndLog(" UID[0] : %02X, %s", uid[0], getTagInfo(uid[0]) ); if ( uid[0] == 0x05 && ((uid[1] & 0xf0) >> 4) == 2 ) { // is infineon and 66RxxP uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU switch (chip){ case 0xc2: PrintAndLog(" IC type : SLE 66R04P 770 Bytes"); break; //77 pages case 0xc4: PrintAndLog(" IC type : SLE 66R16P 2560 Bytes"); break; //256 pages case 0xc6: PrintAndLog(" IC type : SLE 66R32P 5120 Bytes"); break; //512 pages /2 sectors } } // CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2 int crc0 = 0x88 ^ data[0] ^ data[1] ^data[2]; if ( data[3] == crc0 ) PrintAndLog(" BCC0 : %02X, Ok", data[3]); else PrintAndLog(" BCC0 : %02X, crc should be %02X", data[3], crc0); int crc1 = data[4] ^ data[5] ^ data[6] ^data[7]; if ( data[8] == crc1 ) PrintAndLog(" BCC1 : %02X, Ok", data[8]); else PrintAndLog(" BCC1 : %02X, crc should be %02X", data[8], crc1 ); PrintAndLog(" Internal : %02X, %sdefault", data[9], (data[9]==0x48)?"":"not " ); PrintAndLog(" Lock : %s - %s", sprint_hex(data+10, 2), sprint_bin(data+10, 2) ); PrintAndLog("OneTimePad : %s - %s\n", sprint_hex(data + 12, 4), sprint_bin(data+12, 4) ); return 0; } static int ndef_print_CC(uint8_t *data) { // no NDEF message if(data[0] != 0xe1) return -1; PrintAndLog("--- NDEF Message"); PrintAndLog("Capability Container: %s", sprint_hex(data,4) ); PrintAndLog(" %02X : NDEF Magic Number", data[0]); PrintAndLog(" %02X : version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0f); PrintAndLog(" %02X : Physical Memory Size: %d bytes", data[2], (data[2] + 1) * 8); if ( data[2] == 0x96 ) PrintAndLog(" %02X : NDEF Memory Size: %d bytes", data[2], 48); else if ( data[2] == 0x12 ) PrintAndLog(" %02X : NDEF Memory Size: %d bytes", data[2], 144); else if ( data[2] == 0x3e ) PrintAndLog(" %02X : NDEF Memory Size: %d bytes", data[2], 496); else if ( data[2] == 0x6d ) PrintAndLog(" %02X : NDEF Memory Size: %d bytes", data[2], 872); PrintAndLog(" %02X : %s / %s", data[3], (data[3] & 0xF0) ? "(RFU)" : "Read access granted without any security", (data[3] & 0x0F)==0 ? "Write access granted without any security" : (data[3] & 0x0F)==0x0F ? "No write access granted at all" : "(RFU)"); return 0; } int ul_print_type(uint32_t tagtype, uint8_t spaces){ char spc[11] = " "; spc[10]=0x00; char *spacer = spc + (10-spaces); if ( tagtype & UL ) PrintAndLog("%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_C) PrintAndLog("%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_EV1_48) PrintAndLog("%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer); else if ( tagtype & UL_EV1_128) PrintAndLog("%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer); else if ( tagtype & NTAG ) PrintAndLog("%sTYPE : NTAG UNKNOWN", spacer); else if ( tagtype & NTAG_203 ) PrintAndLog("%sTYPE : NTAG 203 144bytes (NT2H0301F0DT)", spacer); else if ( tagtype & NTAG_210 ) PrintAndLog("%sTYPE : NTAG 210 48bytes (NT2L1011G0DU)", spacer); else if ( tagtype & NTAG_212 ) PrintAndLog("%sTYPE : NTAG 212 128bytes (NT2L1211G0DU)", spacer); else if ( tagtype & NTAG_213 ) PrintAndLog("%sTYPE : NTAG 213 144bytes (NT2H1311G0DU)", spacer); else if ( tagtype & NTAG_215 ) PrintAndLog("%sTYPE : NTAG 215 504bytes (NT2H1511G0DU)", spacer); else if ( tagtype & NTAG_216 ) PrintAndLog("%sTYPE : NTAG 216 888bytes (NT2H1611G0DU)", spacer); else if ( tagtype & NTAG_I2C_1K ) PrintAndLog("%sTYPE : NTAG I%sC 888bytes (NT3H1101FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_2K ) PrintAndLog("%sTYPE : NTAG I%sC 1904bytes (NT3H1201FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_1K_PLUS ) PrintAndLog("%sTYPE : NTAG I%sC plus 888bytes (NT3H2111FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_2K_PLUS ) PrintAndLog("%sTYPE : NTAG I%sC plus 1912bytes (NT3H2211FHK)", spacer, "\xFD"); else if ( tagtype & MY_D ) PrintAndLog("%sTYPE : INFINEON my-d\x99 (SLE 66RxxS)", spacer); else if ( tagtype & MY_D_NFC ) PrintAndLog("%sTYPE : INFINEON my-d\x99 NFC (SLE 66RxxP)", spacer); else if ( tagtype & MY_D_MOVE ) PrintAndLog("%sTYPE : INFINEON my-d\x99 move (SLE 66R01P)", spacer); else if ( tagtype & MY_D_MOVE_NFC ) PrintAndLog("%sTYPE : INFINEON my-d\x99 move NFC (SLE 66R01P)", spacer); else if ( tagtype & MY_D_MOVE_LEAN ) PrintAndLog("%sTYPE : INFINEON my-d\x99 move lean (SLE 66R01L)", spacer); else if ( tagtype & FUDAN_UL ) PrintAndLog("%sTYPE : FUDAN Ultralight Compatible (or other compatible) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else PrintAndLog("%sTYPE : Unknown %06x", spacer, tagtype); return 0; } static int ulc_print_3deskey( uint8_t *data){ PrintAndLog(" deskey1 [44/0x2C] : %s [s]", sprint_hex(data ,4), sprint_ascii(data,4) ); PrintAndLog(" deskey1 [45/0x2D] : %s [s]", sprint_hex(data+4 ,4), sprint_ascii(data+4,4)); PrintAndLog(" deskey2 [46/0x2E] : %s [s]", sprint_hex(data+8 ,4), sprint_ascii(data+8,4)); PrintAndLog(" deskey2 [47/0x2F] : %s [s]", sprint_hex(data+12,4), sprint_ascii(data+12,4)); PrintAndLog("\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16)); return 0; } static int ulc_print_configuration( uint8_t *data){ PrintAndLog("--- UL-C Configuration"); PrintAndLog(" Higher Lockbits [40/0x28] : %s - %s", sprint_hex(data, 4), sprint_bin(data, 2)); PrintAndLog(" Counter [41/0x29] : %s - %s", sprint_hex(data+4, 4), sprint_bin(data+4, 2)); bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30); if ( validAuth ) PrintAndLog(" Auth0 [42/0x2A] : %s page %d/0x%02X and above need authentication", sprint_hex(data+8, 4), data[8],data[8] ); else{ if ( data[8] == 0){ PrintAndLog(" Auth0 [42/0x2A] : %s default", sprint_hex(data+8, 4) ); } else { PrintAndLog(" Auth0 [42/0x2A] : %s auth byte is out-of-range", sprint_hex(data+8, 4) ); } } PrintAndLog(" Auth1 [43/0x2B] : %s %s", sprint_hex(data+12, 4), (data[12] & 1) ? "write access restricted": "read and write access restricted" ); return 0; } static int ulev1_print_configuration( uint8_t *data, uint8_t startPage){ PrintAndLog("\n--- Tag Configuration"); bool strg_mod_en = (data[0] & 2); uint8_t authlim = (data[4] & 0x07); bool nfc_cnf_en = (data[4] & 0x08); bool nfc_cnf_prot_pwd = (data[4] & 0x10); bool cfglck = (data[4] & 0x40); bool prot = (data[4] & 0x80); uint8_t vctid = data[5]; PrintAndLog(" cfg0 [%u/0x%02X] : %s", startPage, startPage, sprint_hex(data, 4)); if ( data[3] < 0xff ) PrintAndLog(" - page %d and above need authentication",data[3]); else PrintAndLog(" - pages don't need authentication"); PrintAndLog(" - strong modulation mode %s", (strg_mod_en) ? "enabled":"disabled"); PrintAndLog(" cfg1 [%u/0x%02X] : %s", startPage + 1, startPage + 1, sprint_hex(data+4, 4) ); if ( authlim == 0) PrintAndLog(" - Unlimited password attempts"); else PrintAndLog(" - Max number of