//----------------------------------------------------------------------------- // Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura // 2015,2016,2017 Iceman, Marshmellow // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE ULTRALIGHT (C) commands //----------------------------------------------------------------------------- #include "cmdhfmfu.h" #define MAX_UL_BLOCKS 0x0F #define MAX_ULC_BLOCKS 0x2B #define MAX_ULEV1a_BLOCKS 0x13 #define MAX_ULEV1b_BLOCKS 0x28 #define MAX_NTAG_203 0x29 #define MAX_NTAG_210 0x13 #define MAX_NTAG_212 0x28 #define MAX_NTAG_213 0x2C #define MAX_NTAG_215 0x86 #define MAX_NTAG_216 0xE6 #define MAX_MY_D_NFC 0xFF #define MAX_MY_D_MOVE 0x25 #define MAX_MY_D_MOVE_LEAN 0x0F #define MAX_UL_NANO_40 0x0A static int CmdHelp(const char *Cmd); #define PUBLIC_ECDA_KEYLEN 33 uint8_t public_ecda_key[PUBLIC_ECDA_KEYLEN] = { 0x04, 0x49, 0x4e, 0x1a, 0x38, 0x6d, 0x3d, 0x3c, 0xfe, 0x3d, 0xc1, 0x0e, 0x5d, 0xe6, 0x8a, 0x49, 0x9b, 0x1c, 0x20, 0x2d, 0xb5, 0xb1, 0x32, 0x39, 0x3e, 0x89, 0xed, 0x19, 0xfe, 0x5b, 0xe8, 0xbc, 0x61 }; #define KEYS_3DES_COUNT 7 uint8_t default_3des_keys[KEYS_3DES_COUNT][16] = { { 0x42,0x52,0x45,0x41,0x4b,0x4d,0x45,0x49,0x46,0x59,0x4f,0x55,0x43,0x41,0x4e,0x21 },// 3des std key { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },// all zeroes { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f },// 0x00-0x0F { 0x49,0x45,0x4D,0x4B,0x41,0x45,0x52,0x42,0x21,0x4E,0x41,0x43,0x55,0x4F,0x59,0x46 },// NFC-key { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },// all ones { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF },// all FF { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF } // 11 22 33 }; #define KEYS_PWD_COUNT 1 uint8_t default_pwd_pack[KEYS_PWD_COUNT][4] = { {0xFF,0xFF,0xFF,0xFF}, // PACK 0x00,0x00 -- factory default }; #define MAX_UL_TYPES 22 uint32_t UL_TYPES_ARRAY[MAX_UL_TYPES] = { UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_203, NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_NFC, MY_D_MOVE_LEAN, FUDAN_UL, UL_EV1, NTAG_213_F, NTAG_216_F, UL_NANO_40 }; uint8_t UL_MEMORY_ARRAY[MAX_UL_TYPES] = { MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_ULEV1b_BLOCKS, MAX_NTAG_203, MAX_NTAG_203, MAX_NTAG_210, MAX_NTAG_212, MAX_NTAG_213, MAX_NTAG_215, MAX_NTAG_216, MAX_UL_BLOCKS, MAX_MY_D_NFC, MAX_MY_D_MOVE, MAX_MY_D_MOVE, MAX_MY_D_MOVE_LEAN, MAX_UL_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_NTAG_213, MAX_NTAG_216, MAX_UL_NANO_40 }; //------------------------------------ // Pwd & Pack generation Stuff //------------------------------------ const uint32_t c_D[] = { 0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8, 0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9, 0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79, 0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20, 0x5728B869, 0x30726D5A }; void transform_D(uint8_t* ru) { //Transform uint8_t i; uint8_t p = 0; uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++]; uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++]; for (i = 0; i < 12; i += 2) { uint32_t t1 = ROTL(v1 ^ v2, v2 & 0x1F) + c_D[p++]; uint32_t t2 = ROTL(v2 ^ t1, t1 & 0x1F) + c_D[p++]; v1 = ROTL(t1 ^ t2, t2 & 0x1F) + c_D[p++]; v2 = ROTL(t2 ^ v1, v1 & 0x1F) + c_D[p++]; } //Re-use ru ru[0] = v1 & 0xFF; ru[1] = (v1 >> 8) & 0xFF; ru[2] = (v1 >> 16) & 0xFF; ru[3] = (v1 >> 24) & 0xFF; ru[4] = v2 & 0xFF; ru[5] = (v2 >> 8) & 0xFF; ru[6] = (v2 >> 16) & 0xFF; ru[7] = (v2 >> 24) & 0xFF; } // Certain pwd generation algo nickname A. uint32_t ul_ev1_pwdgenA(uint8_t* uid) { uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32; uint32_t xortable[] = { 0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3, 0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7, 0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC, 0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0 }; uint8_t entry[] = {0x00,0x00,0x00,0x00}; uint8_t pwd[] = {0x00,0x00,0x00,0x00}; num_to_bytes( xortable[pos], 4, entry); pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3]; pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4]; pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5]; pwd[3] = entry[3] ^ uid[6]; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname B. (very simple) uint32_t ul_ev1_pwdgenB(uint8_t* uid) { uint8_t pwd[] = {0x00,0x00,0x00,0x00}; pwd[0] = uid[1] ^ uid[3] ^ 0xAA; pwd[1] = uid[2] ^ uid[4] ^ 0x55; pwd[2] = uid[3] ^ uid[5] ^ 0xAA; pwd[3] = uid[4] ^ uid[6] ^ 0x55; return (uint32_t)bytes_to_num(pwd, 4); } // Certain pwd generation algo nickname C. uint32_t ul_ev1_pwdgenC(uint8_t* uid){ uint32_t pwd = 0; uint8_t base[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x63, 0x29, 0x20, 0x43, 0x6f, 0x70, 0x79, 0x72, 0x69, 0x67, 0x68, 0x74, 0x20, 0x4c, 0x45, 0x47, 0x4f, 0x20, 0x32, 0x30, 0x31, 0x34, 0xaa, 0xaa }; memcpy(base, uid, 7); for (int i = 0; i < 32; i += 4) { uint32_t b = *(uint32_t *)(base + i); pwd = b + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd; } return BSWAP_32(pwd); } // Certain pwd generation algo nickname D. // a.k.a xzy uint32_t ul_ev1_pwdgenD(uint8_t* uid){ uint8_t i; //Rotate uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc key uint32_t pwd = 0; //Key as int r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; //Offset for (i = 0; i < 4; i++) pwd = ru[i + r] + (pwd << 8); return BSWAP_32(pwd); } // pack generation for algo 1-3 uint16_t ul_ev1_packgenA(uint8_t* uid){ uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8); return pack; } uint16_t ul_ev1_packgenB(uint8_t* uid){ return 0x8080; } uint16_t ul_ev1_packgenC(uint8_t* uid){ return 0xaa55; } uint16_t ul_ev1_packgenD(uint8_t* uid){ uint8_t i; //Rotate uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc pack uint32_t p = 0; for (i = 0; i < 8; i++) p += ru[i] * 13; p ^= 0x5555; return BSWAP_16( p & 0xFFFF ); } int ul_ev1_pwdgen_selftest(){ uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10}; uint32_t pwd1 = ul_ev1_pwdgenA(uid1); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid1,7), pwd1, (pwd1 == 0x8432EB17)?"OK":"->8432EB17<-"); uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81}; uint32_t pwd2 = ul_ev1_pwdgenB(uid2); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid2,7), pwd2, (pwd2 == 0x5fd37eca)?"OK":"->5fd37eca<--"); uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80}; uint32_t pwd3 = ul_ev1_pwdgenC(uid3); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid3,7), pwd3, (pwd3 == 0x5a349515)?"OK":"->5a349515<--"); uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80}; uint32_t pwd4 = ul_ev1_pwdgenD(uid4); PrintAndLogEx(NORMAL, "UID | %s | %08X | %s", sprint_hex(uid4,7), pwd4, (pwd4 == 0x72B1EC61)?"OK":"->72B1EC61<--"); return 0; } //------------------------------------ // get version nxp product type char *getProductTypeStr( uint8_t id){ static char buf[20]; char *retStr = buf; switch(id) { case 3: sprintf(retStr, "%02X, Ultralight", id); break; case 4: sprintf(retStr, "%02X, NTAG", id); break; default: sprintf(retStr, "%02X, unknown", id); break; } return buf; } /* The 7 MSBits (=n) code the storage size itself based on 2^n, the LSBit is set to '0' if the size is exactly 2^n and set to '1' if the storage size is between 2^n and 2^(n+1). */ char *getUlev1CardSizeStr( uint8_t fsize ){ static char buf[40]; char *retStr = buf; memset(buf, 0, sizeof(buf)); uint16_t usize = 1 << ((fsize >>1) + 1); uint16_t lsize = 1 << (fsize >>1); // is LSB set? if ( fsize & 1 ) sprintf(retStr, "%02X, (%u <-> %u bytes)",fsize, usize, lsize); else sprintf(retStr, "%02X, (%u bytes)", fsize, lsize); return buf; } static void ul_switch_on_field(void) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); } static int ul_send_cmd_raw( uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength ) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC | ISO14A_NO_RATS, cmdlen, 0}}; memcpy(c.d.asBytes, cmd, cmdlen); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; if (!resp.arg[0] && responseLength) return -1; uint16_t resplen = (resp.arg[0] < responseLength) ? resp.arg[0] : responseLength; memcpy(response, resp.d.asBytes, resplen); return resplen; } static int ul_select( iso14a_card_select_t *card ){ ul_switch_on_field(); UsbCommand resp; bool ans = false; ans = WaitForResponseTimeout(CMD_ACK, &resp, 1500); if (!ans || resp.arg[0] < 1) { PrintAndLogEx(WARNING, "iso14443a card select failed"); DropField(); return 0; } memcpy(card, resp.d.asBytes, sizeof(iso14a_card_select_t)); return 1; } // This read command will at least return 16bytes. static int ul_read( uint8_t page, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {ISO14443A_CMD_READBLOCK, page}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ul_comp_write( uint8_t page, uint8_t *data, uint8_t datalen ){ uint8_t cmd[18]; memset(cmd, 0x00, sizeof(cmd)); datalen = ( datalen > 16) ? 