//----------------------------------------------------------------------------- // Copyright (C) 2015 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // CRC Calculations from the software reveng commands //----------------------------------------------------------------------------- #include "cmdcrc.h" #define MAX_ARGS 20 int split(char *str, char *arr[MAX_ARGS]){ int beginIndex = 0; int endIndex; int maxWords = MAX_ARGS; int wordCnt = 0; while(1){ while(isspace(str[beginIndex])) { ++beginIndex; } if(str[beginIndex] == '\0') { break; } endIndex = beginIndex; while (str[endIndex] && !isspace(str[endIndex])) { ++endIndex; } int len = endIndex - beginIndex; char *tmp = calloc(len + 1, sizeof(char)); memcpy(tmp, &str[beginIndex], len); arr[wordCnt++] = tmp; beginIndex = endIndex; if (wordCnt == maxWords) break; } return wordCnt; } int CmdCrc(const char *Cmd) { char name[] = {"reveng "}; char Cmd2[100 + 7]; memcpy(Cmd2, name, 7); memcpy(Cmd2 + 7, Cmd, 100); char *argv[MAX_ARGS]; int argc = split(Cmd2, argv); if (argc == 3 && memcmp(argv[1],"-g",2)==0) { CmdrevengSearch(argv[2]); } else { reveng_main(argc, argv); } for(int i = 0; i < argc; ++i) { free(argv[i]); } return 0; } //returns array of model names and the count of models returning // as well as a width array for the width of each model int GetModels(char *Models[], int *count, uint8_t *width){ /* default values */ static model_t model = MZERO; int ibperhx = 8;//, obperhx = 8; int rflags = 0, uflags = 0; /* search and UI flags */ poly_t apoly, crc, qpoly = PZERO, *apolys = NULL, *pptr = NULL, *qptr = NULL; model_t pset = model, *candmods, *mptr; /* stdin must be binary */ #ifdef _WIN32 _setmode(STDIN_FILENO, _O_BINARY); #endif /* _WIN32 */ SETBMP(); int args = 0, psets, pass; int Cnt = 0; if (width[0] == 0) { //reveng -D *count = mcount(); if (!*count){ PrintAndLogEx(WARNING, "no preset models available"); return 0; } for (int mode = 0; mode < *count; ++mode) { mbynum(&model, mode); mcanon(&model); size_t size = (model.name && *model.name) ? strlen(model.name) : 7; char *tmp = calloc(size+1, sizeof(char)); if (tmp==NULL){ PrintAndLogEx(WARNING, "out of memory?"); return 0; } memcpy(tmp, model.name, size); Models[mode] = tmp; width[mode] = plen(model.spoly); } mfree(&model); } else { //reveng -s if (~model.flags & P_MULXN){ PrintAndLogEx(WARNING, "cannot search for non-Williams compliant models"); return 0; } praloc(&model.spoly, (unsigned long)width[0]); praloc(&model.init, (unsigned long)width[0]); praloc(&model.xorout, (unsigned long)width[0]); if (!plen(model.spoly)) palloc(&model.spoly, (unsigned long)width[0]); else width[0] = (uint8_t)plen(model.spoly); /* special case if qpoly is zero, search to end of range */ if (!ptst(qpoly)) rflags &= ~R_HAVEQ; /* if endianness not specified, try * little-endian then big-endian. * NB: crossed-endian algorithms will not be * searched. */ /* scan against preset models */ if (~uflags & C_NOPCK) { pass = 0; Cnt = 0; do { psets = mcount(); while (psets) { mbynum(&pset, --psets); /* skip if different width, or refin or refout don't match */ if( plen(pset.spoly) != width[0] || (model.flags ^ pset.flags) & (P_REFIN | P_REFOUT)) continue; /* skip if the preset doesn't match specified parameters */ if (rflags & R_HAVEP && pcmp(&model.spoly, &pset.spoly)) continue; if (rflags & R_HAVEI && psncmp(&model.init, &pset.init)) continue; if (rflags & R_HAVEX && psncmp(&model.xorout, &pset.xorout)) continue; //for additional args (not used yet, maybe future?) apoly = pclone(pset.xorout); if (pset.flags & P_REFOUT) prev(&apoly); for (qptr = apolys; qptr < pptr; ++qptr) { crc = pcrc(*qptr, pset.spoly, pset.init, apoly, 0); if (ptst(crc)) { pfree(&crc); break; } pfree(&crc); } pfree(&apoly); if (qptr == pptr) { /* the selected model solved all arguments */ mcanon(&pset); size_t size = (pset.name && *pset.name) ? strlen(pset.name) : 7; //PrintAndLogEx(NORMAL, "Size: %d, %s, count: %d",size,pset.name, Cnt); char *tmp = calloc(size+1, sizeof(char)); if (tmp == NULL){ PrintAndLogEx(WARNING, "out of memory?"); return 0; } width[Cnt] = width[0]; memcpy(tmp, pset.name, size); Models[Cnt++] = tmp; *count = Cnt; uflags |= C_RESULT; } } mfree(&pset); /* toggle refIn/refOut and reflect arguments */ if (~rflags & R_HAVERI) { model.flags ^= P_REFIN | P_REFOUT; for (qptr = apolys; qptr < pptr; ++qptr) { prevch(qptr, ibperhx); } } } while (~rflags & R_HAVERI && ++pass < 2); } //got everything now free the memory... if (uflags & C_RESULT) { for (qptr = apolys; qptr < pptr; ++qptr) { pfree(qptr); } } if (!(model.flags & P_REFIN) != !(model.flags & P_REFOUT)){ PrintAndLogEx(WARNING, "cannot search for crossed-endian models"); return 0; } pass = 0; do { mptr = candmods = reveng(&model, qpoly, rflags, args, apolys); if (mptr && plen(mptr->spoly)) { uflags |= C_RESULT; } while (mptr && plen(mptr->spoly)) { mfree(mptr++); } free(candmods); if (~rflags & R_HAVERI) { model.flags ^= P_REFIN | P_REFOUT; for (qptr = apolys; qptr < pptr; ++qptr) { prevch(qptr, ibperhx); } } } while (~rflags & R_HAVERI && ++pass < 2); for (qptr = apolys; qptr < pptr; ++qptr) { pfree(qptr); } free(apolys); mfree(&model); if (~uflags & C_RESULT){ PrintAndLogEx(WARNING, "no models found"); return 0; } } return 1; } //-c || -v //inModel = valid model name string - CRC-8 //inHexStr = input hex string to calculate crc on //reverse = reverse calc option if true //endian = {0 = calc default endian input and output, b = big endian input and output, B = big endian output, r = right justified // l = little endian input and output, L = little endian output only, t = left justified} //result = calculated crc hex string int RunModel(char *inModel, char *inHexStr, bool reverse, char endian, char *result){ /* default values */ static model_t model = MZERO; int ibperhx = 8, obperhx = 8; int rflags = 0; // search flags int c; poly_t apoly, crc; char *string; // stdin must be binary #ifdef _WIN32 _setmode(STDIN_FILENO, _O_BINARY); #endif /* _WIN32 */ SETBMP(); //set model if (!(c = mbynam(&model, inModel))) { PrintAndLogEx(WARNING, "error: preset model '%s' not found. Use reveng -D to list presets.", inModel); return 0; } if (c < 0){ PrintAndLogEx(WARNING, "no preset models available"); return 0; } rflags |= R_HAVEP | R_HAVEI | R_HAVERI | R_HAVERO | R_HAVEX; //set flags switch (endian) { case 'b': /* b big-endian (RefIn = false, RefOut = false ) */ model.flags &= ~P_REFIN; rflags |= R_HAVERI; /* fall through: */ case 'B': /* B big-endian output (RefOut = false) */ model.flags &= ~P_REFOUT; rflags |= R_HAVERO; mnovel(&model); /* fall through: */ case 'r': /* r right-justified */ model.flags |= P_RTJUST; break; case 'l': /* l little-endian input and output */ model.flags |= P_REFIN; rflags |= R_HAVERI; /* fall through: */ case 'L': /* L little-endian output */ model.flags |= P_REFOUT; rflags |= R_HAVERO; mnovel(&model); /* fall through: */ case 't': /* t left-justified */ model.flags &= ~P_RTJUST; break; } /* canonicalise the model, so the one we dump is the one we * calculate with (not with -s, spoly may be blank which will * normalise to zero and clear init and xorout.) */ mcanon(&model); if (reverse) { // v calculate reversed CRC /* Distinct from the -V switch as this causes * the arguments and output to be reversed as well. */ // reciprocate Poly prcp(&model.spoly); /* mrev() does: * if(refout) prev(init); else prev(xorout); * but here the entire argument polynomial is * reflected, not just the characters, so RefIn * and RefOut are not inverted as with -V. * Consequently Init is the mirror image of the * one resulting from -V, and so we have: */ if (~model.flags & P_REFOUT) { prev(&model.init); prev(&model.xorout); } // swap init and xorout apoly = model.init; model.init = model.xorout; model.xorout = apoly; } // c calculate CRC /* in the Williams model, xorout is applied after the refout stage. * as refout is part of ptostr(), we reverse xorout here. */ if (model.flags & P_REFOUT) prev(&model.xorout); apoly = strtop(inHexStr, model.flags, ibperhx); if (reverse) prev(&apoly); crc = pcrc(apoly, model.spoly, model.init, model.xorout, model.flags); if (reverse) prev(&crc); string = ptostr(crc, model.flags, obperhx); for (int i = 0; i < 50; i++){ result[i] = string[i]; if (result[i]==0) break; } free(string); pfree(&crc); pfree(&apoly); return 1; } //test call to RunModel int CmdrevengTestC(const char *Cmd){ int cmdp = 0; char inModel[30] = {0x00}; char inHexStr[30] = {0x00}; char result[30]; int dataLen; char endian = 0; dataLen = param_getstr(Cmd, cmdp++, inModel, sizeof(inModel)); if (dataLen < 4) return 0; dataLen = param_getstr(Cmd, cmdp++, inHexStr, sizeof(inHexStr)); if (dataLen < 4) return 0; bool reverse = (param_get8(Cmd, cmdp++)) ? true : false; endian = param_getchar(Cmd, cmdp++); //PrintAndLogEx(NORMAL, "mod: %s, hex: %s, rev %d", inModel, inHexStr, reverse); int ans = RunModel(inModel, inHexStr, reverse, endian, result); if (!ans) return 0; PrintAndLogEx(SUCCESS, "result: %s",result); return 1; } //returns a calloced string (needs to be freed) char *SwapEndianStr(const char *inStr, const size_t len, const uint8_t blockSize){ char *tmp = calloc(len+1, sizeof(char)); for (uint8_t block=0; block < (uint8_t)(len/blockSize); block++){ for (size_t i = 0; i < blockSize; i+=2){ tmp[i+(blockSize*block)] = inStr[(blockSize-1-i-1)+(blockSize*block)]; tmp[i+(blockSize*block)+1] = inStr[(blockSize-1-i)+(blockSize*block)]; } } return tmp; } // takes hex string in and searches for a matching result (hex string must include checksum) int CmdrevengSearch(const char *Cmd){ char inHexStr[100] = {0x00}; int dataLen = param_getstr(Cmd, 0, inHexStr, sizeof(inHexStr)); if (dataLen < 4) return 0; // these two arrays, must match preset size. char *Models[102]; uint8_t width[102] = {0}; int count = 0; uint8_t crcChars = 0; char result[30]; char revResult[30]; int ans = GetModels(Models, &count, width); bool found = false; if (!ans) return 0; // try each model and get result for (int i = 0; i < count; i++){ /*if (found) { free(Models[i]); continue; }*/ // round up to # of characters in this model's crc crcChars = ((width[i]+7)/8)*2; // can't test a model that has more crc digits than our data if (crcChars >= dataLen) continue; memset(result, 0, 30); char *inCRC = calloc(crcChars+1, sizeof(char)); memcpy(inCRC, inHexStr+(dataLen-crcChars), crcChars); char *outHex = calloc(dataLen-crcChars+1, sizeof(char)); memcpy(outHex, inHexStr, dataLen-crcChars); // PrintAndLogEx(DEBUG, "DEBUG: dataLen: %d, crcChars: %d, Model: %s, CRC: %s, width: %d, outHex: %s",dataLen, crcChars, Models[i], inCRC, width[i], outHex); ans = RunModel(Models[i], outHex, false, 0, result); if (ans) { // test for match if (memcmp(result, inCRC, crcChars) == 0){ PrintAndLogEx(SUCCESS, "\nfound possible match\nmodel: %s | value: %s\n", Models[i], result); //optional - stop searching if found... found = true; } else { if (crcChars > 2){ char *swapEndian = SwapEndianStr(result, crcChars, crcChars); if (memcmp(swapEndian, inCRC, crcChars) == 0){ PrintAndLogEx(SUCCESS, "\nfound possible match\nmodel: %s | value endian swapped: %s\n", Models[i], swapEndian); // optional - stop searching if found... found = true; } free(swapEndian); } } } ans = RunModel(Models[i], outHex, true, 0, revResult); if (ans) { // test for match if (memcmp(revResult, inCRC, crcChars) == 0){ PrintAndLogEx(SUCCESS, "\nfound possible match\nmodel reversed: %s | value: %s\n", Models[i], revResult); // optional - stop searching if found... found = true; } else { if (crcChars > 2){ char *swapEndian = SwapEndianStr(revResult, crcChars, crcChars); if (memcmp(swapEndian, inCRC, crcChars) == 0){ PrintAndLogEx(SUCCESS, "\nfound possible match\nmodel reversed: %s | value endian swapped: %s\n", Models[i], swapEndian); // optional - stop searching if found... found = true; } free(swapEndian); } } } free(inCRC); free(outHex); free(Models[i]); } if (!found) PrintAndLogEx(FAILED, "\nno matches found\n"); return 1; }