password attempts is %d", authlim); PrintAndLog(" - NFC counter %s", (nfc_cnf_en) ? "enabled":"disabled"); PrintAndLog(" - NFC counter %s", (nfc_cnf_prot_pwd) ? "not protected":"password protection enabled"); PrintAndLog(" - user configuration %s", cfglck ? "permanently locked":"writeable"); PrintAndLog(" - %s access is protected with password", prot ? "read and write":"write"); PrintAndLog(" - %02X, Virtual Card Type Identifier is %s default", vctid, (vctid==0x05)? "":"not"); PrintAndLog(" PWD [%u/0x%02X] : %s- (cannot be read)", startPage + 2, startPage + 2, sprint_hex(data+8, 4)); PrintAndLog(" PACK [%u/0x%02X] : %s - (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+12, 2)); PrintAndLog(" RFU [%u/0x%02X] : %s- (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+12, 2)); return 0; } static int ulev1_print_counters(){ PrintAndLog("--- Tag Counters"); uint8_t tear[1] = {0}; uint8_t counter[3] = {0,0,0}; uint16_t len = 0; for ( uint8_t i = 0; i<3; ++i) { ulev1_readTearing(i,tear,sizeof(tear)); len = ulev1_readCounter(i,counter, sizeof(counter) ); if (len == 3) { PrintAndLog(" [%0d] : %s", i, sprint_hex(counter,3)); PrintAndLog(" - %02X tearing %s", tear[0], ( tear[0]==0xBD)?"Ok":"failure"); } } return len; } static int ulev1_print_signature( uint8_t *data, uint8_t len){ PrintAndLog("\n--- Tag Signature"); PrintAndLog("IC signature public key name : NXP NTAG21x (2013)"); PrintAndLog("IC signature public key value : %s", sprint_hex(public_ecda_key, PUBLIC_ECDA_KEYLEN) ); PrintAndLog(" Elliptic curve parameters : secp128r1"); PrintAndLog(" Tag ECC Signature : %s", sprint_hex(data, len)); //to do: verify if signature is valid // only UID is signed. //PrintAndLog("IC signature status: %s valid", (iseccvalid() )?"":"not"); return 0; } static int ulev1_print_version(uint8_t *data){ PrintAndLog("\n--- Tag Version"); PrintAndLog(" Raw bytes : %s",sprint_hex(data, 8) ); PrintAndLog(" Vendor ID : %02X, %s", data[1], getTagInfo(data[1])); PrintAndLog(" Product type : %s", getProductTypeStr(data[2])); PrintAndLog(" Product subtype : %02X, %s", data[3], (data[3]==1) ?"17 pF":"50pF"); PrintAndLog(" Major version : %02X", data[4]); PrintAndLog(" Minor version : %02X", data[5]); PrintAndLog(" Size : %s", getUlev1CardSizeStr(data[6])); PrintAndLog(" Protocol type : %02X", data[7]); return 0; } /* static int ulc_magic_test(){ // Magic Ultralight test // Magic UL-C, by observation, // 1) it seems to have a static nonce response to 0x1A command. // 2) the deskey bytes is not-zero:d out on as datasheet states. // 3) UID - changeable, not only, but pages 0-1-2-3. // 4) use the ul_magic_test ! magic tags answers specially! int returnValue = UL_ERROR; iso14a_card_select_t card; uint8_t nonce1[11] = {0x00}; uint8_t nonce2[11] = {0x00}; int status = ul_select(&card); if ( !status ){ return UL_ERROR; } status = ulc_requestAuthentication(nonce1, sizeof(nonce1)); if ( status > 0 ) { status = ulc_requestAuthentication(nonce2, sizeof(nonce2)); returnValue = ( !memcmp(nonce1, nonce2, 11) ) ? UL_C_MAGIC : UL_C; } else { returnValue = UL; } DropField(); return returnValue; } */ static int ul_magic_test(){ // Magic Ultralight tests // 1) take present UID, and try to write it back. OBSOLETE // 2) make a wrong length write to page0, and see if tag answers with ACK/NACK: iso14a_card_select_t card; if ( !ul_select(&card) ) return UL_ERROR; int status = ul_comp_write(0, NULL, 0); DropField(); if ( status == 0 ) return MAGIC; return 0; } uint32_t GetHF14AMfU_Type(void){ TagTypeUL_t tagtype = UNKNOWN; iso14a_card_select_t card; uint8_t version[10] = {0x00}; int status = 0; int len; if (!ul_select(&card)) return UL_ERROR; // Ultralight - ATQA / SAK if ( card.atqa[1] != 0x00 || card.atqa[0] != 0x44 || card.sak != 0x00 ) { //PrintAndLog("Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak); DropField(); return UL_ERROR; } if ( card.uid[0] != 0x05) { len = ulev1_getVersion(version, sizeof(version)); DropField(); switch (len) { case 0x0A: { #define PTYPE 2 #define PSUBTYPE 3 #define PSIZE 6 if ( version[PTYPE] == 0x03 && version[PSIZE] == 0x0B ) tagtype = UL_EV1_48; else if ( version[PTYPE] == 0x03 && version[PSIZE] != 0x0B ) tagtype = UL_EV1_128; else if ( version[PTYPE] == 0x04 && version[PSUBTYPE] == 0x01 && version[PSIZE] == 0x0B ) tagtype = NTAG_210; else if ( version[PTYPE] == 0x04 && version[PSUBTYPE] == 0x01 && version[PSIZE] == 0x0E ) tagtype = NTAG_212; else if ( version[PTYPE] == 0x04 && (version[PSUBTYPE] == 0x02 || version[PSUBTYPE] == 0x04) && version[PSIZE] == 0x0F ) tagtype = NTAG_213; else if ( version[PTYPE] == 0x04 && version[PSUBTYPE] == 0x02 && version[PSIZE] == 0x11 ) tagtype = NTAG_215; else if ( version[PTYPE] == 0x04 && version[PSUBTYPE] == 0x02 && version[PSIZE] == 0x13 ) tagtype = NTAG_216; else if ( memcmp(version+2, "\x04\x05\x02\x01\x13", 5) == 0) tagtype = NTAG_I2C_1K; else if ( memcmp(version+2, "\x04\x05\x02\x01\x15", 5) == 0) tagtype = NTAG_I2C_2K; else if ( memcmp(version+2, "\x04\x05\x02\x02\x13", 5) == 0) tagtype = NTAG_I2C_1K_PLUS; else if ( memcmp(version+2, "\x04\x05\x02\x02\x15", 5) == 0) tagtype = NTAG_I2C_2K_PLUS; else if ( version[PTYPE] == 0x04 ) tagtype = NTAG; break; } case 0x01: tagtype = UL_C; break; case 0x00: tagtype = UL; break; case -1 : tagtype = (UL | UL_C | NTAG_203); break; // could be UL | UL_C magic tags default : tagtype = UNKNOWN; break; } // UL vs UL-C vs ntag203 test if (tagtype & (UL | UL_C | NTAG_203)) { if ( !ul_select(&card) ) return UL_ERROR; // do UL_C check first... uint8_t nonce[11] = {0x00}; status = ulc_requestAuthentication(nonce, sizeof(nonce)); DropField(); if (status > 1) { tagtype = UL_C; } else { // need to re-select after authentication error if ( !ul_select(&card) ) return UL_ERROR; uint8_t data[16] = {0x00}; // read page 0x26-0x29 (last valid ntag203 page) status = ul_read(0x26, data, sizeof(data)); if ( status <= 1 ) { tagtype = UL; } else { // read page 0x30 (should error if it is a ntag203) status = ul_read(0x30, data, sizeof(data)); if ( status <= 1 ){ tagtype = NTAG_203; } else { tagtype = UNKNOWN; } } DropField(); } } if (tagtype & UL) { tagtype = ul_fudan_check(); DropField(); } } else { DropField(); // Infinition MY-D tests Exam high nibble uint8_t nib = (card.uid[1] & 0xf0) >> 4; switch ( nib ){ // case 0: tagtype = SLE66R35E7; break; //or SLE 66R35E7 - mifare compat... should have different sak/atqa for mf 1k case 1: tagtype = MY_D; break; //or SLE 66RxxS ... up to 512 pages of 8 user bytes... case 2: tagtype = (MY_D_NFC); break; //or SLE 66RxxP ... up to 512 pages of 8 user bytes... (or in nfc mode FF pages of 4 bytes) case 3: tagtype = (MY_D_MOVE | MY_D_MOVE_NFC); break; //or SLE 66R01P // 38 pages of 4 bytes //notice: we can not currently distinguish between these two case 7: tagtype = MY_D_MOVE_LEAN; break; //or SLE 66R01L // 16 pages of 4 bytes } } tagtype |= ul_magic_test(); if (tagtype == (UNKNOWN | MAGIC)) tagtype = (UL_MAGIC); return tagtype; } // // extended tag information // int CmdHF14AMfUInfo(const char *Cmd){ uint8_t authlim = 0xff; uint8_t data[16] = {0x00}; iso14a_card_select_t card; int status; bool errors = false; bool hasAuthKey = false; bool locked = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t dataLen = 0; uint8_t authenticationkey[16] = {0x00}; uint8_t *authkeyptr = authenticationkey; uint8_t pwd[4] = {0,0,0,0}; uint8_t *key = pwd; uint8_t pack[4] = {0,0,0,0}; int len = 0; char tempStr[50]; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_info(); case 'k': case 'K': dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; // handled as bytes from now on } else { PrintAndLog("\nERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': case 'L': swapEndian = true; cmdp++; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_info(); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; PrintAndLog("\n--- Tag Information ---------"); PrintAndLog("-------------------------------------------------------------"); ul_print_type(tagtype, 6); // Swap endianness if (swapEndian && hasAuthKey) authkeyptr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4 ); if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // read pages 0,1,2,3 (should read 4pages) status = ul_read(0, data, sizeof(data)); if ( status == -1 ) { DropField(); PrintAndLog("Error: tag didn't answer to READ"); return status; } else if (status == 16) { ul_print_default(data); ndef_print_CC(data+12); } else { locked = true; } // UL_C Specific if ((tagtype & UL_C)) { // read pages 0x28, 0x29, 0x2A, 0x2B uint8_t ulc_conf[16] = {0x00}; status = ul_read(0x28, ulc_conf, sizeof(ulc_conf)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ UL-C"); DropField(); return status; } if (status == 16) ulc_print_configuration(ulc_conf); else locked = true; if ((tagtype & MAGIC)) { //just read key uint8_t ulc_deskey[16] = {0x00}; status = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey)); if ( status == -1 ) { DropField(); PrintAndLog("Error: tag didn't answer to READ magic"); return status; } if (status == 16) ulc_print_3deskey(ulc_deskey); } else { DropField(); // if we called info with key, just return if ( hasAuthKey ) return 1; // also try to diversify default keys.. look into CmdHF14AMfuGenDiverseKeys PrintAndLog("Trying some default 3des keys"); for (uint8_t i = 0; i < KEYS_3DES_COUNT; ++i ) { key = default_3des_keys[i]; if (ulc_authentication(key, true)) { PrintAndLog("Found default 3des key: "); uint8_t keySwap[16]; memcpy(keySwap, SwapEndian64(key,16,8), 16); ulc_print_3deskey(keySwap); return 1; } } return 1; } } // do counters and signature first (don't neet auth) // ul counters are different than ntag counters if ((tagtype & (UL_EV1_48 | UL_EV1_128))) { if (ulev1_print_counters() != 3) { // failed - re-select if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } // Read signature if ((tagtype & (UL_EV1_48 | UL_EV1_128 | NTAG_213 | NTAG_215 | NTAG_216 | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t ulev1_signature[32] = {0x00}; status = ulev1_readSignature( ulev1_signature, sizeof(ulev1_signature)); if ( status == -1 ) { PrintAndLog("Error: tag didn't answer to READ SIGNATURE"); DropField(); return status; } if (status == 32) ulev1_print_signature( ulev1_signature, sizeof(ulev1_signature)); else { // re-select if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } // Get Version if ((tagtype & (UL_EV1_48 | UL_EV1_128 | NTAG_210 | NTAG_212 | NTAG_213 | NTAG_215 | NTAG_216 | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t version[10] = {0x00}; status = ulev1_getVersion(version, sizeof(version)); if ( status == -1 ) { PrintAndLog("Error: tag didn't answer to GETVERSION"); DropField(); return status; } else if (status == 10) { ulev1_print_version(version); } else { locked = true; if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } uint8_t startconfigblock = 0; uint8_t ulev1_conf[16] = {0x00}; // config blocks always are last 4 pages for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) if (tagtype & UL_TYPES_ARRAY[idx]) startconfigblock = UL_MEMORY_ARRAY[idx]-3; if (startconfigblock){ // if we know where the config block is... status = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf)); if ( status == -1 ) { PrintAndLog("Error: tag didn't answer to READ EV1"); DropField(); return status; } else if (status == 16) { // save AUTHENTICATION LIMITS for later: authlim = (ulev1_conf[4] & 0x07); ulev1_print_configuration(ulev1_conf, startconfigblock); } } // AUTHLIMIT, (number of failed authentications) // 0 = limitless. // 1-7 = limit. No automatic tries then. // hasAuthKey, if we was called with key, skip test. if ( !authlim && !hasAuthKey ) { PrintAndLog("\n--- Known EV1/NTAG passwords."); len = 0; // test pwd gen A num_to_bytes( ul_ev1_pwdgenA(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // test pwd gen B num_to_bytes( ul_ev1_pwdgenB(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // test pwd gen C num_to_bytes( ul_ev1_pwdgenC(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); // test pwd gen D num_to_bytes( ul_ev1_pwdgenD(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; for (uint8_t i = 0; i < KEYS_PWD_COUNT; ++i ) { key = default_pwd_pack[i]; len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); break; } else { if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } if (len < 1) PrintAndLog("password not known"); } } DropField(); if (locked) PrintAndLog("\nTag appears to be locked, try using the key to get more info"); PrintAndLog(""); return 1; } // // Write Single Block // int CmdHF14AMfUWrBl(const char *Cmd){ int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t blockdata[20] = {0x00}; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_wrbl(); case 'k': case 'K': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp+1, data, 8); if ( !keylen ) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp+1, data, 32); if (!keylen){ memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLog("\nERROR: Key is incorrect length\n"); errors = true; break; case 'b': case 'B': blockNo = param_get8(Cmd, cmdp+1); if (blockNo < 0) { PrintAndLog("Wrong block number"); errors = true; } cmdp += 2; break; case 'l': case 'L': swapEndian = true; cmdp++; break; case 'd': case 'D': if ( param_gethex(Cmd, cmdp+1, blockdata, 8) ) { PrintAndLog("Block data must include 8 HEX symbols"); errors = true; break; } cmdp += 