//----------------------------------------------------------------------------- // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency Indala commands // PSK1, rf/32, 64 or 224 bits (known) //----------------------------------------------------------------------------- #include "cmdlfindala.h" static int CmdHelp(const char *Cmd); int usage_lf_indala_demod(void) { PrintAndLogEx(NORMAL, "Enables Indala compatible reader mode printing details of scanned tags."); PrintAndLogEx(NORMAL, "By default, values are printed and logged until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf indala demod [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf indala demod"); return 0; } int usage_lf_indala_sim(void) { PrintAndLogEx(NORMAL, "Enables simulation of Indala card with specified uid."); PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf indala sim [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " : 64/224 UID"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf indala sim deadc0de"); return 0; } int usage_lf_indala_clone(void) { PrintAndLogEx(NORMAL, "Enables cloning of Indala card with specified uid onto T55x7."); PrintAndLogEx(NORMAL, "The T55x7 must be on the antenna when issuing this command. T55x7 blocks are calculated and printed in the process."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf indala clone [h] [Q5]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : This help"); PrintAndLogEx(NORMAL, " : 64/224 UID"); PrintAndLogEx(NORMAL, " Q5 : optional - clone to Q5 (T5555) instead of T55x7 chip"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf indala clone 112233"); return 0; } // redesigned by marshmellow adjusted from existing decode functions // indala id decoding int indala64decode(uint8_t *dest, size_t *size, uint8_t *invert) { //standard 64 bit indala formats including 26 bit 40134 format uint8_t preamble64[] = {1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1}; uint8_t preamble64_i[] = {0,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0}; size_t idx = 0; size_t found_size = *size; if (!preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx) ) { // if didn't find preamble try again inverting if (!preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx)) return -1; *invert ^= 1; } if (found_size != 64) return -2; if (*invert == 1) for (size_t i = idx; i < found_size + idx; i++) dest[i] ^= 1; // note: don't change *size until we are sure we got it... *size = found_size; return (int) idx; } int indala224decode(uint8_t *dest, size_t *size, uint8_t *invert) { //large 224 bit indala formats (different preamble too...) uint8_t preamble224[] = {1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1}; uint8_t preamble224_i[] = {0,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0}; size_t idx = 0; size_t found_size = *size; if (!preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx) ) { // if didn't find preamble try again inverting if (!preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx)) return -1; *invert ^= 1; } if (found_size != 224) return -2; if (*invert==1 && idx > 0) for (size_t i = idx-1; i < found_size + idx + 2; i++) dest[i] ^= 1; // 224 formats are typically PSK2 (afaik 2017 Marshmellow) // note loses 1 bit at beginning of transformation... // don't need to verify array is big enough as to get here there has to be a full preamble after all of our data psk1TOpsk2(dest + (idx-1), found_size+2); idx++; *size = found_size; return (int) idx; } // this read is the "normal" read, which download lf signal and tries to demod here. int CmdIndalaRead(const char *Cmd) { lf_read(true, 30000); return CmdIndalaDemod(Cmd); } // Indala 26 bit decode // by marshmellow // optional arguments - same as PSKDemod (clock & invert & maxerr) int CmdIndalaDemod(const char *Cmd) { int ans; if (strlen(Cmd) > 0) ans = PSKDemod(Cmd, 0); else //default to RF/32 ans = PSKDemod("32", 0); if (!ans){ PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans); return 0; } uint8_t invert = 0; size_t size = DemodBufferLen; int