16 : datalen; cmd[0] = ISO14443A_CMD_WRITEBLOCK; cmd[1] = page; memcpy(cmd+2, data, datalen); uint8_t response[1] = {0xff}; ul_send_cmd_raw(cmd, 2+datalen, response, sizeof(response)); // ACK if ( response[0] == 0x0a ) return 0; // NACK return -1; } static int ulc_requestAuthentication( uint8_t *nonce, uint16_t nonceLength ){ uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength); return len; } static int ulc_authentication( uint8_t *key, bool switch_off_field ){ UsbCommand c = {CMD_MIFAREUC_AUTH, {switch_off_field}}; memcpy(c.d.asBytes, key, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) return 0; if ( resp.arg[0] == 1 ) return 1; return 0; } static int ulev1_requestAuthentication( uint8_t *pwd, uint8_t *pack, uint16_t packLength ){ uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength); // NACK tables different tags, but between 0-9 is a NEGATIVE response. // ACK == 0xA if ( len == 1 && pack[0] <= 0x09 ) return -1; return len; } static int ul_auth_select( iso14a_card_select_t *card, TagTypeUL_t tagtype, bool hasAuthKey, uint8_t *authkey, uint8_t *pack, uint8_t packSize){ if ( hasAuthKey && (tagtype & UL_C)) { //will select card automatically and close connection on error if (!ulc_authentication(authkey, false)) { PrintAndLogEx(WARNING, "Authentication Failed UL-C"); return 0; } } else { if ( !ul_select(card) ) return 0; if (hasAuthKey) { if ( ulev1_requestAuthentication(authkey, pack, packSize) == -1 ) { DropField(); PrintAndLogEx(WARNING, "Authentication Failed UL-EV1/NTAG"); return 0; } } } return 1; } static int ulev1_getVersion( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_VERSION}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readCounter( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readTearing( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } static int ulev1_readSignature( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); return len; } // Fudan check checks for which error is given for a command with incorrect crc // NXP UL chip responds with 01, fudan 00. // other possible checks: // send a0 + crc // UL responds with 00, fudan doesn't respond // or // send a200 + crc // UL doesn't respond, fudan responds with 00 // or // send 300000 + crc (read with extra byte(s)) // UL responds with read of page 0, fudan doesn't respond. // // make sure field is off before calling this function static int ul_fudan_check( void ){ iso14a_card_select_t card; if ( !ul_select(&card) ) return UL_ERROR; UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS, 4, 0}}; uint8_t cmd[4] = {0x30,0x00,0x02,0xa7}; //wrong crc on purpose should be 0xa8 memcpy(c.d.asBytes, cmd, 4); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return UL_ERROR; if (resp.arg[0] != 1) return UL_ERROR; return (!resp.d.asBytes[0]) ? FUDAN_UL : UL; //if response == 0x00 then Fudan, else Genuine NXP } static int ul_print_default( uint8_t *data){ uint8_t uid[7]; uid[0] = data[0]; uid[1] = data[1]; uid[2] = data[2]; uid[3] = data[4]; uid[4] = data[5]; uid[5] = data[6]; uid[6] = data[7]; PrintAndLogEx(NORMAL, " UID : %s ", sprint_hex(uid, 7)); PrintAndLogEx(NORMAL, " UID[0] : %02X, %s", uid[0], getTagInfo(uid[0]) ); if ( uid[0] == 0x05 && ((uid[1] & 0xf0) >> 4) == 2 ) { // is infineon and 66RxxP uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU switch (chip){ case 0xc2: PrintAndLogEx(NORMAL, " IC type : SLE 66R04P 770 Bytes"); break; //77 pages case 0xc4: PrintAndLogEx(NORMAL, " IC type : SLE 66R16P 2560 Bytes"); break; //256 pages case 0xc6: PrintAndLogEx(NORMAL, " IC type : SLE 66R32P 5120 Bytes"); break; //512 pages /2 sectors } } // CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2 int crc0 = 0x88 ^ data[0] ^ data[1] ^data[2]; if ( data[3] == crc0 ) PrintAndLogEx(NORMAL, " BCC0 : %02X, Ok", data[3]); else PrintAndLogEx(NORMAL, " BCC0 : %02X, crc should be %02X", data[3], crc0); int crc1 = data[4] ^ data[5] ^ data[6] ^data[7]; if ( data[8] == crc1 ) PrintAndLogEx(NORMAL, " BCC1 : %02X, Ok", data[8]); else PrintAndLogEx(NORMAL, " BCC1 : %02X, crc should be %02X", data[8], crc1 ); PrintAndLogEx(NORMAL, " Internal : %02X, %sdefault", data[9], (data[9]==0x48)?"":"not " ); PrintAndLogEx(NORMAL, " Lock : %s - %s", sprint_hex(data+10, 2), sprint_bin(data+10, 2) ); PrintAndLogEx(NORMAL, "OneTimePad : %s - %s\n", sprint_hex(data + 12, 4), sprint_bin(data+12, 4) ); return 0; } static int ndef_print_CC(uint8_t *data) { // no NDEF message if (data[0] != 0xE1) return -1; PrintAndLogEx(NORMAL, "--- NDEF Message"); PrintAndLogEx(NORMAL, "Capability Container: %s", sprint_hex(data,4) ); PrintAndLogEx(NORMAL, " %02X : NDEF Magic Number", data[0]); PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0F); PrintAndLogEx(NORMAL, " %02X : Physical Memory Size: %d bytes", data[2], (data[2] + 1) * 8); if ( data[2] == 0x96 ) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 48); else if ( data[2] == 0x12 ) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 144); else if ( data[2] == 0x3E ) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 496); else if ( data[2] == 0x6D ) PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 872); PrintAndLogEx(NORMAL, " %02X : %s / %s", data[3], (data[3] & 0xF0) ? "(RFU)" : "Read access granted without any security", (data[3] & 0x0F)==0 ? "Write access granted without any security" : (data[3] & 0x0F)==0x0F ? "No write access granted at all" : "(RFU)"); return 0; } int ul_print_type(uint32_t tagtype, uint8_t spaces){ char spc[11] = " "; spc[10]=0x00; char *spacer = spc + (10-spaces); if ( tagtype & UL ) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_C) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_NANO_40) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight Nano 40bytes (MF0UNH00)", spacer); else if ( tagtype & UL_EV1_48) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer); else if ( tagtype & UL_EV1_128) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer); else if ( tagtype & UL_EV1 ) PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 UNKNOWN", spacer); else if ( tagtype & NTAG ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG UNKNOWN", spacer); else if ( tagtype & NTAG_203 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 203 144bytes (NT2H0301F0DT)", spacer); else if ( tagtype & NTAG_210 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 210 48bytes (NT2L1011G0DU)", spacer); else if ( tagtype & NTAG_212 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 212 128bytes (NT2L1211G0DU)", spacer); else if ( tagtype & NTAG_213 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213 144bytes (NT2H1311G0DU)", spacer); else if ( tagtype & NTAG_213_F ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213F 144bytes (NT2H1311F0DTL)", spacer); else if ( tagtype & NTAG_215 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 215 504bytes (NT2H1511G0DU)", spacer); else if ( tagtype & NTAG_216 ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216 888bytes (NT2H1611G0DU)", spacer); else if ( tagtype & NTAG_216_F ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216F 888bytes (NT2H1611F0DTL)", spacer); else if ( tagtype & NTAG_I2C_1K ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC 888bytes (NT3H1101FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_2K ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC 1904bytes (NT3H1201FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_1K_PLUS ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC plus 888bytes (NT3H2111FHK)", spacer, "\xFD"); else if ( tagtype & NTAG_I2C_2K_PLUS ) PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC plus 1912bytes (NT3H2211FHK)", spacer, "\xFD"); else if ( tagtype & MY_D ) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 (SLE 66RxxS)", spacer); else if ( tagtype & MY_D_NFC ) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 NFC (SLE 66RxxP)", spacer); else if ( tagtype & MY_D_MOVE ) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move (SLE 66R01P)", spacer); else if ( tagtype & MY_D_MOVE_NFC ) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move NFC (SLE 66R01P)", spacer); else if ( tagtype & MY_D_MOVE_LEAN ) PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move lean (SLE 66R01L)", spacer); else if ( tagtype & FUDAN_UL ) PrintAndLogEx(NORMAL, "%sTYPE : FUDAN Ultralight Compatible (or other compatible) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else PrintAndLogEx(NORMAL, "%sTYPE : Unknown %06x", spacer, tagtype); return 0; } static int ulc_print_3deskey( uint8_t *data){ PrintAndLogEx(NORMAL, " deskey1 [44/0x2C] : %s [s]", sprint_hex(data ,4), sprint_ascii(data,4) ); PrintAndLogEx(NORMAL, " deskey1 [45/0x2D] : %s [s]", sprint_hex(data+4 ,4), sprint_ascii(data+4,4)); PrintAndLogEx(NORMAL, " deskey2 [46/0x2E] : %s [s]", sprint_hex(data+8 ,4), sprint_ascii(data+8,4)); PrintAndLogEx(NORMAL, " deskey2 [47/0x2F] : %s [s]", sprint_hex(data+12,4), sprint_ascii(data+12,4)); PrintAndLogEx(NORMAL, "\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16)); return 0; } static int ulc_print_configuration( uint8_t *data){ PrintAndLogEx(NORMAL, "--- UL-C Configuration"); PrintAndLogEx(NORMAL, " Higher Lockbits [40/0x28] : %s - %s", sprint_hex(data, 4), sprint_bin(data, 2)); PrintAndLogEx(NORMAL, " Counter [41/0x29] : %s - %s", sprint_hex(data+4, 4), sprint_bin(data+4, 2)); bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30); if ( validAuth ) PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s page %d/0x%02X and above need authentication", sprint_hex(data+8, 4), data[8],data[8] ); else{ if ( data[8] == 0){ PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s default", sprint_hex(data+8, 4) ); } else { PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s auth byte is out-of-range", sprint_hex(data+8, 4) ); } } PrintAndLogEx(NORMAL, " Auth1 [43/0x2B] : %s %s", sprint_hex(data+12, 4), (data[12] & 1) ? "write access restricted": "read and write access restricted" ); return 0; } static int ulev1_print_configuration(uint32_t tagtype, uint8_t *data, uint8_t startPage){ PrintAndLogEx(NORMAL, "\n--- Tag Configuration"); bool strg_mod_en = (data[0] & 2); uint8_t authlim = (data[4] & 0x07); bool nfc_cnf_en = (data[4] & 0x08); bool nfc_cnf_prot_pwd = (data[4] & 0x10); bool cfglck = (data[4] & 0x40); bool prot = (data[4] & 0x80); uint8_t vctid = data[5]; PrintAndLogEx(NORMAL, " cfg0 [%u/0x%02X] : %s", startPage, startPage, sprint_hex(data, 4)); if ( (tagtype & (NTAG_213_F | NTAG_216_F)) ) { uint8_t mirror_conf = (data[0] & 0xC0); uint8_t mirror_byte = (data[0] & 0x30); bool sleep_en = (data[0] & 0x08); strg_mod_en = (data[0] & 0x04); uint8_t fdp_conf = (data[0] & 0x03); switch (mirror_conf) { case 0: PrintAndLogEx(NORMAL, " - no ASCII mirror"); break; case 1: PrintAndLogEx(NORMAL, " - UID ASCII mirror"); break; case 2: PrintAndLogEx(NORMAL, " - NFC counter ASCII mirror"); break; case 3: PrintAndLogEx(NORMAL, " - UID and NFC counter ASCII mirror"); break; default: break; } PrintAndLogEx(NORMAL, " - SLEEP mode %s", (sleep_en) ? "enabled":"disabled"); switch (fdp_conf) { case 0: PrintAndLogEx(NORMAL, " - no field detect"); break; case 1: PrintAndLogEx(NORMAL, " - enabled by first State-of-Frame (start of communication)"); break; case 2: PrintAndLogEx(NORMAL, " - enabled by selection of the tag"); break; case 3: PrintAndLogEx(NORMAL, " - enabled by field presence"); break; default: break; } // valid mirror start page and byte position within start page. if ( tagtype & NTAG_213_F ) { switch ( mirror_conf ) { case 1: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0x24) ? "OK":"Invalid value"); break;} case 2: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0x26) ? "OK":"Invalid value"); break;} case 3: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0x22) ? "OK":"Invalid value"); break;} default: break; } } else if ( tagtype & NTAG_216_F ) { switch ( mirror_conf ) { case 1: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0xDE) ? "OK":"Invalid value"); break;} case 2: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0xE0) ? "OK":"Invalid value"); break;} case 3: { PrintAndLogEx(NORMAL, " mirror start block %02X | byte pos %02X - %s", data[2], mirror_byte, ( data[2]>= 0x4 && data[2] <= 0xDC) ? "OK":"Invalid value"); break;} default: break; } } } PrintAndLogEx(NORMAL, " - strong modulation mode %s", (strg_mod_en) ? "enabled":"disabled"); if ( data[3] < 0xff ) PrintAndLogEx(NORMAL, " - page %d and above need authentication",data[3]); else PrintAndLogEx(NORMAL, " - pages don't need authentication"); PrintAndLogEx(NORMAL, " cfg1 [%u/0x%02X] : %s", startPage + 1, startPage + 1, sprint_hex(data+4, 4) ); if ( authlim == 0) PrintAndLogEx(NORMAL, " - Unlimited password attempts"); else PrintAndLogEx(NORMAL, " - Max number of password attempts is %d", authlim); PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_en) ? "enabled":"disabled"); PrintAndLogEx(NORMAL, " - NFC counter %s", (nfc_cnf_prot_pwd) ? "not protected":"password protection enabled"); PrintAndLogEx(NORMAL, " - user configuration %s", cfglck ? "permanently locked":"writeable"); PrintAndLogEx(NORMAL, " - %s access is protected with password", prot ? "read and write":"write"); PrintAndLogEx(NORMAL, " - %02X, Virtual Card Type Identifier is %s default", vctid, (vctid==0x05)? "":"not"); PrintAndLogEx(NORMAL, " PWD [%u/0x%02X] : %s- (cannot be read)", startPage + 2, startPage + 2, sprint_hex(data+8, 4)); PrintAndLogEx(NORMAL, " PACK [%u/0x%02X] : %s - (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+12, 2)); PrintAndLogEx(NORMAL, " RFU [%u/0x%02X] : %s- (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+14, 2)); return 0; } static int ulev1_print_counters(){ PrintAndLogEx(NORMAL, "--- Tag Counters"); uint8_t tear[1] = {0}; uint8_t counter[3] = {0,0,0}; uint16_t len = 0; for ( uint8_t i = 0; i<3; ++i) { ulev1_readTearing(i,tear,sizeof(tear)); len = ulev1_readCounter(i,counter, sizeof(counter) ); if (len == 3) { PrintAndLogEx(NORMAL, " [%0d] : %s", i, sprint_hex(counter,3)); PrintAndLogEx(NORMAL, " - %02X tearing %s", tear[0], ( tear[0]==0xBD)?"Ok":"failure"); } } return len; } static int ulev1_print_signature( uint8_t *data, uint8_t len){ PrintAndLogEx(NORMAL, "\n--- Tag Signature"); PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x (2013)"); PrintAndLogEx(NORMAL, "IC signature public key value : %s", sprint_hex(public_ecda_key, PUBLIC_ECDA_KEYLEN) ); PrintAndLogEx(NORMAL, " Elliptic curve parameters : secp128r1"); PrintAndLogEx(NORMAL, " Tag ECC Signature : %s", sprint_hex(data, len)); //to do: verify if signature is valid // only UID is signed. //PrintAndLogEx(NORMAL, "IC signature status: %s valid", (iseccvalid() )?"":"not"); return 0; } static int ulev1_print_version(uint8_t *data){ PrintAndLogEx(NORMAL, "\n--- Tag Version"); PrintAndLogEx(NORMAL, " Raw bytes : %s",sprint_hex(data, 8) ); PrintAndLogEx(NORMAL, " Vendor ID : %02X, %s", data[1], getTagInfo(data[1])); PrintAndLogEx(NORMAL, " Product type : %s", getProductTypeStr(data[2])); PrintAndLogEx(NORMAL, " Product subtype : %02X, %s", data[3], (data[3]==1) ?"17 pF":"50pF"); PrintAndLogEx(NORMAL, " Major version : %02X", data[4]); PrintAndLogEx(NORMAL, " Minor version : %02X", data[5]); PrintAndLogEx(NORMAL, " Size : %s", getUlev1CardSizeStr(data[6])); PrintAndLogEx(NORMAL, " Protocol type : %02X %s", data[7], (data[7]==0x3)?"(ISO14443-3 Compliant)":""); return 0; } /* static int ulc_magic_test(){ // Magic Ultralight test // Magic UL-C, by observation, // 1) it seems to have a static nonce response to 0x1A command. // 2) the deskey bytes is not-zero:d out on as datasheet states. // 3) UID - changeable, not only, but pages 0-1-2-3. // 4) use the ul_magic_test ! magic tags answers specially! int returnValue = UL_ERROR; iso14a_card_select_t card; uint8_t nonce1[11] = {0x00}; uint8_t nonce2[11] = {0x00}; int status = ul_select(&card); if ( !status ){ return UL_ERROR; } status = ulc_requestAuthentication(nonce1, sizeof(nonce1)); if ( status > 0 ) { status = ulc_requestAuthentication(nonce2, sizeof(nonce2)); returnValue = ( !memcmp(nonce1, nonce2, 11) ) ? UL_C_MAGIC : UL_C; } else { returnValue = UL; } DropField(); return returnValue; } */ static int ul_magic_test(){ // Magic Ultralight tests // 1) take present UID, and try to write it back. OBSOLETE // 2) make a wrong length write to page0, and see if tag answers with ACK/NACK: iso14a_card_select_t card; if ( !ul_select(&card) ) return UL_ERROR; int status = ul_comp_write(0, NULL, 0); DropField(); if ( status == 0 ) return MAGIC; return 0; } uint32_t GetHF14AMfU_Type(void){ TagTypeUL_t tagtype = UNKNOWN; iso14a_card_select_t card; uint8_t version[10] = {0x00}; int status = 0; int len; if (!ul_select(&card)) return UL_ERROR; // Ultralight - ATQA / SAK if ( card.atqa[1] != 0x00 || card.atqa[0] != 0x44 || card.sak != 0x00 ) { //PrintAndLogEx(NORMAL, "Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak); DropField(); return UL_ERROR; } if ( card.uid[0] != 0x05) { len = ulev1_getVersion(version, sizeof(version)); DropField(); switch (len) { case 0x0A: { if ( memcmp(version, "\x00\x04\x03\x01\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; } else if ( memcmp(version, "\x00\x04\x03\x01\x02\x00\x0B", 7) == 0) { tagtype = UL_NANO_40; break; } else if ( memcmp(version, "\x00\x04\x03\x02\x01\x00\x0B", 7) == 0) { tagtype = UL_EV1_48; break; } else if ( memcmp(version, "\x00\x04\x03\x01\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; } else if ( memcmp(version, "\x00\x04\x03\x02\x01\x00\x0E", 7) == 0) { tagtype = UL_EV1_128; break; } else if ( memcmp(version, "\x00\x04\x04\x01\x01\x00\x0B", 7) == 0) { tagtype = NTAG_210; break; } else if ( memcmp(version, "\x00\x04\x04\x01\x01\x00\x0E", 7) == 0) { tagtype = NTAG_212; break; } else if ( memcmp(version, "\x00\x04\x04\x02\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213; break; } else if ( memcmp(version, "\x00\x04\x04\x02\x01\x00\x11", 7) == 0) { tagtype = NTAG_215; break; } else if ( memcmp(version, "\x00\x04\x04\x02\x01\x00\x13", 7) == 0) { tagtype = NTAG_216; break; } else if ( memcmp(version, "\x00\x04\x04\x04\x01\x00\x0F", 7) == 0) { tagtype = NTAG_213_F; break; } else if ( memcmp(version, "\x00\x04\x04\x04\x01\x00\x13", 7) == 0) { tagtype = NTAG_216_F; break; } else if ( memcmp(version, "\x00\x04\x04\x05\x02\x01\x13", 7) == 0) { tagtype = NTAG_I2C_1K; break; } else if ( memcmp(version, "\x00\x04\x04\x05\x02\x01\x15", 7) == 0) { tagtype = NTAG_I2C_2K; break; } else if ( memcmp(version, "\x00\x04\x04\x05\x02\x02\x13", 7) == 0) { tagtype = NTAG_I2C_1K_PLUS; break; } else if ( memcmp(version, "\x00\x04\x04\x05\x02\x02\x15", 7) == 0) { tagtype = NTAG_I2C_2K_PLUS; break; } else if ( version[2] == 0x04 ) { tagtype = NTAG; break; } else if ( version[2] == 0x03 ) { tagtype = UL_EV1; } break; } case 0x01: tagtype = UL_C; break; case 0x00: tagtype = UL; break; case -1 : tagtype = (UL | UL_C | NTAG_203); break; // could be UL | UL_C magic tags default : tagtype = UNKNOWN; break; } // UL vs UL-C vs ntag203 test if (tagtype & (UL | UL_C | NTAG_203)) { if ( !ul_select(&card) ) return UL_ERROR; // do UL_C check first... uint8_t nonce[11] = {0x00}; status = ulc_requestAuthentication(nonce, sizeof(nonce)); DropField(); if (status > 1) { tagtype = UL_C; } else { // need to re-select after authentication error if ( !ul_select(&card) ) return UL_ERROR; uint8_t data[16] = {0x00}; // read page 0x26-0x29 (last valid ntag203 page) status = ul_read(0x26, data, sizeof(data)); if ( status <= 1 ) { tagtype = UL; } else { // read page 0x30 (should error if it is a ntag203) status = ul_read(0x30, data, sizeof(data)); if ( status <= 1 ){ tagtype = NTAG_203; } else { tagtype = UNKNOWN; } } DropField(); } } if (tagtype & UL) { tagtype = ul_fudan_check(); DropField(); } } else { DropField(); // Infinition MY-D tests Exam high nibble uint8_t nib = (card.uid[1] & 0xf0) >> 4; switch ( nib ){ // case 0: tagtype = SLE66R35E7; break; //or SLE 66R35E7 - mifare compat... should have different sak/atqa for mf 1k case 1: tagtype = MY_D; break; // or SLE 66RxxS ... up to 512 pages of 8 user bytes... case 2: tagtype = (MY_D_NFC); break; // or SLE 66RxxP ... up to 512 pages of 8 user bytes... (or in nfc mode FF pages of 4 bytes) case 3: tagtype = (MY_D_MOVE | MY_D_MOVE_NFC); break; // or SLE 66R01P // 38 pages of 4 bytes //notice: we can not currently distinguish between these two case 7: tagtype = MY_D_MOVE_LEAN; break; // or SLE 66R01L // 16 pages of 4 bytes } } tagtype |= ul_magic_test(); if (tagtype == (UNKNOWN | MAGIC)) tagtype = (UL_MAGIC); return tagtype; } // // extended tag information // int CmdHF14AMfUInfo(const char *Cmd){ uint8_t authlim = 0xff; uint8_t data[16] = {0x00}; iso14a_card_select_t card; int status; bool errors = false; bool hasAuthKey = false; bool locked = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t dataLen = 0; uint8_t authenticationkey[16] = {0x00}; uint8_t *authkeyptr = authenticationkey; uint8_t pwd[4] = {0,0,0,0}; uint8_t *key = pwd; uint8_t pack[4] = {0,0,0,0}; int len = 0; char tempStr[50]; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_info(); case 'k': dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; // handled as bytes from now on } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': swapEndian = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_info(); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; PrintAndLogEx(NORMAL, "\n--- Tag Information ---------"); PrintAndLogEx(NORMAL, "-------------------------------------------------------------"); ul_print_type(tagtype, 6); // Swap endianness if (swapEndian && hasAuthKey) authkeyptr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4 ); if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // read pages 0,1,2,3 (should read 4pages) status = ul_read(0, data, sizeof(data)); if ( status == -1 ) { DropField(); PrintAndLogEx(WARNING, "Error: tag didn't answer to READ"); return status; } else if (status == 16) { ul_print_default(data); ndef_print_CC(data+12); } else { locked = true; } // UL_C Specific if ((tagtype & UL_C)) { // read pages 0x28, 0x29, 0x2A, 0x2B uint8_t ulc_conf[16] = {0x00}; status = ul_read(0x28, ulc_conf, sizeof(ulc_conf)); if ( status == -1 ){ PrintAndLogEx(WARNING, "Error: tag didn't answer to READ UL-C"); DropField(); return status; } if (status == 16) ulc_print_configuration(ulc_conf); else locked = true; if ((tagtype & MAGIC)) { //just read key uint8_t ulc_deskey[16] = {0x00}; status = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey)); if ( status == -1 ) { DropField(); PrintAndLogEx(WARNING, "Error: tag didn't answer to READ magic"); return status; } if (status == 16) ulc_print_3deskey(ulc_deskey); } else { DropField(); // if we called info with key, just return if ( hasAuthKey ) return 1; // also try to diversify default keys.. look into CmdHF14AMfuGenDiverseKeys PrintAndLogEx(NORMAL, "Trying some default 3des keys"); for (uint8_t i = 0; i < KEYS_3DES_COUNT; ++i ) { key = default_3des_keys[i]; if (ulc_authentication(key, true)) { PrintAndLogEx(NORMAL, "Found default 3des key: "); uint8_t keySwap[16]; memcpy(keySwap, SwapEndian64(key,16,8), 16); ulc_print_3deskey(keySwap); return 1; } } return 1; } } // do counters and signature first (don't neet auth) // ul counters are different than ntag counters if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1))) { if (ulev1_print_counters() != 3) { // failed - re-select if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } // NTAG counters? // Read signature if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t ulev1_signature[32] = {0x00}; status = ulev1_readSignature( ulev1_signature, sizeof(ulev1_signature)); if ( status == -1 ) { PrintAndLogEx(WARNING, "Error: tag didn't answer to READ SIGNATURE"); DropField(); return status; } if (status == 32) ulev1_print_signature( ulev1_signature, sizeof(ulev1_signature)); else { // re-select if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } // Get Version if ((tagtype & (UL_EV1_48 | UL_EV1_128 | UL_EV1 | UL_NANO_40 | NTAG_213 | NTAG_213_F | NTAG_215 | NTAG_216 | NTAG_216_F | NTAG_I2C_1K | NTAG_I2C_2K | NTAG_I2C_1K_PLUS | NTAG_I2C_2K_PLUS))) { uint8_t version[10] = {0x00}; status = ulev1_getVersion(version, sizeof(version)); if ( status == -1 ) { PrintAndLogEx(WARNING, "Error: tag didn't answer to GETVERSION"); DropField(); return status; } else if (status == 10) { ulev1_print_version(version); } else { locked = true; if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } uint8_t startconfigblock = 0; uint8_t ulev1_conf[16] = {0x00}; // config blocks always are last 4 pages for (uint8_t i = 0; i < MAX_UL_TYPES; i++) { if (tagtype & UL_TYPES_ARRAY[i]) { startconfigblock = UL_MEMORY_ARRAY[i]-3; break; } } if (startconfigblock){ // if we know where the config block is... status = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf)); if ( status == -1 ) { PrintAndLogEx(WARNING, "Error: tag didn't answer to READ EV1"); DropField(); return status; } else if (status == 16) { // save AUTHENTICATION LIMITS for later: authlim = (ulev1_conf[4] & 0x07); // add pwd / pack if used from cli if ( hasAuthKey ) { memcpy(ulev1_conf+8, authkeyptr, 4); memcpy(ulev1_conf+12, pack, 2); } ulev1_print_configuration(tagtype, ulev1_conf, startconfigblock); } } // AUTHLIMIT, (number of failed authentications) // 0 = limitless. // 1-7 = limit. No automatic tries then. // hasAuthKey, if we was called with key, skip test. if ( !authlim && !hasAuthKey ) { PrintAndLogEx(NORMAL, "\n--- Known EV1/NTAG passwords."); len = 0; // test pwd gen A num_to_bytes( ul_ev1_pwdgenA(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(NORMAL, "Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // test pwd gen B num_to_bytes( ul_ev1_pwdgenB(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(NORMAL, "Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // test pwd gen C num_to_bytes( ul_ev1_pwdgenC(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(NORMAL, "Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; // test pwd gen D num_to_bytes( ul_ev1_pwdgenD(card.uid), 4, key); len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(NORMAL, "Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); goto out; } if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; for (uint8_t i = 0; i < KEYS_PWD_COUNT; ++i ) { key = default_pwd_pack[i]; len = ulev1_requestAuthentication(key, pack, sizeof(pack)); if (len > -1) { PrintAndLogEx(NORMAL, "Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); break; } else { if (!ul_auth_select( &card, tagtype, hasAuthKey, authkeyptr, pack, sizeof(pack))) return -1; } } if (len < 1) PrintAndLogEx(NORMAL, "password not known"); } } out: DropField(); if (locked) PrintAndLogEx(FAILED, "\nTag appears to be locked, try using the key to get more info"); PrintAndLogEx(NORMAL, ""); return 1; } // // Write Single Block // int CmdHF14AMfUWrBl(const char *Cmd){ int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t blockdata[20] = {0x00}; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_wrbl(); case 'k': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp+1, data, 8); if ( !keylen ) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp+1, data, 32); if (!keylen){ memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; break; case 'b': blockNo = param_get8(Cmd, cmdp+1); if (blockNo < 0) { PrintAndLogEx(WARNING, "Wrong block number"); errors = true; } cmdp += 2; break; case 'l': swapEndian = true; cmdp++; break; case 'd': if ( param_gethex(Cmd, cmdp+1, blockdata, 8) ) { PrintAndLogEx(WARNING, "Block data must include 8 HEX symbols"); errors = true; break; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_wrbl(); if ( blockNo == -1 ) return usage_hf_mfu_wrbl(); // starting with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++){ if (tagtype & UL_TYPES_ARRAY[idx]) { maxblockno = UL_MEMORY_ARRAY[idx]; break; } } if (blockNo > maxblockno){ PrintAndLogEx(WARNING, "block number too large. Max block is %u/0x%02X \n", maxblockno,maxblockno); return usage_hf_mfu_wrbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); if ( blockNo <= 3) PrintAndLogEx(NORMAL, "Special Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); else PrintAndLogEx(NORMAL, "Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4)); //Send write Block UsbCommand c = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(c.d.asBytes, blockdata, 4); if ( hasAuthKey ){ c.arg[1] = 1; memcpy(c.d.asBytes+4, authKeyPtr, 16); } else if ( hasPwdKey ) { c.arg[1] = 2; memcpy(c.d.asBytes+4, authKeyPtr, 4); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLogEx(NORMAL, "isOk:%02x", isOK); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return 0; } // // Read Single Block // int CmdHF14AMfURdBl(const char *Cmd){ int blockNo = -1; bool errors = false; bool hasAuthKey = false; bool hasPwdKey = false; bool swapEndian = false; uint8_t cmdp = 0; uint8_t keylen = 0; uint8_t data[16] = {0x00}; uint8_t authenticationkey[16] = {0x00}; uint8_t *authKeyPtr = authenticationkey; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_rdbl(); case 'k': // EV1/NTAG size key keylen = param_gethex(Cmd, cmdp+1, data, 8); if ( !keylen ) { memcpy(authenticationkey, data, 4); cmdp += 2; hasPwdKey = true; break; } // UL-C size key keylen = param_gethex(Cmd, cmdp+1, data, 32); if (!keylen){ memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; break; case 'b': blockNo = param_get8(Cmd, cmdp+1); if (blockNo < 0) { PrintAndLogEx(WARNING, "Wrong block number"); errors = true; } cmdp += 2; break; case 'l': swapEndian = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_rdbl(); if ( blockNo == -1 ) return usage_hf_mfu_rdbl(); // start with getting tagtype TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; uint8_t maxblockno = 0; for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++){ if (tagtype & UL_TYPES_ARRAY[idx]) { maxblockno = UL_MEMORY_ARRAY[idx]; break; } } if (blockNo > maxblockno){ PrintAndLogEx(WARNING, "block number to large. Max block is %u/0x%02X \n", maxblockno,maxblockno); return usage_hf_mfu_rdbl(); } // Swap endianness if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, 16, 8); if (swapEndian && hasPwdKey) authKeyPtr = SwapEndian64(authenticationkey, 4, 4); //Read Block UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}}; if ( hasAuthKey ){ c.arg[1] = 1; memcpy(c.d.asBytes,authKeyPtr,16); } else if ( hasPwdKey ) { c.arg[1] = 2; memcpy(c.d.asBytes,authKeyPtr,4); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { uint8_t *data = resp.d.asBytes; PrintAndLogEx(NORMAL, "\nBlock# | Data | Ascii"); PrintAndLogEx(NORMAL, "-----------------------------"); PrintAndLogEx(NORMAL, "%02d/0x%02X | %s| %s\n", blockNo, blockNo, sprint_hex(data, 4), sprint_ascii(data,4)); } else { PrintAndLogEx(WARNING, "Failed reading block: (%02x)", isOK); } } else { PrintAndLogEx(NORMAL, "Command execute time-out"); } return 0; } int usage_hf_mfu_info(void) { PrintAndLogEx(NORMAL, "It gathers information about the tag and tries to detect what kind it is."); PrintAndLogEx(NORMAL, "Sometimes the tags are locked down, and you may need a key to be able to read the information"); PrintAndLogEx(NORMAL, "The following tags can be identified:\n"); PrintAndLogEx(NORMAL, "Ultralight, Ultralight-C, Ultralight EV1, NTAG 203, NTAG 210,"); PrintAndLogEx(NORMAL, "NTAG 212, NTAG 213, NTAG 215, NTAG 216, NTAG I2C 1K & 2K"); PrintAndLogEx(NORMAL, "my-d, my-d NFC, my-d move, my-d move NFC\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu info k l"); PrintAndLogEx(NORMAL, " Options : "); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu info"); PrintAndLogEx(NORMAL, " hf mfu info k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu info k AABBCCDD"); return 0; } int usage_hf_mfu_dump(void) { PrintAndLogEx(NORMAL, "Reads all pages from Ultralight, Ultralight-C, Ultralight EV1"); PrintAndLogEx(NORMAL, "NTAG 203, NTAG 210, NTAG 212, NTAG 213, NTAG 215, NTAG 216"); PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`"); PrintAndLogEx(NORMAL, "It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu dump k l f p q <#pages>"); PrintAndLogEx(NORMAL, " Options :"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, " f : filename w/o .bin to save the dump as"); PrintAndLogEx(NORMAL, " p : starting Page number to manually set a page to start the dump at"); PrintAndLogEx(NORMAL, " q : number of Pages to manually set how many pages to dump"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu dump"); PrintAndLogEx(NORMAL, " hf mfu dump n myfile"); PrintAndLogEx(NORMAL, " hf mfu dump k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu dump k AABBCCDD\n"); return 0; } int usage_hf_mfu_restore(void){ PrintAndLogEx(NORMAL, "Restore dumpfile onto card."); PrintAndLogEx(NORMAL, "Usage: hf mfu restore [h] [l] [s] k n "); PrintAndLogEx(NORMAL, " Options :"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, " s : (optional) enable special write UID -MAGIC TAG ONLY-"); PrintAndLogEx(NORMAL, " e : (optional) enable special write version/signature -MAGIC NTAG 21* ONLY-"); PrintAndLogEx(NORMAL, " r : (optional) use the password found in dumpfile to configure tag. requires 'e' parameter to work"); PrintAndLogEx(NORMAL, " f : filename w/o .bin to restore"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu restore s f myfile"); PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s f myfile\n"); PrintAndLogEx(NORMAL, " hf mfu restore k AABBCCDD s e r f myfile\n"); return 0; } int usage_hf_mfu_rdbl(void) { PrintAndLogEx(NORMAL, "Read a block and print. It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu rdbl b k l\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b : block to read"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k 00112233445566778899AABBCCDDEEFF"); PrintAndLogEx(NORMAL, " hf mfu rdbl b 0 k AABBCCDD\n"); return 0; } int usage_hf_mfu_wrbl(void) { PrintAndLogEx(NORMAL, "Write a block. It autodetects card type.\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu wrbl b d k l\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b : block to write"); PrintAndLogEx(NORMAL, " d : block data - (8 hex symbols)"); PrintAndLogEx(NORMAL, " k : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567"); PrintAndLogEx(NORMAL, " hf mfu wrbl b 0 d 01234567 k AABBCCDD\n"); return 0; } int usage_hf_mfu_eload(void) { PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`"); PrintAndLogEx(NORMAL, "Hint: See script dumptoemul-mfu.lua to convert the .bin to the eml"); PrintAndLogEx(NORMAL, "Usage: hf mfu eload u [numblocks]"); PrintAndLogEx(NORMAL, " Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " u : UL (required)"); PrintAndLogEx(NORMAL, " [filename] : without `.eml` (required)"); PrintAndLogEx(NORMAL, " numblocks : number of blocks to load from eml file (optional)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " sample: hf mfu eload u filename"); PrintAndLogEx(NORMAL, " hf mfu eload u filename 57"); return 0; } int usage_hf_mfu_sim(void) { PrintAndLogEx(NORMAL, "\nEmulating Ultralight tag from emulator memory\n"); PrintAndLogEx(NORMAL, "\nBe sure to load the emulator memory first!\n"); PrintAndLogEx(NORMAL, "Usage: hf mfu sim t 7 u "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " t 7 : 7 = NTAG or Ultralight sim (required)"); PrintAndLogEx(NORMAL, " u : 4 or 7 byte UID (optional)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu sim t 7"); PrintAndLogEx(NORMAL, " hf mfu sim t 7 u 1122344556677\n"); return 0; } int usage_hf_mfu_ucauth(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu cauth k "); PrintAndLogEx(NORMAL, " 0 (default): 3DES standard key"); PrintAndLogEx(NORMAL, " 1 : all 0x00 key"); PrintAndLogEx(NORMAL, " 2 : 0x00-0x0F key"); PrintAndLogEx(NORMAL, " 3 : nfc key"); PrintAndLogEx(NORMAL, " 4 : all 0x01 key"); PrintAndLogEx(NORMAL, " 5 : all 0xff key"); PrintAndLogEx(NORMAL, " 6 : 0x00-0xFF key"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu cauth k"); PrintAndLogEx(NORMAL, " hf mfu cauth k 3"); return 0; } int usage_hf_mfu_ucsetpwd(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu setpwd "); PrintAndLogEx(NORMAL, " [password] - (32 hex symbols)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu setpwd 000102030405060708090a0b0c0d0e0f"); PrintAndLogEx(NORMAL, ""); return 0; } int usage_hf_mfu_ucsetuid(void) { PrintAndLogEx(NORMAL, "Usage: hf mfu setuid "); PrintAndLogEx(NORMAL, " [uid] - (14 hex symbols)"); PrintAndLogEx(NORMAL, "\nThis only works for Magic Ultralight tags."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu setuid 11223344556677"); PrintAndLogEx(NORMAL, ""); return 0; } int usage_hf_mfu_gendiverse(void){ PrintAndLogEx(NORMAL, "Usage: hf mfu gen [h] [r] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " r : read uid from tag"); PrintAndLogEx(NORMAL, " : 4 byte UID (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu gen r"); PrintAndLogEx(NORMAL, " hf mfu gen 11223344"); PrintAndLogEx(NORMAL, ""); return 0; } int usage_hf_mfu_pwdgen(void){ PrintAndLogEx(NORMAL, "Usage: hf mfu pwdgen [h|t] [r] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " t : selftest"); PrintAndLogEx(NORMAL, " r : read uid from tag"); PrintAndLogEx(NORMAL, " : 7 byte UID (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mfu pwdgen r"); PrintAndLogEx(NORMAL, " hf mfu pwdgen 11223344556677"); PrintAndLogEx(NORMAL, " hf mfu pwdgen t"); PrintAndLogEx(NORMAL, ""); return 0; } #define DUMP_PREFIX_LENGTH 48 void printMFUdump(mfu_dump_t* card) { printMFUdumpEx(card, 255, 0); } void printMFUdumpEx(mfu_dump_t* card, uint16_t pages, uint8_t startpage) { PrintAndLogEx(NORMAL, "\n*special* data\n"); PrintAndLogEx(NORMAL, "\nDataType | Data | Ascii"); PrintAndLogEx(NORMAL, "----------+-------------------------+---------"); PrintAndLogEx(NORMAL, "Version | %s| %s", sprint_hex(card->version, sizeof(card->version)), sprint_ascii(card->version, sizeof(card->version)) ); PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo, sizeof(card->tbo)), sprint_ascii(card->tbo, sizeof(card->tbo))); PrintAndLogEx(NORMAL, "Tearing | %-24s| %s", sprint_hex(card->tearing, sizeof(card->tearing)), sprint_ascii(card->tearing, sizeof(card->tearing))); PrintAndLogEx(NORMAL, "Pack | %-24s| %s", sprint_hex(card->pack, sizeof(card->pack)), sprint_ascii(card->pack, sizeof(card->pack))); PrintAndLogEx(NORMAL, "TBD | %-24s| %s", sprint_hex(card->tbo1, sizeof(card->tbo1)), sprint_ascii(card->tbo1, sizeof(card->tbo1))); PrintAndLogEx(NORMAL, "Signature1| %s| %s", sprint_hex(card->signature, 16), sprint_ascii(card->signature, 16)); PrintAndLogEx(NORMAL, "Signature2| %s| %s", sprint_hex(card->signature+16, 16), sprint_ascii(card->signature+16, 16)); PrintAndLogEx(NORMAL, "-------------------------------------------------------------"); PrintAndLogEx(NORMAL, "\nBlock# | Data |lck| Ascii"); PrintAndLogEx(NORMAL, "---------+-------------+---+------"); uint8_t j = 0; bool lckbit = false; uint8_t *data = card->data; uint8_t lockbytes_sta[] = {0,0}; uint8_t lockbytes_dyn[] = {0,0,0}; bool bit_stat[16] = {0}; bool bit_dyn[16] = {0}; // Load static lock bytes. memcpy(lockbytes_sta, data+10, sizeof(lockbytes_sta)); for(j = 0; j < 16; j++){ bit_stat[j] = lockbytes_sta[j/8] & ( 1 <<(7-j%8)); } // Load dynamic lockbytes if available // TODO -- FIGURE OUT LOCK BYTES FOR TO EV1 and/or NTAG if ( pages == 44 ) { memcpy(lockbytes_dyn, data+(40*4), sizeof(lockbytes_dyn)); for (j = 0; j < 16; j++) { bit_dyn[j] = lockbytes_dyn[j/8] & ( 1 <<(7-j%8)); } PrintAndLogEx(NORMAL, "DYNAMIC LOCK: %s\n", sprint_hex(lockbytes_dyn,3)); } for (uint8_t i = 0; i < pages; ++i) { if ( i < 3 ) { PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| | %s", i+startpage, i+startpage, sprint_hex(data + i * 4, 4), sprint_ascii(data + i * 4,4) ); continue; } switch(i){ case 3: lckbit = bit_stat[4]; break; case 4: lckbit = bit_stat[3]; break; case 5: lckbit = bit_stat[2]; break; case 6: lckbit = bit_stat[1]; break; case 7: lckbit = bit_stat[0]; break; case 8: lckbit = bit_stat[15]; break; case 9: lckbit = bit_stat[14]; break; case 10: lckbit = bit_stat[13]; break; case 11: lckbit = bit_stat[12]; break; case 12: lckbit = bit_stat[11]; break; case 13: lckbit = bit_stat[10]; break; case 14: lckbit = bit_stat[9]; break; case 15: lckbit = bit_stat[8]; break; case 16: case 17: case 18: case 19: lckbit = bit_dyn[6]; break; case 20: case 21: case 22: case 23: lckbit = bit_dyn[5]; break; case 24: case 25: case 26: case 27: lckbit = bit_dyn[4]; break; case 28: case 29: case 30: case 31: lckbit = bit_dyn[2]; break; case 32: case 33: case 34: case 35: lckbit = bit_dyn[1]; break; case 36: case 37: case 38: case 39: lckbit = bit_dyn[0]; break; case 40: lckbit = bit_dyn[12]; break; case 41: lckbit = bit_dyn[11]; break; case 42: lckbit = bit_dyn[10]; break; //auth0 case 43: lckbit = bit_dyn[9]; break; //auth1 default: break; } PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| %d | %s", i+startpage, i+startpage, sprint_hex(data + i * 4, 4), lckbit, sprint_ascii(data + i * 4,4)); } PrintAndLogEx(NORMAL, "---------------------------------"); } // // Mifare Ultralight / Ultralight-C / Ultralight-EV1 // Read and Dump Card Contents, using auto detection of tag size. int CmdHF14AMfUDump(const char *Cmd){ FILE *fout; char filename[FILE_PATH_SIZE] = {0x00}; char *fnameptr = filename; uint8_t data[1024] = {0x00}; memset(data, 0x00, sizeof(data)); bool hasAuthKey = false; int i = 0; int pages = 16; uint8_t dataLen = 0; uint8_t cmdp = 0; uint8_t authenticationkey[16] = {0x00}; memset(authenticationkey, 0x00, sizeof(authenticationkey)); uint8_t *authKeyPtr = authenticationkey; size_t fileNlen = 0; bool errors = false; bool swapEndian = false; bool manualPages = false; uint8_t startPage = 0; uint8_t card_mem_size = 0; char tempStr[50]; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_mfu_dump(); case 'k': dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (dataLen == 32 || dataLen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authenticationkey, dataLen); dataLen /= 2; } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasAuthKey = true; break; case 'l': swapEndian = true; cmdp++; break; case 'f': fileNlen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename)); if (!fileNlen) errors = true; if (fileNlen > FILE_PATH_SIZE-5) fileNlen = FILE_PATH_SIZE-5; cmdp += 2; break; case 'p': //set start page startPage = param_get8(Cmd, cmdp+1); manualPages = true; cmdp += 2; break; case 'q': pages = param_get8(Cmd, cmdp+1); cmdp += 2; manualPages = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf_mfu_dump(); //if we entered a key in little endian and set the swapEndian switch - switch it... if (swapEndian && hasAuthKey) authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; //get number of pages to read if (!manualPages) { for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) { if (tagtype & UL_TYPES_ARRAY[idx]) { //add one as maxblks starts at 0 card_mem_size = pages = UL_MEMORY_ARRAY[idx]+1; break; } } } ul_print_type(tagtype, 0); PrintAndLogEx(NORMAL, "Reading tag memory..."); UsbCommand c = {CMD_MIFAREU_READCARD, {startPage, pages}}; if ( hasAuthKey ) { if (tagtype & UL_C) c.arg[2] = 1; //UL_C auth else c.arg[2] = 2; //UL_EV1/NTAG auth memcpy(c.d.asBytes, authKeyPtr, dataLen); } clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { PrintAndLogEx(WARNING, "Command execute time-out"); return 1; } if (resp.arg[0] != 1) { PrintAndLogEx(WARNING, "Failed reading block: (%02x)", i); return 1; } uint32_t startindex = resp.arg[2]; uint32_t bufferSize = resp.arg[1]; if (bufferSize > sizeof(data)) { PrintAndLogEx(FAILED, "Data exceeded Buffer size!"); bufferSize = sizeof(data); } if ( !GetFromDevice(BIG_BUF, data, bufferSize, startindex, NULL, 2500, false) ) { PrintAndLogEx(WARNING, "command execution time out"); return 1; } bool is_partial = (pages != bufferSize/4); pages = bufferSize/4; uint8_t get_pack[] = {0,0}; iso14a_card_select_t card; mfu_dump_t dump_file_data; uint8_t get_version[] = {0,0,0,0,0,0,0,0}; uint8_t get_tearing[] = {0,0,0}; uint8_t get_counter[] = {0,0,0}; uint8_t dummy_pack[] = {0,0}; uint8_t get_signature[32]; memset( get_signature, 0, sizeof(get_signature) ); // not ul_c and not std ul then attempt to collect info like // VERSION, SIGNATURE, COUNTERS, TEARING, PACK, if (!(tagtype & UL_C || tagtype & UL)) { //attempt to read pack if (!ul_auth_select( &card, tagtype, true, authKeyPtr, get_pack, sizeof(get_pack))) { //reset pack get_pack[0]=0; get_pack[1]=0; } DropField(); // only add pack if not partial read, and complete pages read. if ( !is_partial && pages == card_mem_size) { // add pack to block read memcpy(data + (pages*4) - 4, get_pack, sizeof(get_pack)); } if ( hasAuthKey ) ul_auth_select( &card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); else ul_select(&card); ulev1_getVersion( get_version, sizeof(get_version) ); for ( uint8_t i = 0; i<3; ++i) { ulev1_readTearing(i, get_tearing+i, 1); ulev1_readCounter(i, get_counter, sizeof(get_counter) ); } DropField(); if ( hasAuthKey ) ul_auth_select( &card, tagtype, hasAuthKey, authKeyPtr, dummy_pack, sizeof(dummy_pack)); else ul_select(&card); ulev1_readSignature( get_signature, sizeof(get_signature)); DropField(); } // format and add keys to block dump output if (hasAuthKey) { // if we didn't swapendian before - do it now for the sprint_hex call // NOTE: default entry is bigendian (unless swapped), sprint_hex outputs little endian // need to swap to keep it the same if (!swapEndian){ authKeyPtr = SwapEndian64(authenticationkey, dataLen, (dataLen == 16) ? 8 : 4); } else { authKeyPtr = authenticationkey; } if (tagtype & UL_C){ //add 4 pages memcpy(data + pages*4, authKeyPtr, dataLen); pages += dataLen/4; } else { // 2nd page from end memcpy(data + (pages*4) - 8, authenticationkey, dataLen); } } //add *special* blocks to dump //iceman: need to add counters and pwd values to the dump format memcpy(dump_file_data.version, get_version, sizeof(dump_file_data.version)); memcpy(dump_file_data.tearing, get_tearing, sizeof(dump_file_data.tearing)); memcpy(dump_file_data.pack, get_pack, sizeof(dump_file_data.pack)); memcpy(dump_file_data.signature, get_signature, sizeof(dump_file_data.signature)); memcpy(dump_file_data.data, data, pages*4); printMFUdumpEx(&dump_file_data, pages, startPage); // user supplied filename? if (fileNlen < 1) { // UID = data 0-1-2 4-5-6-7 (skips a beat) sprintf(fnameptr,"%02X%02X%02X%02X%02X%02X%02X.bin", data[0],data[1], data[2], data[4],data[5],data[6], data[7]); } else { sprintf(fnameptr + fileNlen,".bin"); } if ((fout = fopen(filename,"wb")) == NULL) { PrintAndLogEx(WARNING, "Could not create file name %s", filename); return 1; } fwrite( &dump_file_data, 1, pages*4 + DUMP_PREFIX_LENGTH, fout ); if (fout) fclose(fout); PrintAndLogEx(SUCCESS, "Dumped %d pages, wrote %d bytes to %s", pages + (DUMP_PREFIX_LENGTH/4), pages*4 + DUMP_PREFIX_LENGTH, filename); if ( is_partial ) PrintAndLogEx(WARNING, "Partial dump created. (%d of %d blocks)", pages, card_mem_size); return 0; } static void wait4response(uint8_t b){ UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; if ( !isOK ) PrintAndLogEx(WARNING, "failed to write block %d", b); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } } // // Restore dump file onto tag // int CmdHF14AMfURestore(const char *Cmd){ char tempStr[50] = {0}; char filename[FILE_PATH_SIZE] = {0}; uint8_t authkey[16] = {0}; uint8_t *p_authkey = authkey; uint8_t cmdp = 0, keylen = 0; bool hasKey = false; bool swapEndian = false; bool errors = false; bool write_special = false; bool write_extra = false; bool read_key = false; size_t filelen = 0; FILE *f; UsbCommand c = {CMD_MIFAREU_WRITEBL, {0,0,0}}; memset(authkey, 0x00, sizeof(authkey)); while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_restore(); case 'k': case 'K': keylen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr)); if (keylen == 32 || keylen == 8) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, authkey, keylen); keylen /= 2; } else { PrintAndLogEx(WARNING, "ERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; hasKey = true; break; case 'l': case 'L': swapEndian = true; cmdp++; break; case 'f': case 'F': filelen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); if (filelen > FILE_PATH_SIZE-5) filelen = FILE_PATH_SIZE-5; if (filelen < 1) sprintf(filename, "dumpdata.bin"); cmdp += 2; break; case 's': case 'S': cmdp++; write_special = true; break; case 'e': case 'E': cmdp++; write_extra = true; break; case 'r': case 'R': cmdp++; read_key = true; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0) return usage_hf_mfu_restore(); if ((f = fopen(filename,"rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file %s", filename); return 1; } // get filesize to know how memory to allocate fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(WARNING, "Error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if ( !dump ) { PrintAndLogEx(WARNING, "Failed to allocate memory"); return 1; } // read all data size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); if ( bytes_read < 48 ) { PrintAndLogEx(WARNING, "Error, dump file is too small"); return 1; } PrintAndLogEx(NORMAL, "Restoring %s to card", filename); mfu_dump_t *mem = (mfu_dump_t*)dump; uint8_t pages = (bytes_read-48)/4; // print dump printMFUdumpEx(mem, pages, 0); // Swap endianness if (swapEndian && hasKey) { if ( keylen == 16 ) p_authkey = SwapEndian64(authkey, keylen, 8); else p_authkey = SwapEndian64(authkey, keylen, 4); } // set key - only once if ( hasKey ){ c.arg[1] = (keylen == 16) ? 1 : 2; memcpy(c.d.asBytes+4, p_authkey, keylen); } // write version, signature, pack // only magic NTAG cards if ( write_extra ) { #define MFU_NTAG_SPECIAL_PWD 0xF0 #define MFU_NTAG_SPECIAL_PACK 0xF1 #define MFU_NTAG_SPECIAL_VERSION 0xFA #define MFU_NTAG_SPECIAL_SIGNATURE 0xF2 // pwd if ( hasKey || read_key) { c.arg[0] = MFU_NTAG_SPECIAL_PWD; if (read_key) { // try reading key from dump and use. memcpy(c.d.asBytes, mem->data + ( bytes_read - 48 - 8), 4); } else { memcpy(c.d.asBytes, p_authkey, 4 ); } PrintAndLogEx(NORMAL, "special PWD block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PWD, sprint_hex(c.d.asBytes, 4)); clearCommandBuffer(); SendCommand(&c); wait4response(MFU_NTAG_SPECIAL_PWD); // copy the new key c.arg[1] = 2; memcpy(authkey, c.d.asBytes, 4); memcpy(c.d.asBytes+4, authkey, 4); } // pack c.arg[0] = MFU_NTAG_SPECIAL_PACK; c.d.asBytes[0] = mem->pack[0]; c.d.asBytes[1] = mem->pack[1]; c.d.asBytes[2] = 0; c.d.asBytes[3] = 0; PrintAndLogEx(NORMAL, "special PACK block written 0x%X - %s\n", MFU_NTAG_SPECIAL_PACK, sprint_hex(c.d.asBytes, 4)); clearCommandBuffer(); SendCommand(&c); wait4response(MFU_NTAG_SPECIAL_PACK); // Signature for (uint8_t s = MFU_NTAG_SPECIAL_SIGNATURE, i=0; s < MFU_NTAG_SPECIAL_SIGNATURE+8; s++, i += 4){ c.arg[0] = s; memcpy(c.d.asBytes, mem->signature+i, 4); PrintAndLogEx(NORMAL, "special SIG block written 0x%X - %s\n", s, sprint_hex(c.d.asBytes, 4) ); clearCommandBuffer(); SendCommand(&c); wait4response(s); } // Version for (uint8_t s = MFU_NTAG_SPECIAL_VERSION, i=0; s < MFU_NTAG_SPECIAL_VERSION+2; s++, i += 4){ c.arg[0] = s; memcpy(c.d.asBytes, mem->version+i, 4 ); PrintAndLogEx(NORMAL, "special VERSION block written 0x%X - %s\n", s, sprint_hex(c.d.asBytes, 4) ); clearCommandBuffer(); SendCommand(&c); wait4response(s); } } PrintAndLogEx(NORMAL, "Restoring data blocks."); // write all other data // Skip block 0,1,2,3 (only magic tags can write to them) // Skip last 5 blocks usually is configuration for (uint8_t b = 4; b < pages-5; b++) { //Send write Block c.arg[0] = b; memcpy(c.d.asBytes, mem->data + (b*4), 4); clearCommandBuffer(); SendCommand(&c); wait4response(b); printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); // write special data last if (write_special) { PrintAndLogEx(NORMAL, "Restoring configuration blocks.\n"); PrintAndLogEx(NORMAL, "authentication with keytype[%x] %s\n", (uint8_t)(c.arg[1] & 0xff), sprint_hex(p_authkey,4)); // otp, uid, lock, cfg1, cfg0, dynlockbits uint8_t blocks[] = {3, 0, 1, 2, pages-5, pages-4, pages-3}; for ( uint8_t i = 0; i < sizeof(blocks); i++){ uint8_t b = blocks[i]; c.arg[0] = b; memcpy(c.d.asBytes, mem->data + (b*4), 4); clearCommandBuffer(); SendCommand(&c); wait4response(b); PrintAndLogEx(NORMAL, "special block written %u - %s\n", b, sprint_hex(c.d.asBytes, 4) ); } } DropField(); free(dump); return 0; } // // Load emulator with dump file // int CmdHF14AMfUeLoad(const char *Cmd){ char c = param_getchar(Cmd, 0); if ( c == 'h' || c == 'H' || c == 0x00) return usage_hf_mfu_eload(); return CmdHF14AMfELoad(Cmd); } // // Simulate tag // int CmdHF14AMfUSim(const char *Cmd){ char c = param_getchar(Cmd, 0); if ( c == 'h' || c == 'H' || c == 0x00) return usage_hf_mfu_sim(); return CmdHF14ASim(Cmd); } //------------------------------------------------------------------------------- // Ultralight C Methods //------------------------------------------------------------------------------- // // Ultralight C Authentication Demo {currently uses hard-coded key} // int CmdHF14AMfucAuth(const char *Cmd){ uint8_t keyNo = 3; bool errors = false; char cmdp = param_getchar(Cmd, 0); //Change key to user defined one if (cmdp == 'k' || cmdp == 'K'){ keyNo = param_get8(Cmd, 1); if(keyNo >= KEYS_3DES_COUNT) errors = true; } if (cmdp == 'h' || cmdp == 'H') errors = true; if (errors) return usage_hf_mfu_ucauth(); uint8_t *key = default_3des_keys[keyNo]; if (ulc_authentication(key, true)) PrintAndLogEx(SUCCESS, "Authentication successful. 3des key: %s",sprint_hex(key, 16)); else PrintAndLogEx(WARNING, "Authentication failed"); return 0; } /** A test function to validate that the polarssl-function works the same was as the openssl-implementation. Commented out, since it requires openssl int CmdTestDES(const char * cmd) { uint8_t key[16] = {0x00}; memcpy(key,key3_3des_data,16); DES_cblock RndA, RndB; PrintAndLogEx(NORMAL, "----------OpenSSL DES implementation----------"); { uint8_t e_RndB[8] = {0x00}; unsigned char RndARndB[16] = {0x00}; DES_cblock iv = { 0 }; DES_key_schedule ks1,ks2; DES_cblock key1,key2; memcpy(key,key3_3des_data,16); memcpy(key1,key,8); memcpy(key2,key+8,8); DES_set_key((DES_cblock *)key1,&ks1); DES_set_key((DES_cblock *)key2,&ks2); DES_random_key(&RndA); PrintAndLogEx(NORMAL, " RndA:%s",sprint_hex(RndA, 8)); PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(e_RndB, 8)); //void DES_ede2_cbc_encrypt(const unsigned char *input, // unsigned char *output, long length, DES_key_schedule *ks1, // DES_key_schedule *ks2, DES_cblock *ivec, int enc); DES_ede2_cbc_encrypt(e_RndB,RndB,sizeof(e_RndB),&ks1,&ks2,&iv,0); PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(RndB, 8)); rol(RndB,8); memcpy(RndARndB,RndA,8); memcpy(RndARndB+8,RndB,8); PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(RndARndB, 16)); DES_ede2_cbc_encrypt(RndARndB,RndARndB,sizeof(RndARndB),&ks1,&ks2,&e_RndB,1); PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(RndARndB, 16)); } PrintAndLogEx(NORMAL, "----------PolarSSL implementation----------"); { uint8_t random_a[8] = { 0 }; uint8_t enc_random_a[8] = { 0 }; uint8_t random_b[8] = { 0 }; uint8_t enc_random_b[8] = { 0 }; uint8_t random_a_and_b[16] = { 0 }; des3_context ctx = { 0 }; memcpy(random_a, RndA,8); uint8_t output[8] = { 0 }; uint8_t iv[8] = { 0 }; PrintAndLogEx(NORMAL, " RndA :%s",sprint_hex(random_a, 8)); PrintAndLogEx(NORMAL, " e_RndB:%s",sprint_hex(enc_random_b, 8)); des3_set2key_dec(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_DECRYPT // int mode , sizeof(random_b) // size_t length , iv // unsigned char iv[8] , enc_random_b // const unsigned char *input , random_b // unsigned char *output ); PrintAndLogEx(NORMAL, " RndB:%s",sprint_hex(random_b, 8)); rol(random_b,8); memcpy(random_a_and_b ,random_a,8); memcpy(random_a_and_b+8,random_b,8); PrintAndLogEx(NORMAL, " RA+B:%s",sprint_hex(random_a_and_b, 16)); des3_set2key_enc(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_ENCRYPT // int mode , sizeof(random_a_and_b) // size_t length , enc_random_b // unsigned char iv[8] , random_a_and_b // const unsigned char *input , random_a_and_b // unsigned char *output ); PrintAndLogEx(NORMAL, "enc(RA+B):%s",sprint_hex(random_a_and_b, 16)); } return 0; } **/ // // Mifare Ultralight C - Set password // int CmdHF14AMfucSetPwd(const char *Cmd){ uint8_t pwd[16] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_ucsetpwd(); if (param_gethex(Cmd, 0, pwd, 32)) { PrintAndLogEx(WARNING, "Password must include 32 HEX symbols"); return 1; } UsbCommand c = {CMD_MIFAREUC_SETPWD}; memcpy( c.d.asBytes, pwd, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { if ( (resp.arg[0] & 0xff) == 1) { PrintAndLogEx(NORMAL, "Ultralight-C new password: %s", sprint_hex(pwd,16)); } else { PrintAndLogEx(WARNING, "Failed writing at block %d", resp.arg[1] & 0xff); return 1; } } else { PrintAndLogEx(WARNING, "command execution time out"); return 1; } return 0; } // // Magic UL / UL-C tags - Set UID // int CmdHF14AMfucSetUid(const char *Cmd){ UsbCommand c = {CMD_MIFAREU_READBL}; UsbCommand resp; uint8_t uid[7] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_hf_mfu_ucsetuid(); if (param_gethex(Cmd, 0, uid, 14)) { PrintAndLogEx(WARNING, "UID must include 14 HEX symbols"); return 1; } // read block2. c.arg[0] = 2; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 2; } // save old block2. uint8_t oldblock2[4] = {0x00}; memcpy(resp.d.asBytes, oldblock2, 4); // block 0. c.cmd = CMD_MIFAREU_WRITEBL; c.arg[0] = 0; c.d.asBytes[0] = uid[0]; c.d.asBytes[1] = uid[1]; c.d.asBytes[2] = uid[2]; c.d.asBytes[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 3; } // block 1. c.arg[0] = 1; c.d.asBytes[0] = uid[3]; c.d.asBytes[1] = uid[4]; c.d.asBytes[2] = uid[5]; c.d.asBytes[3] = uid[6]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLogEx(WARNING, "Command execute timeout"); return 4; } // block 2. c.arg[0] = 2; c.d.asBytes[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6]; c.d.asBytes[1] = oldblock2[1]; c.d.asBytes[2] = oldblock2[2]; c.d.asBytes[3] = oldblock2[3]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLogEx(WARNING, "Command execute timeout"); return 5; } return 0; } int CmdHF14AMfuGenDiverseKeys(const char *Cmd){ uint8_t uid[4]; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_gendiverse(); if ( cmdp == 'r' ) { // read uid from tag UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision if(select_status == 0) { PrintAndLogEx(WARNING, "iso14443a card select failed"); return 1; } if ( card.uidlen != 4 ) { PrintAndLogEx(WARNING, "Wrong sized UID, expected 4bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 8)) return usage_hf_mfu_gendiverse(); } uint8_t iv[8] = { 0x00 }; uint8_t block = 0x01; uint8_t mifarekeyA[] = { 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5 }; uint8_t mifarekeyB[] = { 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5 }; uint8_t dkeyA[8] = { 0x00 }; uint8_t dkeyB[8] = { 0x00 }; uint8_t masterkey[] = { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff }; uint8_t mix[8] = { 0x00 }; uint8_t divkey[8] = { 0x00 }; memcpy(mix, mifarekeyA, 4); mix[4] = mifarekeyA[4] ^ uid[0]; mix[5] = mifarekeyA[5] ^ uid[1]; mix[6] = block ^ uid[2]; mix[7] = uid[3]; mbedtls_des3_context ctx; mbedtls_des3_set2key_enc(&ctx, masterkey); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_ENCRYPT // int mode , sizeof(mix) // length , iv // iv[8] , mix // input , divkey // output ); PrintAndLogEx(NORMAL, "-- 3DES version"); PrintAndLogEx(NORMAL, "Masterkey :\t %s", sprint_hex(masterkey,sizeof(masterkey))); PrintAndLogEx(NORMAL, "UID :\t %s", sprint_hex(uid, sizeof(uid))); PrintAndLogEx(NORMAL, "block :\t %0d", block); PrintAndLogEx(NORMAL, "Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA))); PrintAndLogEx(NORMAL, "Message :\t %s", sprint_hex(mix, sizeof(mix))); PrintAndLogEx(NORMAL, "Diversified key: %s", sprint_hex(divkey+1, 6)); for (int i=0; i < sizeof(mifarekeyA); ++i){ dkeyA[i] = (mifarekeyA[i] << 1) & 0xff; dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i+1); } for (int i=0; i < sizeof(mifarekeyB); ++i){ dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i+1); dkeyB[2+i] = (mifarekeyB[i] << 1) & 0xff; } uint8_t zeros[8] = {0x00}; uint8_t newpwd[8] = {0x00}; uint8_t dmkey[24] = {0x00}; memcpy(dmkey, dkeyA, 8); memcpy(dmkey+8, dkeyB, 8); memcpy(dmkey+16, dkeyA, 8); memset(iv, 0x00, 8); mbedtls_des3_set3key_enc(&ctx, dmkey); mbedtls_des3_crypt_cbc(&ctx // des3_context , MBEDTLS_DES_ENCRYPT // int mode , sizeof(newpwd) // length , iv // iv[8] , zeros // input , newpwd // output ); PrintAndLogEx(NORMAL, "\n-- DES version"); PrintAndLogEx(NORMAL, "Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA))); PrintAndLogEx(NORMAL, "Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB))); PrintAndLogEx(NORMAL, "Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey))); PrintAndLogEx(NORMAL, "Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd))); // next. from the diversify_key method. return 0; } int CmdHF14AMfuPwdGen(const char *Cmd){ uint8_t uid[7] = {0x00}; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_mfu_pwdgen(); if (cmdp == 't') return ul_ev1_pwdgen_selftest(); if ( cmdp == 'r') { // read uid from tag UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_RATS, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK, &resp); iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision if(select_status == 0) { PrintAndLogEx(WARNING, "iso14443a card select failed"); return 1; } if ( card.uidlen != 7 ) { PrintAndLogEx(WARNING, "Wrong sized UID, expected 7bytes got %d", card.uidlen); return 1; } memcpy(uid, card.uid, sizeof(uid)); } else { if (param_gethex(Cmd, 0, uid, 14)) return usage_hf_mfu_pwdgen(); } PrintAndLogEx(NORMAL, "---------------------------------"); PrintAndLogEx(NORMAL, " Using UID : %s", sprint_hex(uid, 7)); PrintAndLogEx(NORMAL, "---------------------------------"); PrintAndLogEx(NORMAL, " algo | pwd | pack"); PrintAndLogEx(NORMAL, "------+----------+-----"); PrintAndLogEx(NORMAL, " EV1 | %08X | %04X", ul_ev1_pwdgenA(uid), ul_ev1_packgenA(uid)); PrintAndLogEx(NORMAL, " Ami | %08X | %04X", ul_ev1_pwdgenB(uid), ul_ev1_packgenB(uid)); PrintAndLogEx(NORMAL, " LD | %08X | %04X", ul_ev1_pwdgenC(uid), ul_ev1_packgenC(uid)); PrintAndLogEx(NORMAL, " XYZ | %08X | %04X", ul_ev1_pwdgenD(uid), ul_ev1_packgenD(uid)); PrintAndLogEx(NORMAL, "------+----------+-----"); PrintAndLogEx(NORMAL, " Vingcard algo"); PrintAndLogEx(NORMAL, "--------------------"); return 0; } //------------------------------------ // Menu Stuff //------------------------------------ static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"info", CmdHF14AMfUInfo, 0, "Tag information"}, {"dump", CmdHF14AMfUDump, 0, "Dump Ultralight / Ultralight-C / NTAG tag to binary file"}, {"restore", CmdHF14AMfURestore, 0, "Restore a dump onto a MFU MAGIC tag"}, {"eload", CmdHF14AMfUeLoad, 0, "load Ultralight .eml dump file into emulator memory"}, {"rdbl", CmdHF14AMfURdBl, 0, "Read block"}, {"wrbl", CmdHF14AMfUWrBl, 0, "Write block"}, {"cauth", CmdHF14AMfucAuth, 0, "Authentication - Ultralight C"}, {"setpwd", CmdHF14AMfucSetPwd, 0, "Set 3des password - Ultralight-C"}, {"setuid", CmdHF14AMfucSetUid, 0, "Set UID - MAGIC tags only"}, {"sim", CmdHF14AMfUSim, 0, "Simulate Ultralight from emulator memory"}, {"gen", CmdHF14AMfuGenDiverseKeys , 1, "Generate 3des mifare diversified keys"}, {"pwdgen", CmdHF14AMfuPwdGen, 1, "Generate pwd from known algos"}, {NULL, NULL, 0, NULL} }; int CmdHFMFUltra(const char *Cmd){ clearCommandBuffer(); //WaitForResponseTimeout(CMD_ACK,NULL,100); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd){ CmdsHelp(CommandTable); return 0; }