2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_wrbl(); if ( blockNo == -1 ) return usage_hf_mfu_wrbl(); // starting with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++){ if (tagtype & UL_TYPES_ARRAY[idx]) maxblockno = UL_MEMORY_ARRAY[idx]; } if (blockNo > maxblockno){ PrintAndLog("block number too large. Max block is %u/0x%02X \n", maxblockno,maxblockno); return usage_hf_mfu_wrbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); if ( blockNo <= 3) PrintAndLog("Special Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); else PrintAndLog("Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); //Send write Block UsbCommand c = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(c.d.asBytes,blockdata,4); if ( hasAuthKey ){ c.arg[1] = 1; memcpy(c.d.asBytes+4,authKeyPtr,16); } else if ( hasPwdKey ) { c.arg[1] = 2; memcpy(c.d.asBytes+4,authKeyPtr,4); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } // // Read Single Block // int CmdHF14AMfURdBl(const char *Cmd){ int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_rdbl(); case 'k': case 'K': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp+1, data, 8); if ( !keylen ) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp+1, data, 32); if (!keylen){ memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLog("\nERROR: Key is incorrect length\n"); errors = true; break; case 'b': case 'B': blockNo = param_get8(Cmd, cmdp+1); if (blockNo < 0) { PrintAndLog("Wrong block number"); errors = true; } cmdp += 2; break; case 'l': case 'L': swapEndian = true; cmdp++; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_rdbl(); if ( blockNo == -1 ) return usage_hf_mfu_rdbl(); // start with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++){ if (tagtype & UL_TYPES_ARRAY[idx]) maxblockno = UL_MEMORY_ARRAY[idx]; } if (blockNo > maxblockno){ PrintAndLog("block number to large. Max block is %u/0x%02X \n", maxblockno,maxblockno); return usage_hf_mfu_rdbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); //Read Block UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}}; if ( hasAuthKey ){ c.arg[1] = 1; memcpy(c.d.asBytes,authKeyPtr,16); } else if ( hasPwdKey ) { c.arg[1] = 2; memcpy(c.d.asBytes,authKeyPtr,4); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { uint8_t *data = resp.d.asBytes; PrintAndLog("\nBlock# | Data | Ascii"); PrintAndLog("-----------------------------"); PrintAndLog("%02d/0x%02X | %s| %s\n", blockNo, blockNo, sprint_hex(data, 4), sprint_ascii(data,4)); } else { PrintAndLog("Failed reading block: (%02x)", isOK); } } else { PrintAndLog("Command execute time-out"); } return 0; } int usage_hf_mfu_info(void) { PrintAndLog("It gathers information about the tag and tries to detect what kind it is."); PrintAndLog("Sometimes the tags are locked down, and you may need a key to be able to read the information"); PrintAndLog("The following tags can be identified:\n"); PrintAndLog("Ultralight, Ultralight-C, Ultralight EV1, NTAG 203, NTAG 210,"); PrintAndLog("NTAG 212, NTAG 213, NTAG 215, NTAG 216, NTAG I2C 1K & 2K"); PrintAndLog("my-d, my-d NFC, my-d move, my-d move NFC\n"); PrintAndLog("Usage: hf mfu info k l"); PrintAndLog(" Options : "); PrintAndLog(" k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : (optional) swap entered key's endianness"); PrintAndLog(""); PrintAndLog(" sample : hf mfu info"); PrintAndLog(" : hf mfu info k 00112233445566778899AABBCCDDEEFF"); PrintAndLog(" : hf mfu info k AABBCCDDD"); return 0; } int usage_hf_mfu_dump(void) { PrintAndLog("Reads all pages from Ultralight, Ultralight-C, Ultralight EV1"); PrintAndLog("NTAG 203, NTAG 210, NTAG 212, NTAG 213, NTAG 215, NTAG 216"); PrintAndLog("and saves binary dump into the file `filename.bin` or `cardUID.bin`"); PrintAndLog("It autodetects card type.\n"); PrintAndLog("Usage: hf mfu dump k l n p q <#pages>"); PrintAndLog(" Options :"); PrintAndLog(" k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : (optional) swap entered key's endianness"); PrintAndLog(" n : filename w/o .bin to save the dump as"); PrintAndLog(" p : starting Page number to manually set a page to start the dump at"); PrintAndLog(" q : number of Pages to manually set how many pages to dump"); PrintAndLog(""); PrintAndLog(" sample : hf mfu dump"); PrintAndLog(" : hf mfu dump n myfile"); PrintAndLog(" : hf mfu dump k 00112233445566778899AABBCCDDEEFF"); PrintAndLog(" : hf mfu dump k AABBCCDDD\n"); return 0; } int usage_hf_mfu_restore(void){ PrintAndLog("Restore dumpfile onto card."); PrintAndLog("Usage: hf mfu restore [h] [l] [s] k n "); PrintAndLog(" Options :"); PrintAndLog(" k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : (optional) swap entered key's endianness"); PrintAndLog(" s : (optional) enable special write UID -MAGIC TAG ONLY-"); PrintAndLog(" e : (optional) enable special write version/signature -MAGIC NTAG 21* ONLY-"); PrintAndLog(" r : (optional) use the password found in dumpfile to configure tag. requires 'e' parameter to work"); PrintAndLog(" f : filename w/o .bin to restore"); PrintAndLog(""); PrintAndLog(" samples:"); PrintAndLog(" : hf mfu restore s f myfile"); PrintAndLog(" : hf mfu restore k AABBCCDDD s f myfile\n"); PrintAndLog(" : hf mfu restore k AABBCCDDD s e r f myfile\n"); return 0; } int usage_hf_mfu_rdbl(void) { PrintAndLog("Read a block and print. It autodetects card type.\n"); PrintAndLog("Usage: hf mfu rdbl b k l\n"); PrintAndLog(" Options:"); PrintAndLog(" b : block to read"); PrintAndLog(" k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : (optional) swap entered key's endianness"); PrintAndLog(""); PrintAndLog(" sample : hf mfu rdbl b 0"); PrintAndLog(" : hf mfu rdbl b 0 k 00112233445566778899AABBCCDDEEFF"); PrintAndLog(" : hf mfu rdbl b 0 k AABBCCDDD\n"); return 0; } int usage_hf_mfu_wrbl(void) { PrintAndLog("Write a block. It autodetects card type.\n"); PrintAndLog("Usage: hf mfu wrbl b d k l\n"); PrintAndLog(" Options:"); PrintAndLog(" b : block to write"); PrintAndLog(" d : block data - (8 hex symbols)"); PrintAndLog(" k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : (optional) swap entered key's endianness"); PrintAndLog(""); PrintAndLog(" sample : hf mfu wrbl b 0 d 01234567"); PrintAndLog(" : hf mfu wrbl b 0 d 01234567 k AABBCCDDD\n"); return 0; } int usage_hf_mfu_eload(void) { PrintAndLog("It loads emul dump from the file `filename.eml`"); PrintAndLog("Hint: See script dumptoemul-mfu.lua to convert the .bin to the eml"); PrintAndLog("Usage: hf mfu eload u [numblocks]"); PrintAndLog(" Options:"); PrintAndLog(" h : this help"); PrintAndLog(" u : UL (required)"); PrintAndLog(" [filename] : without `.eml` (required)"); PrintAndLog(" numblocks : number of blocks to load from eml file (optional)"); PrintAndLog(""); PrintAndLog(" sample: hf mfu eload u filename"); PrintAndLog(" hf mfu eload u filename 57"); return 0; } int usage_hf_mfu_sim(void) { PrintAndLog("\nEmulating Ultralight tag from emulator memory\n"); PrintAndLog("\nBe sure to load the emulator memory first!\n"); PrintAndLog("Usage: hf mfu sim t 7 u "); PrintAndLog(" Options:"); PrintAndLog(" h : this help"); PrintAndLog(" t 7 : 7 = NTAG or Ultralight sim (required)"); PrintAndLog(" u : 4 or 7 byte UID (optional)"); PrintAndLog("\n sample : hf mfu sim t 7"); PrintAndLog(" : hf mfu sim t 7 u 1122344556677\n"); return 0; } int usage_hf_mfu_ucauth(void) { PrintAndLog("Usage: hf mfu cauth k "); PrintAndLog(" 0 (default): 3DES standard key"); PrintAndLog(" 1 : all 0x00 key"); PrintAndLog(" 2 : 0x00-0x0F key"); PrintAndLog(" 3 : nfc key"); PrintAndLog(" 4 : all 0x01 key"); PrintAndLog(" 5 : all 0xff key"); PrintAndLog(" 6 : 0x00-0xFF key"); PrintAndLog("\n sample : hf mfu cauth k"); PrintAndLog(" : hf mfu cauth k 3"); return 0; } int usage_hf_mfu_ucsetpwd(void) { PrintAndLog("Usage: hf mfu setpwd "); PrintAndLog(" [password] - (32 hex symbols)"); PrintAndLog(""); PrintAndLog("sample: hf mfu setpwd 000102030405060708090a0b0c0d0e0f"); PrintAndLog(""); return 0; } int usage_hf_mfu_ucsetuid(void) { PrintAndLog("Usage: hf mfu setuid "); PrintAndLog(" [uid] - (14 hex symbols)"); PrintAndLog("\nThis only works for Magic Ultralight tags."); PrintAndLog(""); PrintAndLog("sample: hf mfu setuid 11223344556677"); PrintAndLog(""); return 0; } int usage_hf_mfu_gendiverse(void){ PrintAndLog("Usage: hf mfu gen [h] [r] "); PrintAndLog("options:"); PrintAndLog(" h : this help"); PrintAndLog(" r : read uid from tag"); PrintAndLog(" : 4 byte UID (optional)"); PrintAndLog("samples:"); PrintAndLog(" hf mfu gen r"); PrintAndLog(" hf mfu gen 11223344"); PrintAndLog(""); return 0; } int usage_hf_mfu_pwdgen(void){ PrintAndLog("Usage: hf mfu pwdgen [h|t] [r] "); PrintAndLog("options:"); PrintAndLog(" h : this help"); PrintAndLog(" t : selftest"); PrintAndLog(" r : read uid from tag"); PrintAndLog(" : 7 byte UID (optional)"); PrintAndLog("samples:"); PrintAndLog(" hf mfu pwdgen r"); PrintAndLog(" hf mfu pwdgen 11223344556677"); PrintAndLog(" hf mfu pwdgen t"); PrintAndLog(""); return 0; } #define DUMP_PREFIX_LENGTH 48 void printMFUdump(mfu_dump_t* card) { printMFUdumpEx(card, 255, 0); } void printMFUdumpEx(mfu_dump_t* card, uint16_t pages, uint8_t startpage) { PrintAndLog("\n*special* data\n"); PrintAndLog("\nDataType | Data | Ascii"); PrintAndLog("----------+-------------------------+---------"); PrintAndLog("Version | %s| %s", sprint_hex(card->version, sizeof(card->version)), sprint_ascii(card->version, sizeof(card->version)) ); PrintAndLog("TBD | %-24s| %s", sprint_hex(card->tbo, sizeof(card->tbo)), sprint_ascii(card->tbo, sizeof(card->tbo))); PrintAndLog("Tearing | %-24s| %s", sprint_hex(card->tearing, sizeof(card->tearing)), sprint_ascii(card->tearing, sizeof(card->tearing))); PrintAndLog("Pack | %-24s| %s", sprint_hex(card->pack, sizeof(card->pack)), sprint_ascii(card->pack, sizeof(card->pack))); PrintAndLog("TBD | %-24s| %s", sprint_hex(card->tbo1, sizeof(card->tbo1)), sprint_ascii(card->tbo1, sizeof(card->tbo1))); PrintAndLog("Signature1| %s| %s", sprint_hex(card->signature, 16), sprint_ascii(card->signature, 16)); PrintAndLog("Signature2| %s| %s", sprint_hex(card->signature+16, 16), sprint_ascii(card->signature+16, 16)); PrintAndLog("-------------------------------------------------------------"); PrintAndLog("\nBlock# | Data |lck| Ascii"); PrintAndLog("---------+-------------+---+------"); uint8_t j = 0; bool lckbit = false; uint8_t *data = card->data; uint8_t lockbytes_sta[] = {0,0}; uint8_t lockbytes_dyn[] = {0,0,0}; bool bit_stat[16] = {0}; bool bit_dyn[16] = {0}; // Load static lock bytes. memcpy(lockbytes_sta, data+10, sizeof(lockbytes_sta)); for(j = 0; j < 16; j++){ bit_stat[j] = lockbytes_sta[j/8] & ( 1 <<(7-j%8)); } // Load dynamic lockbytes if available // TODO -- FIGURE OUT LOCK BYTES FOR TO EV1 and/or NTAG if ( pages == 44 ) { memcpy(lockbytes_dyn, data+(40*4), sizeof(lockbytes_dyn)); for (j = 0; j < 16; j++) { bit_dyn[j] = lockbytes_dyn[j/8] & ( 1 <<(7-j%8)); } printf("DYNAMIC LOCK: %s\n", sprint_hex(lockbytes_dyn,3)); } for (uint8_t i = 0; i < pages; ++i) { if ( i < 3 ) { PrintAndLog("%3d/0x%02X | %s| | %s", i+startpage, i+startpage, sprint_hex(data + i * 4, 4), sprint_ascii(data + i * 4,4) ); continue; } switch(i){ case 3: lckbit = bit_stat[4]; break; case 4: lckbit = bit_stat[3]; break; case 5: lckbit = bit_stat[2]; break; case 6: lckbit = bit_stat[1]; break; case 7: lckbit = bit_stat[0]; break; case 8: lckbit = bit_stat[15]; break; case 9: lckbit = bit_stat[14]; break; case 10: lckbit = bit_stat[13]; break; case 11: lckbit = bit_stat[12]; break; case 12: lckbit = bit_stat[11]; break; case 13: lckbit = bit_stat[10]; break; case 14: lckbit = bit_stat[9]; break; case 15: lckbit = bit_stat[8]; break; case 16: case 17: case 18: case 19: lckbit = bit_dyn[6]; break; case 20: case 21: case 22: case 23: lckbit = bit_dyn[5]; break; case 24: case 25: case 26: case 27: lckbit = bit_dyn[4]; break; case 28: case 29: case 30: case 31: lckbit = bit_dyn[2]; break; case 32: case 33: case 34: case 35: lckbit = bit_dyn[1]; break; case 36: case 37: case 38: case 39: lckbit = bit_dyn[0]; break; case 40: lckbit = bit_dyn[12]; break; case 41: lckbit = bit_dyn[11]; break; case 42: lckbit = bit_dyn[10]; break; //auth0 case 43: lckbit = bit_dyn[9]; break; //auth1 default: break; } PrintAndLog("%3d/0x%02X | %s| %d | %s", i+startpage, i+startpage, sprint_hex(data + i * 4, 4), lckbit, sprint_ascii(data + i * 4,4)); } PrintAndLog("---------------------------------"); } // // Mifare Ultralight / Ultralight-C / Ultralight-EV1 // Read and Dump Card Contents, using auto detection of tag size. int CmdHF14AMfUDump(const char *Cmd){ FILE *fout; char filename[FILE_PATH_SIZE] = {0x00}; char *fnameptr = filename; uint8_t data[1024] = {0x00}; bool hasAuthKey = false; int i = 0; int Pages = 16; uint8_t dataLen = 0; uint8_t cmdp = 0; uint8_t authenticationkey[16] = {0x00}; memset(authenticationkey, 0x00, sizeof(authenticationkey)); uint8_t *authKeyPtr = authenticationkey; size_t fileNlen = 0; bool errors = false; bool swapEndian = false; bool manualPages = false; uint8_t startPage = 0; char tempStr[50]; while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_dump(); case 'k': case 'K': dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; } else { PrintAndLog("\nERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': case 'L': swapEndian = true; cmdp++; break; case 'n': case 'N': fileNlen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename)); if (!fileNlen) errors = true; if (fileNlen > FILE_PATH_SIZE-5) fileNlen = FILE_PATH_SIZE-5; cmdp += 2; break; case 'p': case 'P': //set start page startPage = param_get8(Cmd, cmdp+1); manualPages = true; cmdp += 2; break; case 'q': case 'Q': Pages = param_get8(Cmd, cmdp+1); cmdp += 2; manualPages = true; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_dump(); //if we entered a key in little endian and set the swapEndian switch - switch it... if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; if (!manualPages) //get number of pages to read for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) if (tagtype & UL_TYPES_ARRAY[idx]) Pages = UL_MEMORY_ARRAY[idx]+1; //add one as maxblks starts at 0 ul_print_type(tagtype, 0); PrintAndLog("Reading tag memory..."); UsbCommand c = {CMD_MIFAREU_READCARD, {startPage,Pages}}; if ( hasAuthKey ) { if (tagtype & UL_C) c.arg[2] = 1; //UL_C auth else c.arg[2] = 2; //UL_EV1/NTAG auth memcpy(c.d.asBytes, authKeyPtr, dataLen); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLog("Command execute time-out"); return 1; } if (resp.arg[0] != 1) { PrintAndLog("Failed reading block: (%02x)", i); return 1; } uint32_t startindex = resp.arg[2]; uint32_t bufferSize = resp.arg[1]; if (bufferSize > sizeof(data)) { PrintAndLog("Data exceeded Buffer size!"); bufferSize = sizeof(data); } GetFromBigBuf(data, bufferSize, startindex); WaitForResponse(CMD_ACK,NULL); Pages = bufferSize/4; uint8_t get_pack[] = {0,0}; iso14a_card_select_t card; mfu_dump_t dump_file_data; uint8_t get_version[] = {0,0,0,0,0,0,0,0}; uint8_t get_tearing[] = {0,0,0}; uint8_t get_counter[] = {0,0,0}; uint8_t dummy_pack[] = {0,0}; uint8_t get_signature[32]; memset( get_signature, 0, sizeof(get_signature) ); // not ul_c and not std ul then attempt to get deeper info if (!(tagtype & UL_C || tagtype & UL)) { //attempt to read pack if (!ul_auth_select( &card, tagtype, true, authKeyPtr, get_pack, sizeof(get_pack))) { //reset pack get_pack[0]=0; get_pack[1]=0; } DropField(); // add pack to block read memcpy(data + (Pages*4) - 4, get_pack, sizeof(get_pack)); if ( hasAuthKey ) ul_auth_select( &card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); else ul_select(&card); ulev1_getVersion( get_version, sizeof(get_version) ); for ( uint8_t i = 0; i<3; ++i) { ulev1_readTearing(i, get_tearing+i, 1); ulev1_readCounter(i, get_counter, sizeof(get_counter) ); } DropField(); if ( hasAuthKey ) ul_auth_select( &card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); else ul_select(&card); ulev1_readSignature( get_signature, sizeof(get_signature)); DropField(); } // format and add keys to block dump output if (hasAuthKey) { // if we didn't swapendian before - do it now for the sprint_hex call // NOTE: default entry is bigendian (unless swapped), sprint_hex outputs little endian // need to swap to keep it the same if (!swapEndian){ authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); } else { authKeyPtr = authenticationkey; } if (tagtype & UL_C){ //add 4 pages memcpy(data + Pages*4, authKeyPtr, dataLen); Pages += dataLen/4; } else { // 2nd page from end memcpy(data + (Pages*4) - 8, authenticationkey, dataLen); } } //add *special* blocks to dump //iceman: need to add counters and pwd values to the dump format memcpy(dump_file_data.version, get_version, sizeof(dump_file_data.version)); memcpy(dump_file_data.tearing, get_tearing, sizeof(dump_file_data.tearing)); memcpy(dump_file_data.pack, get_pack, sizeof(dump_file_data.pack)); memcpy(dump_file_data.signature, get_signature, sizeof(dump_file_data.signature)); memcpy(dump_file_data.data, data, Pages*4); printMFUdumpEx(&dump_file_data, Pages, startPage); // user supplied filename? if (fileNlen < 1) { // UID = data 0-1-2 4-5-6-7 (skips a beat) sprintf(fnameptr,"%02X%02X%02X%02X%02X%02X%02X.bin", data[0],data[1], data[2], data[4],data[5],data[6], data[7]); } else { sprintf(fnameptr + fileNlen,".bin"); } if ((fout = fopen(filename,"wb")) == NULL) { PrintAndLog("Could not create file name %s", filename); return 1; } fwrite( &dump_file_data, 1, Pages*4 + DUMP_PREFIX_LENGTH, fout ); if (fout) fclose(fout); PrintAndLog("Dumped %d pages, wrote %d bytes to %s", Pages+(DUMP_PREFIX_LENGTH/4), Pages*4 + DUMP_PREFIX_LENGTH, filename); return 0; } static void wait4response(uint8_t b){ UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; if ( !isOK ) PrintAndLog("failed to write block %d", b); } else { PrintAndLog("Command execute timeout"); } } // // Restore dump file onto tag // int CmdHF14AMfURestore(const char *Cmd){ char tempStr[50] = {0}; char filename[FILE_PATH_SIZE] = {0}; uint8_t authkey[16] = {0}; uint8_t *p_authkey = authkey; uint8_t cmdp = 0, keylen = 0; bool hasKey = false; bool swapEndian = false; bool errors = false; bool write_special = false; bool write_extra = false; bool read_key = false; size_t filelen = 0; FILE *f; UsbCommand c = {CMD_MIFAREU_WRITEBL, {0,0,0}}; memset(authkey, 0x00, sizeof(authkey)); while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_restore(); case 'k': case 'K': keylen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (keylen == 32 || keylen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authkey, keylen); keylen /= 2; } else { PrintAndLog("\nERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasKey = true; break; case 'l': case 'L': swapEndian = true; cmdp++; break; case 'f': case 'F': filelen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); if (filelen > FILE_PATH_SIZE-5) filelen = FILE_PATH_SIZE-5; if (filelen < 0) sprintf(filename, "dumpdata.bin"); cmdp += 2; break; case 's': case 'S': cmdp++; write_special = true; break; case 'e': case 'E': cmdp++; write_extra = true; break; case 'r': case 'R': cmdp++; read_key = true; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_restore(); if ((f = fopen(filename,"rb")) == NULL) { PrintAndLog("Could not find file %s", filename); return 1; } // get filesize to know how memory to allocate fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLog("Error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = malloc(fsize); // read all data size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); if ( bytes_read < 48 ) { PrintAndLog("Error, dump file is too small"); return 1; } PrintAndLog("Restoring %s to card", filename); mfu_dump_t *mem = (mfu_dump_t*)dump; uint8_t pages = (bytes_read-48)/4; // print dump printMFUdumpEx(mem, pages, 0); // Swap endianness if (swapEndian && hasKey) { if ( keylen == 16 ) p_authkey = SwapEndian64(authkey, keylen, 8); else p_authkey = SwapEndian64(authkey, keylen, 4); } // set key - only once if ( hasKey ){ c.arg[1] = (keylen == 16) ? 1 : 2; memcpy(c.d.asBytes+4, p_authkey, keylen); } // write version, signature, pack // only magic NTAG cards if ( write_extra ) { #define MFU_NTAG_SPECIAL_PWD 0xF0 #define MFU_NTAG_SPECIAL_PACK 0xF1 #define MFU_NTAG_SPECIAL_VERSION 0xFA #define MFU_NTAG_SPECIAL_SIGNATURE 0xF2 // pwd if ( hasKey || read_key) { c.arg[0] = MFU_NTAG_SPECIAL_PWD; if (read_key) { // try reading key from dump and use. memcpy(c.d.asBytes, mem->data + ( bytes_read - 48 - 8), 4); } else { memcpy(c.d.asBytes, p_authkey, 4 ); } printf("special PWD block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PWD, sprint_hex(c.d.asBytes, 8)); clearCommandBuffer(); SendCommand(&c); wait4response(MFU_NTAG_SPECIAL_PWD); // copy the new key c.arg[1] = 2; memcpy(authkey, c.d.asBytes, 4); memcpy(c.d.asBytes+4, authkey, 4); } // pack c.arg[0] = MFU_NTAG_SPECIAL_PACK; c.d.asBytes[0] = mem->pack[0]; c.d.asBytes[1] = mem->pack[1]; c.d.asBytes[2] = 0; c.d.asBytes[3] = 0; printf("special PACK block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PACK, sprint_hex(c.d.asBytes, 8)); clearCommandBuffer(); SendCommand(&c); wait4response(MFU_NTAG_SPECIAL_PACK); // Signature for (uint8_t s = MFU_NTAG_SPECIAL_SIGNATURE, i=0; s < MFU_NTAG_SPECIAL_SIGNATURE+8; s++, i += 4){ c.arg[0] = s; memcpy(c.d.asBytes, mem->signature+i, 4); printf("special SIG block written 0x%X - %s\n", s, sprint_hex(c.d.asBytes, 8) ); clearCommandBuffer(); SendCommand(&c); wait4response(s); } // Version for (uint8_t s = MFU_NTAG_SPECIAL_VERSION, i=0; s < MFU_NTAG_SPECIAL_VERSION+2; s++, i += 4){ c.arg[0] = s; memcpy(c.d.asBytes, mem->version+i, 4 ); printf("special VERSION block written 0x%X - %s\n", s, sprint_hex(c.d.asBytes, 8) ); clearCommandBuffer(); SendCommand(&c); wait4response(s); } } printf("Restoring data blocks."); // write all other data // Skip block 0,1,2,3 (only magic tags can write to them) // Skip last 5 blocks usually is configuration for (uint8_t b = 4; b < pages-5; b++) { //Send write Block c.arg[0] = b; memcpy(c.d.asBytes, mem->data + (b*4), 4); clearCommandBuffer(); SendCommand(&c); wait4response(b); printf("."); fflush(stdout); } printf("\n"); // write special data last if (write_special) { printf("Restoring configuration blocks.\n"); printf("authentication with keytype[%x] %s\n", (uint8_t)(c.arg[1] & 0xff), sprint_hex(p_authkey,4)); // otp, uid, lock, cfg1, cfg0, dynlockbits uint8_t blocks[] = {3, 0, 1, 2, pages-5, pages-4, pages-3}; for ( uint8_t i = 0; i < sizeof(blocks); i++){ uint8_t b = blocks[i]; c.arg[0] = b; memcpy(c.d.asBytes, mem->data + (b*4), 4); clearCommandBuffer(); SendCommand(&c); wait4response(b); printf("special block written %u - %s\n", b, sprint_hex(c.d.asBytes, 8) ); } } DropField(); free(dump); return 0; } // // Load emulator with dump file // int CmdHF14AMfUeLoad(const char *Cmd){ char c = param_getchar(Cmd, 0); if ( c == 'h' || c == 'H' || c == 0x00) return usage_hf_mfu_eload(); return CmdHF14AMfELoad(Cmd); } // // Simulate tag // int CmdHF14AMfUSim(const char *Cmd){ char c = param_getchar(Cmd, 0); if ( c == 'h' || c == 'H' || c == 0x00) return usage_hf_mfu_sim(); return CmdHF14ASim(Cmd); } //------------------------------------------------------------------------------- // Ultralight C Methods //------------------------------------------------------------------------------- // // Ultralight C Authentication Demo {currently uses hard-coded key} // int CmdHF14AMfucAuth(const char *Cmd){ uint8_t keyNo = 3; bool errors = false; char cmdp = param_getchar(Cmd, 0); //Change key to user defined one if (cmdp == 'k' || cmdp == 'K'){ keyNo = param_get8(Cmd, 1); if(keyNo >= KEYS_3DES_COUNT) errors = true; } if (cmdp == 'h' || cmdp == 'H') errors = true; if (errors) return usage_hf_mfu_ucauth(); uint8_t *key = default_3des_keys[keyNo]; if (ulc_authentication(key, true)) PrintAndLog("Authentication successful. 3des key: %s",sprint_hex(key, 16)); else PrintAndLog("Authentication failed"); return 0; } /** A test function to validate that the polarssl-function works the same was as the openssl-implementation. Commented out, since it requires openssl int CmdTestDES(const char * cmd) { uint8_t key[16] = {0x00}; memcpy(key,key3_3des_data,16); DES_cblock RndA, RndB; PrintAndLog("----------OpenSSL DES implementation----------"); { uint8_t e_RndB[8] = {0x00}; unsigned char RndARndB[16] = {0x00}; DES_cblock iv = { 0 }; DES_key_schedule ks1,ks2; DES_cblock key1,key2; memcpy(key,key3_3des_data,16); memcpy(key1,key,8); memcpy(key2,key+8,8); DES_set_key((DES_cblock *)key1,&ks1); DES_set_key((DES_cblock *)key2,&ks2); DES_random_key(&RndA); PrintAndLog(" RndA:%s",sprint_hex(RndA, 8)); PrintAndLog(" e_RndB:%s",sprint_hex(e_RndB, 8)); //void DES_ede2_cbc_encrypt(const unsigned char *input, // unsigned char *output, long length, DES_key_schedule *ks1, // DES_key_schedule *ks2, DES_cblock *ivec, int enc); DES_ede2_cbc_encrypt(e_RndB,RndB,sizeof(e_RndB),&ks1,&ks2,&iv,0); PrintAndLog(" RndB:%s",sprint_hex(RndB, 8)); rol(RndB,8); memcpy(RndARndB,RndA,8); memcpy(RndARndB+8,RndB,8); PrintAndLog(" RA+B:%s",sprint_hex(RndARndB, 16)); DES_ede2_cbc_encrypt(RndARndB,RndARndB,sizeof(RndARndB),&ks1,&ks2,&e_RndB,1); PrintAndLog("enc(RA+B):%s",sprint_hex(RndARndB, 16)); } PrintAndLog("----------PolarSSL implementation----------"); { uint8_t random_a[8] = { 0 }; uint8_t enc_random_a[8] = { 0 }; uint8_t random_b[8] = { 0 }; uint8_t enc_random_b[8] = { 0 }; uint8_t random_a_and_b[16] = { 0 }; des3_context ctx = { 0 }; memcpy(random_a, RndA,8); uint8_t output[8] = { 0 }; uint8_t iv[8] = { 0 }; PrintAndLog(" RndA :%s",sprint_hex(random_a, 8)); PrintAndLog(" e_RndB:%s",sprint_hex(enc_random_b, 8)); des3_set2key_dec(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_DECRYPT // int mode , sizeof(random_b) // size_t length , iv // unsigned char iv[8] , enc_random_b // const unsigned char *input , random_b // unsigned char *output ); PrintAndLog(" RndB:%s",sprint_hex(random_b, 8)); rol(random_b,8); memcpy(random_a_and_b ,random_a,8); memcpy(random_a_and_b+8,random_b,8); PrintAndLog(" RA+B:%s",sprint_hex(random_a_and_b, 16)); des3_set2key_enc(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_ENCRYPT // int mode , sizeof(random_a_and_b) // size_t length , enc_random_b // unsigned char iv[8] , random_a_and_b // const unsigned char *input , random_a_and_b // unsigned char *output ); PrintAndLog("enc(RA+B):%s",sprint_hex(random_a_and_b, 16)); } return 0; } **/ // // Mifare Ultralight C - Set password // int CmdHF14AMfucSetPwd(const char *Cmd){ uint8_t pwd[16] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_ucsetpwd(); if (param_gethex(Cmd, 0, pwd, 32)) { PrintAndLog("Password must include 32 HEX symbols"); return 1; } UsbCommand c = {CMD_MIFAREUC_SETPWD}; memcpy( c.d.asBytes, pwd, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { if ( (resp.arg[0] & 0xff) == 1) { PrintAndLog("Ultralight-C new password: %s", sprint_hex(pwd,16)); } else { PrintAndLog("Failed writing at block %d", resp.arg[1] & 0xff); return 1; } } else { PrintAndLog("command execution time out"); return 1; } return 0; } // // Magic UL / UL-C tags - Set UID // int CmdHF14AMfucSetUid(const char *Cmd){ UsbCommand c; UsbCommand resp; uint8_t uid[7] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_ucsetuid(); if (param_gethex(Cmd, 0, uid, 14)) { PrintAndLog("UID must include 14 HEX symbols"); return 1; } // read block2. c.cmd = CMD_MIFAREU_READBL; c.arg[0] = 2; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLog("Command execute timeout"); return 2; } // save old block2. uint8_t oldblock2[4] = {0x00}; memcpy(resp.d.asBytes, oldblock2, 4); // block 0. c.cmd = CMD_MIFAREU_WRITEBL; c.arg[0] = 0; c.d.asBytes[0] = uid[0]; c.d.asBytes[1] = uid[1]; c.d.asBytes[2] = uid[2]; c.d.asBytes[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLog("Command execute timeout"); return 3; } // block 1. c.arg[0] = 1; c.d.asBytes[0] = uid[3]; c.d.asBytes[1] = uid[4]; c.d.asBytes[2] = uid[5]; c.d.asBytes[3] = uid[6]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLog("Command execute timeout"); return 4; } // block 2. c.arg[0] = 2; c.d.asBytes[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6]; c.d.asBytes[1] = oldblock2[1]; c.d.asBytes[2] = oldblock2[2]; c.d.asBytes[3] = oldblock2[3]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLog("Command execute timeout"); return 5; } return 0; } int CmdHF14AMfuGenDiverseKeys(const char *Cmd){ uint8_t uid[4]; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_gendiverse(); if ( cmdp == 'r' || cmdp == 'R') { // read uid from tag UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision if(select_status == 0) { PrintAndLog("iso14443a card select failed"); return 1; } if ( card.uidlen != 4 ) { PrintAndLog("Wrong sized UID, expected 4bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 8)) return usage_hf_mfu_gendiverse(); } uint8_t iv[8] = { 0x00 }; uint8_t block = 0x01; uint8_t mifarekeyA[] = { 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5 }; uint8_t mifarekeyB[] = { 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5 }; uint8_t dkeyA[8] = { 0x00 }; uint8_t dkeyB[8] = { 0x00 }; uint8_t masterkey[] = { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff }; uint8_t mix[8] = { 0x00 }; uint8_t divkey[8] = { 0x00 }; memcpy(mix, mifarekeyA, 4); mix[4] = mifarekeyA[4] ^ uid[0]; mix[5] = mifarekeyA[5] ^ uid[1]; mix[6] = block ^ uid[2]; mix[7] = uid[3]; des3_context ctx = { 0x00 }; des3_set2key_enc(&ctx, masterkey); des3_crypt_cbc(&ctx // des3_context , DES_ENCRYPT // int mode , sizeof(mix) // length , iv // iv[8] , mix // input , divkey // output ); PrintAndLog("-- 3DES version"); PrintAndLog("Masterkey :\t %s", sprint_hex(masterkey,sizeof(masterkey))); PrintAndLog("UID :\t %s", sprint_hex(uid, sizeof(uid))); PrintAndLog("block :\t %0d", block); PrintAndLog("Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA))); PrintAndLog("Message :\t %s", sprint_hex(mix, sizeof(mix))); PrintAndLog("Diversified key: %s", sprint_hex(divkey+1, 6)); for (int i=0; i < sizeof(mifarekeyA); ++i){ dkeyA[i] = (mifarekeyA[i] << 1) & 0xff; dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i+1); } for (int i=0; i < sizeof(mifarekeyB); ++i){ dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i+1); dkeyB[2+i] = (mifarekeyB[i] << 1) & 0xff; } uint8_t zeros[8] = {0x00}; uint8_t newpwd[8] = {0x00}; uint8_t dmkey[24] = {0x00}; memcpy(dmkey, dkeyA, 8); memcpy(dmkey+8, dkeyB, 8); memcpy(dmkey+16, dkeyA, 8); memset(iv, 0x00, 8); des3_set3key_enc(&ctx, dmkey); des3_crypt_cbc(&ctx // des3_context , DES_ENCRYPT // int mode , sizeof(newpwd) // length , iv // iv[8] , zeros // input , newpwd // output ); PrintAndLog("\n-- DES version"); PrintAndLog("Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA))); PrintAndLog("Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB))); PrintAndLog("Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey))); PrintAndLog("Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd))); // next. from the diversify_key method. return 0; } int CmdHF14AMfuPwdGen(const char *Cmd){ uint8_t uid[7] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_pwdgen(); if (cmdp == 't' || cmdp == 'T') return ul_ev1_pwdgen_selftest(); if ( cmdp == 'r' || cmdp == 'R') { // read uid from tag UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision if(select_status == 0) { PrintAndLog("iso14443a card select failed"); return 1; } if ( card.uidlen != 7 ) { PrintAndLog("Wrong sized UID, expected 7bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 14)) return usage_hf_mfu_pwdgen(); } PrintAndLog("---------------------------------"); PrintAndLog(" Using UID : %s", sprint_hex(uid, 7)); PrintAndLog("---------------------------------"); PrintAndLog(" algo | pwd | pack"); PrintAndLog("------+----------+-----"); PrintAndLog(" EV1 | %08X | %04X", ul_ev1_pwdgenA(uid), ul_ev1_packgenA(uid)); PrintAndLog(" Ami | %08X | %04X", ul_ev1_pwdgenB(uid), ul_ev1_packgenB(uid)); PrintAndLog(" LD | %08X | %04X", ul_ev1_pwdgenC(uid), ul_ev1_packgenC(uid)); PrintAndLog(" XYZ | %08X | %04X", ul_ev1_pwdgenD(uid), ul_ev1_packgenD(uid)); PrintAndLog("------+----------+-----"); PrintAndLog(" Vingcard algo"); PrintAndLog("--------------------"); return 0; } //------------------------------------ // Menu Stuff //------------------------------------ static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"info", CmdHF14AMfUInfo, 0, "Tag information"}, {"dump", CmdHF14AMfUDump, 0, "Dump Ultralight / Ultralight-C / NTAG tag to binary file"}, {"restore", CmdHF14AMfURestore, 0, "Restore a dump onto a MFU MAGIC tag"}, {"eload", CmdHF14AMfUeLoad, 0, "load Ultralight .eml dump file into emulator memory"}, {"rdbl", CmdHF14AMfURdBl, 0, "Read block"}, {"wrbl", CmdHF14AMfUWrBl, 0, "Write block"}, {"cauth", CmdHF14AMfucAuth, 0, "Authentication - Ultralight C"}, {"setpwd", CmdHF14AMfucSetPwd, 0, "Set 3des password - Ultralight-C"}, {"setuid", CmdHF14AMfucSetUid, 0, "Set UID - MAGIC tags only"}, {"sim", CmdHF14AMfUSim, 0, "Simulate Ultralight from emulator memory"}, {"gen", CmdHF14AMfuGenDiverseKeys , 1, "Generate 3des mifare diversified keys"}, {"pwdgen", CmdHF14AMfuPwdGen, 1, "Generate pwd from known algos"}, {NULL, NULL, 0, NULL} }; int CmdHFMFUltra(const char *Cmd){ clearCommandBuffer(); //WaitForResponseTimeout(CMD_ACK,NULL,100); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd){ CmdsHelp(CommandTable); return 0; }