idx = indala64decode(DemodBuffer, &size, &invert); if (idx < 0 || size != 64) { // try 224 indala invert = 0; size = DemodBufferLen; idx = indala224decode(DemodBuffer, &size, &invert); if (idx < 0 || size != 224) { PrintAndLogEx(DEBUG, "DEBUG: Error - Indala wrong size, expected [64|224] got: %d (startindex %i)", size, idx); return 0; } } setDemodBuf(DemodBuffer, size, (size_t)idx); setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock)); if (invert) { PrintAndLogEx(DEBUG, "DEBUG: Error - Indala had to invert bits"); for (size_t i = 0; i < size; i++) DemodBuffer[i] ^= 1; } //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; uid1 = bytebits_to_byte(DemodBuffer,32); uid2 = bytebits_to_byte(DemodBuffer+32,32); if (DemodBufferLen == 64){ PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x)\n%s", DemodBufferLen, uid1, uid2, sprint_bin_break(DemodBuffer,DemodBufferLen,32) ); } else { uid3 = bytebits_to_byte(DemodBuffer+64,32); uid4 = bytebits_to_byte(DemodBuffer+96,32); uid5 = bytebits_to_byte(DemodBuffer+128,32); uid6 = bytebits_to_byte(DemodBuffer+160,32); uid7 = bytebits_to_byte(DemodBuffer+192,32); PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x%08x%08x%08x%08x%08x)\n%s", DemodBufferLen, uid1, uid2, uid3, uid4, uid5, uid6, uid7, sprint_bin_break(DemodBuffer, DemodBufferLen, 32) ); } if (g_debugMode){ PrintAndLogEx(DEBUG, "DEBUG: Indala - printing demodbuffer:"); printDemodBuff(); } return 1; } // older alternative indala demodulate (has some positives and negatives) // returns false positives more often - but runs against more sets of samples // poor psk signal can be difficult to demod this approach might succeed when the other fails // but the other appears to currently be more accurate than this approach most of the time. int CmdIndalaDemodAlt(const char *Cmd) { // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID int state = -1; int count = 0; int i, j; // worst case with GraphTraceLen=40000 is < 4096 // under normal conditions it's < 2048 uint8_t data[MAX_GRAPH_TRACE_LEN] = {0}; size_t datasize = getFromGraphBuf(data); uint8_t rawbits[4096]; int rawbit = 0; int worst = 0, worstPos = 0; //clear clock grid and demod plot setClockGrid(0, 0); DemodBufferLen = 0; // PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", GraphTraceLen / 32); // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2) for (i = 0; i < datasize-1; i += 2) { count += 1; if ((data[i] > data[i + 1]) && (state != 1)) { // appears redundant - marshmellow if (state == 0) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 0; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 1; count = 0; } else if ((data[i] < data[i + 1]) && (state != 0)) { //appears redundant if (state == 1) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 1; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 0; count = 0; } } if (rawbit > 0){ PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32); PrintAndLogEx(INFO, "worst metric (0=best..7=worst): %d at pos %d", worst, worstPos); } else { return 0; } // Finding the start of a UID int uidlen, long_wait; if (strcmp(Cmd, "224") == 0) { uidlen = 224; long_wait = 30; } else { uidlen = 64; long_wait = 29; } int start; int first = 0; for (start = 0; start <= rawbit - uidlen; start++) { first = rawbits[start]; for (i = start; i < start + long_wait; i++) { if (rawbits[i] != first) { break; } } if (i == (start + long_wait)) { break; } } if (start == rawbit - uidlen + 1) { PrintAndLogEx(FAILED, "nothing to wait for"); return 0; } // Inverting signal if needed if (first == 1) { for (i = start; i < rawbit; i++) { rawbits[i] = !rawbits[i]; } } // Dumping UID uint8_t bits[224] = {0x00}; char showbits[225] = {0x00}; int bit; i = start; int times = 0; if (uidlen > rawbit) { PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID"); for (bit = 0; bit < rawbit; bit++) { bits[bit] = rawbits[i++]; // As we cannot know the parity, let's use "." and "/" showbits[bit] = '.' + bits[bit]; } showbits[bit+1]='\0'; PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits); return 0; } else { for (bit = 0; bit < uidlen; bit++) { bits[bit] = rawbits[i++]; showbits[bit] = '0' + bits[bit]; } times = 1; } //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; int idx; uid1 = uid2 = 0; if (uidlen == 64){ for( idx=0; idx < 64; idx++) { if (showbits[idx] == '0') { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | 0; } else { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | 1; } } PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2); } else { uid3 = uid4 = uid5 = uid6 = uid7 = 0; for( idx=0; idx<224; idx++) { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | (uid3>>31); uid3 = (uid3<<1) | (uid4>>31); uid4 = (uid4<<1) | (uid5>>31); uid5 = (uid5<<1) | (uid6>>31); uid6 = (uid6<<1) | (uid7>>31); if (showbits[idx] == '0') uid7 = (uid7<<1) | 0; else uid7 = (uid7<<1) | 1; } PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); } // Checking UID against next occurrences int failed = 0; for (; i + uidlen <= rawbit;) { failed = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] != rawbits[i++]) { failed = 1; break; } } if (failed == 1) { break; } times += 1; } PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen); // Remodulating for tag cloning // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod) // since this changes graphbuffer data. GraphTraceLen = 32 * uidlen; i = 0; int phase = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] == 0) { phase = 0; } else { phase = 1; } int j; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 1; } int CmdIndalaSim(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_lf_indala_sim(); uint8_t bits[224]; size_t size = sizeof(bits); memset(bits, 0x00, size); // uid uint8_t hexuid[100]; int len = 0; param_gethex_ex(Cmd, 0, hexuid, &len); if ( len > 28 ) return usage_lf_indala_sim(); // convert to binarray uint8_t counter = 223; for (uint8_t i = 0; i < len; i++) { for(uint8_t j = 0; j < 8; j++) { bits[counter--] = hexuid[i] & 1; hexuid[i] >>= 1; } } // indala PSK uint8_t clk = 32, carrier = 2, invert = 0; uint16_t arg1, arg2; arg1 = clk << 8 | carrier; arg2 = invert; // It has to send either 64bits (8bytes) or 224bits (28bytes). Zero padding needed if not. // lf simpsk 1 c 32 r 2 d 0102030405060708 PrintAndLogEx(SUCCESS, "Simulating Indala UID: %s", sprint_hex(hexuid, len)); PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command"); UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, bits, size); clearCommandBuffer(); SendCommand(&c); return 0; } // iceman - needs refactoring int CmdIndalaClone(const char *Cmd) { UsbCommand c = {0}; uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0; uint32_t n = 0, i = 0; if (strchr(Cmd,'l') != 0) { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (uid3 >> 28); uid3 = (uid3 << 4) | (uid4 >> 28); uid4 = (uid4 << 4) | (uid5 >> 28); uid5 = (uid5 << 4) | (uid6 >> 28); uid6 = (uid6 << 4) | (uid7 >> 28); uid7 = (uid7 << 4) | (n & 0xf); } PrintAndLogEx(INFO, "Preparing to clone Indala 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7); c.cmd = CMD_INDALA_CLONE_TAG_L; c.d.asDwords[0] = uid1; c.d.asDwords[1] = uid2; c.d.asDwords[2] = uid3; c.d.asDwords[3] = uid4; c.d.asDwords[4] = uid5; c.d.asDwords[5] = uid6; c.d.asDwords[6] = uid7; } else { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (n & 0xf); } PrintAndLogEx(INFO, "Preparing to clone Indala 64bit tag with UID %x%08x", uid1, uid2); c.cmd = CMD_INDALA_CLONE_TAG; c.arg[0] = uid1; c.arg[1] = uid2; } clearCommandBuffer(); SendCommand(&c); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "this help"}, {"demod", CmdIndalaDemod, 1, "demodulate an indala tag (PSK1) from GraphBuffer"}, {"altdemod", CmdIndalaDemodAlt, 1, "alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"}, {"read", CmdIndalaRead, 0, "read an Indala Prox tag from the antenna"}, {"clone", CmdIndalaClone, 0, "clone Indala to T55x7"}, {"sim", CmdIndalaSim, 0, "simulate Indala tag"}, {NULL, NULL, 0, NULL} }; int CmdLFINDALA(const char *Cmd){ clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }