//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include "cmdlfem4x.h" uint64_t g_em410xid = 0; static int CmdHelp(const char *Cmd); //////////////// 410x commands int usage_lf_em410x_demod(void){ PrintAndLog("Usage: lf em 410x_demod [h] [clock] <0|1> [maxError]"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" clock - set clock as integer, optional, if not set, autodetect."); PrintAndLog(" <0|1> - 0 normal output, 1 for invert output"); PrintAndLog(" maxerror - set maximum allowed errors, default = 100."); PrintAndLog(""); PrintAndLog(" sample: lf em 410x_demod = demod an EM410x Tag ID from GraphBuffer"); PrintAndLog(" : lf em 410x_demod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); PrintAndLog(" : lf em 410x_demod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : lf em 410x_demod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); PrintAndLog(" : lf em 410x_demod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); return 0; } int usage_lf_em410x_write(void) { PrintAndLog("Writes EM410x ID to a T55x7 / T5555 (Q5) tag"); PrintAndLog(""); PrintAndLog("Usage: lf em 410x_write [h] [clock]"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" - ID number"); PrintAndLog(" - 0|1 T5555 (Q5) / T55x7"); PrintAndLog(" - 16|32|40|64, optional, set R/F clock rate, defaults to 64"); PrintAndLog("samples:"); PrintAndLog(" lf em 410x_write 0F0368568B"); return 0; } int usage_lf_em410x_ws(void) { PrintAndLog("Watch 'nd Spoof, activates reader, waits until a EM410x tag gets presented then it starts simulating the found UID"); PrintAndLog(""); PrintAndLog("Usage: lf em 410x_spoof [h]"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog("samples:"); PrintAndLog(" lf em 410x_spoof"); return 0; } int usage_lf_em410x_clone(void) { PrintAndLog("Simulating EM410x tag"); PrintAndLog(""); PrintAndLog("Usage: lf em 410x_clone [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" uid - uid (10 HEX symbols)"); PrintAndLog(" clock - clock (32|64) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 410x_clone 0F0368568B"); PrintAndLog(" lf em 410x_clone 0F0368568B 32"); return 0; } int usage_lf_em410x_sim(void) { PrintAndLog("Simulating EM410x tag"); PrintAndLog(""); PrintAndLog("Usage: lf em 410x_sim [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" uid - uid (10 HEX symbols)"); PrintAndLog(" clock - clock (32|64) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 410x_sim 0F0368568B"); PrintAndLog(" lf em 410x_sim 0F0368568B 32"); return 0; } int usage_lf_em410x_brute(void) { PrintAndLog("Bruteforcing by emulating EM410x tag"); PrintAndLog(""); PrintAndLog("Usage: lf em 410x_brute [h] ids.txt [d 2000] [c clock]"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" ids.txt - file with UIDs in HEX format, one per line"); PrintAndLog(" d (2000) - pause delay in milliseconds between UIDs simulation, default 1000 ms (optional)"); PrintAndLog(" c (32) - clock (32|64), default 64 (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 410x_brute ids.txt"); PrintAndLog(" lf em 410x_brute ids.txt c 32"); PrintAndLog(" lf em 410x_brute ids.txt d 3000"); PrintAndLog(" lf em 410x_brute ids.txt d 3000 c 32"); return 0; } //////////////// 4050 / 4450 commands int usage_lf_em4x50_dump(void) { PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50_dump [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50_dump"); PrintAndLog(" lf em 4x50_dump 11223344"); return 0; } int usage_lf_em4x50_read(void) { PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50_read [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to read. (0-15)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50_read 1"); PrintAndLog(" lf em 4x50_read 1 11223344"); return 0; } int usage_lf_em4x50_write(void) { PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x50_write [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to write to. (0-15)"); PrintAndLog(" data - data to write (hex)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x50_write 1 deadc0de"); PrintAndLog(" lf em 4x50_write 1 deadc0de 11223344"); return 0; } //////////////// 4205 / 4305 commands int usage_lf_em4x05_dump(void) { PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05_dump [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05_dump"); PrintAndLog(" lf em 4x05_dump 11223344"); return 0; } int usage_lf_em4x05_read(void) { PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05_read [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to read. (0-15)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05_read 1"); PrintAndLog(" lf em 4x05_read 1 11223344"); return 0; } int usage_lf_em4x05_write(void) { PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. "); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05_write [h]
"); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" address - memory address to write to. (0-15)"); PrintAndLog(" data - data to write (hex)"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05_write 1 deadc0de"); PrintAndLog(" lf em 4x05_write 1 deadc0de 11223344"); return 0; } int usage_lf_em4x05_info(void) { PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna."); PrintAndLog(""); PrintAndLog("Usage: lf em 4x05_info [h] "); PrintAndLog("Options:"); PrintAndLog(" h - this help"); PrintAndLog(" pwd - password (hex) (optional)"); PrintAndLog("samples:"); PrintAndLog(" lf em 4x05_info"); PrintAndLog(" lf em 4x05_info deadc0de"); return 0; } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ // Construct the graph for emulating an EM410X tag void ConstructEM410xEmulGraph(const char *uid,const uint8_t clock) { int i, j, binary[4], parity[4]; uint32_t n; /* clear our graph */ ClearGraph(0); /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(0, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++){ /* read each hex char */ sscanf(&uid[i], "%1x", &n); for (j = 3; j >= 0; j--, n/= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(0, clock, binary[0]); AppendGraph(0, clock, binary[1]); AppendGraph(0, clock, binary[2]); AppendGraph(0, clock, binary[3]); /* append parity bit */ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(0, clock, parity[0]); AppendGraph(0, clock, parity[1]); AppendGraph(0, clock, parity[2]); AppendGraph(0, clock, parity[3]); /* stop bit */ AppendGraph(1, clock, 0); } //by marshmellow //print 64 bit EM410x ID in multiple formats void printEM410x(uint32_t hi, uint64_t id) { if (!id && !hi) return; PrintAndLog("EM410x %s pattern found", (hi) ? "XL" : "" ); uint64_t iii=1; uint64_t id2lo=0; uint32_t ii=0; uint32_t i=0; for (ii=5; ii>0;ii--){ for (i=0;i<8;i++){ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); } } if (hi){ //output 88 bit em id PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id); } else { //output 40 bit em id PrintAndLog("\nEM TAG ID : %010" PRIX64, id); PrintAndLog("\nPossible de-scramble patterns"); PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo); PrintAndLog("HoneyWell IdentKey {"); PrintAndLog("DEZ 8 : %08" PRIu64, id & 0xFFFFFF); PrintAndLog("DEZ 10 : %010" PRIu64, id & 0xFFFFFFFF); PrintAndLog("DEZ 5.5 : %05" PRIu64 ".%05" PRIu64, (id>>16LL) & 0xFFFF, (id & 0xFFFF)); PrintAndLog("DEZ 3.5A : %03" PRIu64 ".%05" PRIu64, (id>>32ll), (id & 0xFFFF)); PrintAndLog("DEZ 3.5B : %03" PRIu64 ".%05" PRIu64, (id & 0xFF000000) >> 24, (id & 0xFFFF)); PrintAndLog("DEZ 3.5C : %03" PRIu64 ".%05" PRIu64, (id & 0xFF0000) >> 16, (id & 0xFFFF)); PrintAndLog("DEZ 14/IK2 : %014" PRIu64, id); PrintAndLog("DEZ 15/IK3 : %015" PRIu64, id2lo); PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64, (id2lo & 0xf000000000) >> 36, (id2lo & 0x0f00000000) >> 32, (id2lo & 0x00f0000000) >> 28, (id2lo & 0x000f000000) >> 24, (id2lo & 0x0000f00000) >> 20, (id2lo & 0x00000f0000) >> 16, (id2lo & 0x000000f000) >> 12, (id2lo & 0x0000000f00) >> 8, (id2lo & 0x00000000f0) >> 4, (id2lo & 0x000000000f) ); uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00; PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64, (id&0xFFFF), ((id>>16LL) & 0xFF), (id & 0xFFFFFF)); PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton); uint32_t p1id = (id & 0xFFFFFF); uint8_t arr[32] = {0x00}; int i =0; int j = 23; for (; i < 24; ++i, --j ){ arr[i] = (p1id >> i) & 1; } uint32_t p1 = 0; p1 |= arr[23] << 21; p1 |= arr[22] << 23; p1 |= arr[21] << 20; p1 |= arr[20] << 22; p1 |= arr[19] << 18; p1 |= arr[18] << 16; p1 |= arr[17] << 19; p1 |= arr[16] << 17; p1 |= arr[15] << 13; p1 |= arr[14] << 15; p1 |= arr[13] << 12; p1 |= arr[12] << 14; p1 |= arr[11] << 6; p1 |= arr[10] << 2; p1 |= arr[9] << 7; p1 |= arr[8] << 1; p1 |= arr[7] << 0; p1 |= arr[6] << 8; p1 |= arr[5] << 11; p1 |= arr[4] << 3; p1 |= arr[3] << 10; p1 |= arr[2] << 4; p1 |= arr[1] << 5; p1 |= arr[0] << 9; PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1); uint16_t sebury1 = id & 0xFFFF; uint8_t sebury2 = (id >> 16) & 0x7F; uint32_t sebury3 = id & 0x7FFFFF; PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); } } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo ) { size_t idx = 0; uint8_t bits[512] = {0}; size_t size = sizeof(bits); if ( !getDemodBuf(bits, &size) ) { PrintAndLog("DEBUG: Error - Em410x problem during copy from ASK demod"); return 0; } int ans = Em410xDecode(bits, &size, &idx, hi, lo); if ( ans < 0){ if (g_debugMode){ if (ans == -1) PrintAndLog("DEBUG: Error - Em410x not only 0|1 in decoded bitstream"); else if (ans == -2) PrintAndLog("DEBUG: Error - Em410x not enough samples after demod"); else if (ans == -4) PrintAndLog("DEBUG: Error - Em410x preamble not found"); else if (ans == -5) PrintAndLog("DEBUG: Error - Em410x Size not correct: %d", size); else if (ans == -6) PrintAndLog("DEBUG: Error - Em410x parity failed"); } return 0; } if (!lo && !hi) { PrintAndLog("DEBUG: Error - Em410x decoded to all zeros"); return 0; } //set GraphBuffer for clone or sim command setDemodBuf(DemodBuffer, (size==40) ? 64 : 128, idx+1); setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock)); if (g_debugMode){ PrintAndLog("DEBUG: Em410x idx: %d, Len: %d, Printing Demod Buffer:", idx, size); printDemodBuff(); } if (verbose) printEM410x(*hi, *lo); return 1; } int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) { bool st = true; if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0; return AskEm410xDecode(verbose, hi, lo); } // this read is the "normal" read, which download lf signal and tries to demod here. int CmdEM410xRead(const char *Cmd) { lf_read(true, 8192); CmdEM410xDemod(Cmd); return 0; } // this read loops on device side. // uses the demod in lfops.c int CmdEM410xRead_device(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); uint8_t findone = (cmdp == '1') ? 1 : 0; UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}}; SendCommand(&c); return 0; } //by marshmellow //takes 3 arguments - clock, invert and maxErr as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int CmdEM410xDemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_demod(); uint32_t hi = 0; uint64_t lo = 0; if(AskEm410xDemod(Cmd, &hi, &lo, true) != 1) return 0; g_em410xid = lo; return 1; } // emulate an EM410X tag int CmdEM410xSim(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); uint8_t uid[5] = {0x00}; /* clock is 64 in EM410x tags */ uint8_t clock = 64; if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLog("UID must include 10 HEX symbols"); return 0; } param_getdec(Cmd, 1, &clock); PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); PrintAndLog("Press pm3-button to abort simulation"); ConstructEM410xEmulGraph(Cmd, clock); CmdLFSim("0"); //240 start_gap. return 0; } int CmdEM410xBrute(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0}; FILE *f = NULL; char buf[11]; uint32_t uidcnt = 0; uint8_t stUidBlock = 20; uint8_t *uidBlock = NULL, *p = NULL; uint8_t uid[5] = {0x00}; /* clock is 64 in EM410x tags */ uint8_t clock = 64; /* default pause time: 1 second */ uint32_t delay = 1000; char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_brute(); cmdp = param_getchar(Cmd, 1); if (cmdp == 'd' || cmdp == 'D') { delay = param_get32ex(Cmd, 2, 1000, 10); param_getdec(Cmd, 4, &clock); } else if (cmdp == 'c' || cmdp == 'C') { param_getdec(Cmd, 2, &clock); delay = param_get32ex(Cmd, 4, 1000, 10); } param_getstr(Cmd, 0, filename, FILE_PATH_SIZE); if (strlen(filename) == 0) { PrintAndLog("Error: Please specify a filename"); return 1; } if ((f = fopen(filename, "r")) == NULL) { PrintAndLog("Error: Could not open UIDs file [%s]", filename); return 1; } uidBlock = calloc(stUidBlock, 5); if (uidBlock == NULL) return 1; while( fgets(buf, sizeof(buf), f) ) { if (strlen(buf) < 10 || buf[9] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)); //goto next line //The line start with # is comment, skip if( buf[0]=='#' ) continue; if (param_gethex(buf, 0, uid, 10)) { PrintAndLog("UIDs must include 10 HEX symbols"); free(uidBlock); fclose(f); return 1; } buf[10] = 0; if ( stUidBlock - uidcnt < 2) { p = realloc(uidBlock, 5 * (stUidBlock += 10) ); if (!p) { PrintAndLog("Cannot allocate memory for UIDs"); free(uidBlock); fclose(f); return 1; } uidBlock = p; } memset(uidBlock + 5 * uidcnt, 0, 5); num_to_bytes(strtoll(buf, NULL, 16), 5, uidBlock + 5 * uidcnt); uidcnt++; memset(buf, 0, sizeof(buf)); } fclose(f); if (uidcnt == 0) { PrintAndLog("No UIDs found in file"); free(uidBlock); return 1; } PrintAndLog("Loaded %d UIDs from %s, pause delay: %d ms", uidcnt, filename, delay); // loop for(uint32_t c = 0; c < uidcnt; ++c ) { char testuid[11]; testuid[10] = 0; if (ukbhit()) { int gc = getchar(); (void)gc; printf("\nAborted via keyboard!\n"); free(uidBlock); return 0; } sprintf(testuid, "%010" PRIX64, bytes_to_num(uidBlock + 5*c, 5)); PrintAndLog("Bruteforce %d / %d: simulating UID %s, clock %d", c + 1, uidcnt, testuid, clock); ConstructEM410xEmulGraph(testuid, clock); CmdLFSim("0"); //240 start_gap. msleep(delay); } free(uidBlock); return 0; } /* Function is equivalent of lf read + data samples + em410xread * looped until an EM410x tag is detected * * Why is CmdSamples("16000")? * TBD: Auto-grow sample size based on detected sample rate. IE: If the * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 * * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow */ int CmdEM410xWatch(const char *Cmd) { do { if (ukbhit()) { int gc = getchar(); (void)gc; printf("\naborted via keyboard!\n"); break; } lf_read(true, 8201); } while (!CmdEM410xRead("")); return 0; } //currently only supports manchester modulations int CmdEM410xWatchnSpoof(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_ws(); // loops if the captured ID was in XL-format. CmdEM410xWatch(Cmd); PrintAndLog("# Replaying captured ID: %010" PRIx64 , g_em410xid); CmdLFaskSim(""); return 0; } int CmdEM410xWrite(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_write(); uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value uint32_t clock = 0; // invalid clock value sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { PrintAndLog("Error! ID is required.\n"); return 0; } if (id >= 0x10000000000) { PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } // Check Card if (card == 0xFF) { PrintAndLog("Error! Card type required.\n"); return 0; } if (card < 0) { PrintAndLog("Error! Bad card type selected.\n"); return 0; } // Check Clock if (clock == 0) clock = 64; // Allowed clock rates: 16, 32, 40 and 64 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); return 0; } if (card == 1) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); // NOTE: We really should pass the clock in as a separate argument, but to // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else if (card == 0) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else { PrintAndLog("Error! Bad card type selected.\n"); return 0; } UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } //**************** Start of EM4x50 Code ************************ bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return false; uint8_t colP=0; //assume last col is a parity and do not test for (uint8_t colNum = 0; colNum < cols-1; colNum++) { for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { colP ^= BitStream[(rowNum*cols)+colNum]; } if (colP != pType) return false; } return true; } bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return false; uint8_t rowP=0; //assume last row is a parity row and do not test for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { for (uint8_t colNum = 0; colNum < cols; colNum++) { rowP ^= BitStream[(rowNum*cols)+colNum]; } if (rowP != pType) return false; } return true; } // EM word parity test. // 9*5 = 45 bits in total // 012345678|r1 // 012345678|r2 // 012345678|r3 // 012345678|r4 // ------------ //c012345678| 0 // |- must be zero bool EMwordparitytest(uint8_t *bits){ // last row/col parity must be 0 if (bits[44] != 0 ) return false; // col parity check uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8); uint8_t c2 = bytebits_to_byte(bits+36, 8); if ( c1 != c2 ) return false; // row parity check uint8_t rowP = 0; for ( uint8_t i = 0; i < 36; ++i ) { rowP ^= bits[i]; if ( i>0 && (i % 9) == 0) { if ( rowP != EVEN ) return false; rowP = 0; } } // all checks ok. return true; } //////////////// 4050 / 4450 commands uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) { if (size<45) return 0; uint32_t code = bytebits_to_byte(BitStream,8); code = code<<8 | bytebits_to_byte(BitStream+9,8); code = code<<8 | bytebits_to_byte(BitStream+18,8); code = code<<8 | bytebits_to_byte(BitStream+27,8); if (verbose || g_debugMode){ for (uint8_t i = 0; i<5; i++){ if (i == 4) PrintAndLog(""); //parity byte spacer PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", BitStream[i*9], BitStream[i*9+1], BitStream[i*9+2], BitStream[i*9+3], BitStream[i*9+4], BitStream[i*9+5], BitStream[i*9+6], BitStream[i*9+7], BitStream[i*9+8], bytebits_to_byte(BitStream+i*9,8) ); } if (pTest) PrintAndLog("Parity Passed"); else PrintAndLog("Parity Failed"); } return code; } /* Read the transmitted data of an EM4x50 tag from the graphbuffer * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ //completed by Marshmellow int EM4x50Read(const char *Cmd, bool verbose) { uint8_t fndClk[] = {8,16,32,40,50,64,128}; int clk = 0; int invert = 0; int tol = 0; int i, j, startblock, skip, block, start, end, low, high, minClk; bool complete = false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; uint32_t Code[6]; char tmp[6]; char tmp2[20]; int phaseoff; high = low = 0; memset(tmpbuff, 0, sizeof(tmpbuff) ); // get user entry if any sscanf(Cmd, "%i %i", &clk, &invert); // first get high and low values for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } i = 0; j = 0; minClk = 255; // get to first full low to prime loop and skip incomplete first pulse while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; skip = i; // populate tmpbuff buffer with pulse lengths while (i < GraphTraceLen) { // measure from low to low while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; start= i; while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; if (j>=(MAX_GRAPH_TRACE_LEN/64)) { break; } tmpbuff[j++]= i - start; if (i-start < minClk && i < GraphTraceLen) { minClk = i - start; } } // set clock if (!clk) { for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { tol = fndClk[clkCnt]/8; if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { clk=fndClk[clkCnt]; break; } } if (!clk) { if (verbose || g_debugMode) PrintAndLog("ERROR: EM4x50 - didn't find a clock"); return 0; } } else tol = clk/8; // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) start = -1; for (i= 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { start= i + 4; break; } } startblock = i + 4; // skip over the remainder of LW skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; if (tmpbuff[i+3]>clk) phaseoff = tmpbuff[i+3]-clk; else phaseoff = 0; // now do it again to find the end end = skip; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { complete= true; break; } } end = i; // report back if (verbose || g_debugMode) { if (start >= 0) { PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); } else { PrintAndLog("No data found!, clock tried:%d",clk); PrintAndLog("Try again with more samples."); PrintAndLog(" or after a 'data askedge' command to clean up the read"); return 0; } } else if (start < 0) return 0; start = skip; snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); // save GraphBuffer - to restore it later save_restoreGB(GRAPH_SAVE); // get rid of leading crap snprintf(tmp, sizeof(tmp), "%i", skip); CmdLtrim(tmp); bool pTest; bool AllPTest = true; // now work through remaining buffer printing out data blocks block = 0; i = startblock; while (block < 6) { if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); skip = phaseoff; // look for LW before start of next block for ( ; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) if (tmpbuff[i+1] >= clk-tol) break; } if (i >= j-4) break; //next LW not found skip += clk; if (tmpbuff[i+1]>clk) phaseoff = tmpbuff[i+1]-clk; else phaseoff = 0; i += 2; if (ASKDemod(tmp2, false, false, 1) < 1) { save_restoreGB(GRAPH_RESTORE); return 0; } //set DemodBufferLen to just one block DemodBufferLen = skip/clk; //test parities pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); AllPTest &= pTest; //get output Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); //skip to start of next block snprintf(tmp,sizeof(tmp),"%i",skip); CmdLtrim(tmp); block++; if (i >= end) break; //in case chip doesn't output 6 blocks } //print full code: if (verbose || g_debugMode || AllPTest){ if (!complete) { PrintAndLog("*** Warning!"); PrintAndLog("Partial data - no end found!"); PrintAndLog("Try again with more samples."); } PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); end = block; for (block=0; block < end; block++){ PrintAndLog("Block %d: %08x",block,Code[block]); } if (AllPTest) { PrintAndLog("Parities Passed"); } else { PrintAndLog("Parities Failed"); PrintAndLog("Try cleaning the read samples with 'data askedge'"); } } //restore GraphBuffer save_restoreGB(GRAPH_RESTORE); return (int)AllPTest; } int CmdEM4x50Read(const char *Cmd) { uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read(); return EM4x50Read(Cmd, true); } int CmdEM4x50Write(const char *Cmd){ uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write(); PrintAndLog("no implemented yet"); return 0; } int CmdEM4x50Dump(const char *Cmd){ uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump(); PrintAndLog("no implemented yet"); return 0; } #define EM_PREAMBLE_LEN 6 // download samples from device and copy to Graphbuffer bool downloadSamplesEM(){ // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) uint8_t got[6000]; GetFromBigBuf(got, sizeof(got), 0); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) { PrintAndLog("command execution time out"); return false; } setGraphBuf(got, sizeof(got)); return true; } // em_demod bool doPreambleSearch(size_t *startIdx){ // sanity check if ( DemodBufferLen < EM_PREAMBLE_LEN) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small"); return false; } // set size to 20 to only test first 14 positions for the preamble size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20; *startIdx = 0; // skip first two 0 bits as they might have been missed in the demod uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0}; if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, true)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx); return false; } return true; } bool detectFSK(){ // detect fsk clock if (!GetFskClock("", false)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed"); return false; } // demod int ans = FSKrawDemod("0 0", false); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed"); return false; } return true; } // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) bool detectPSK(){ int ans = GetPskClock("", false); if (ans <= 0) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed"); return false; } //demod //try psk1 -- 0 0 6 (six errors?!?) ans = PSKDemod("0 0 6", false); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed"); //try psk1 inverted ans = PSKDemod("0 1 6", false); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed"); return false; } } // either PSK1 or PSK1 inverted is ok from here. // lets check PSK2 later. return true; } // try manchester - NOTE: ST only applies to T55x7 tags. bool detectASK_MAN(){ bool stcheck = false; if ( !ASKDemod_ext("0 0 0", false, false, 1, &stcheck) ) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed"); return false; } return true; } bool detectASK_BI(){ int ans = ASKbiphaseDemod("0 0 1", false); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed"); ans = ASKbiphaseDemod("0 1 1", false); if (!ans) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed"); return false; } } return true; } // param: idx - start index in demoded data. bool setDemodBufferEM(uint32_t *word, size_t idx){ //test for even parity bits. uint8_t parity[45] = {0}; memcpy( parity, DemodBuffer, 45); if (!EMwordparitytest(parity) ){ if (g_debugMode) PrintAndLog("DEBUG: Error - EM Parity tests failed"); return false; } // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) { if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity"); return false; } setDemodBuf(DemodBuffer, 32, 0); *word = bytebits_to_byteLSBF(DemodBuffer, 32); return true; } // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE // should cover 90% of known used configs // the rest will need to be manually demoded for now... bool demodEM4x05resp(uint32_t *word) { size_t idx = 0; *word = 0; if (detectASK_MAN() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectASK_BI() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectFSK() && doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); if (detectPSK()) { if (doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); psk1TOpsk2(DemodBuffer, DemodBufferLen); if (doPreambleSearch( &idx )) return setDemodBufferEM(word, idx); } return false; } //////////////// 4205 / 4305 commands int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) { UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ PrintAndLog("Command timed out"); return -1; } if ( !downloadSamplesEM() ) { return -1; } int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; if (justNoise_int(GraphBuffer, testLen)) { PrintAndLog("no tag found"); return -1; } return demodEM4x05resp(word); } int CmdEM4x05Dump(const char *Cmd) { uint8_t addr = 0; uint32_t pwd = 0; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if ( pwd != 1 ) usePwd = true; int success = 1; uint32_t word = 0; PrintAndLog("Addr | data | ascii"); PrintAndLog("-----+--------+------"); for (; addr < 16; addr++) { if (addr == 2) { if (usePwd) { PrintAndLog(" %02u | %08X", addr, pwd, word ); } else { PrintAndLog(" 02 | cannot read"); } } else { success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word); } } return success; } int CmdEM4x05Read(const char *Cmd) { uint8_t addr; uint32_t pwd; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read(); addr = param_get8ex(Cmd, 0, 50, 10); pwd = param_get32ex(Cmd, 1, 1, 16); if (addr > 15) { PrintAndLog("Address must be between 0 and 15"); return 1; } if ( pwd == 1 ) { PrintAndLog("Reading address %02u", addr); } else { usePwd = true; PrintAndLog("Reading address %02u | password %08X", addr, pwd); } uint32_t word = 0; int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word); if (isOk) PrintAndLog("Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : ""); else PrintAndLog("Read Address %02d | failed",addr); return isOk; } int CmdEM4x05Write(const char *Cmd) { uint8_t ctmp = param_getchar(Cmd, 0); if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write(); bool usePwd = false; uint8_t addr = 50; // default to invalid address uint32_t data = 0; // default to blank data uint32_t pwd = 1; // default to blank password addr = param_get8ex(Cmd, 0, 50, 10); data = param_get32ex(Cmd, 1, 0, 16); pwd = param_get32ex(Cmd, 2, 1, 16); if ( addr > 15 ) { PrintAndLog("Address must be between 0 and 15"); return 1; } if ( pwd == 1 ) PrintAndLog("Writing address %d data %08X", addr, data); else { usePwd = true; PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); } uint16_t flag = (addr << 8 ) | usePwd; UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ PrintAndLog("Error occurred, device did not respond during write operation."); return -1; } if (!downloadSamplesEM()) return -1; //need 0 bits demoded (after preamble) to verify write cmd uint32_t dummy = 0; int isOk = demodEM4x05resp(&dummy); if (isOk) PrintAndLog("Write Verified"); else PrintAndLog("Write could not be verified"); return isOk; } void printEM4x05config(uint32_t wordData) { uint16_t datarate = (((wordData & 0x3F)+1)*2); uint8_t encoder = ((wordData >> 6) & 0xF); char enc[14]; memset(enc,0,sizeof(enc)); uint8_t PSKcf = (wordData >> 10) & 0x3; char cf[10]; memset(cf,0,sizeof(cf)); uint8_t delay = (wordData >> 12) & 0x3; char cdelay[33]; memset(cdelay,0,sizeof(cdelay)); uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData); uint8_t LWR = numblks+5-1; //last word read switch (encoder) { case 0: snprintf(enc,sizeof(enc),"NRZ"); break; case 1: snprintf(enc,sizeof(enc),"Manchester"); break; case 2: snprintf(enc,sizeof(enc),"Biphase"); break; case 3: snprintf(enc,sizeof(enc),"Miller"); break; case 4: snprintf(enc,sizeof(enc),"PSK1"); break; case 5: snprintf(enc,sizeof(enc),"PSK2"); break; case 6: snprintf(enc,sizeof(enc),"PSK3"); break; case 7: snprintf(enc,sizeof(enc),"Unknown"); break; case 8: snprintf(enc,sizeof(enc),"FSK1"); break; case 9: snprintf(enc,sizeof(enc),"FSK2"); break; default: snprintf(enc,sizeof(enc),"Unknown"); break; } switch (PSKcf) { case 0: snprintf(cf,sizeof(cf),"RF/2"); break; case 1: snprintf(cf,sizeof(cf),"RF/8"); break; case 2: snprintf(cf,sizeof(cf),"RF/4"); break; case 3: snprintf(cf,sizeof(cf),"unknown"); break; } switch (delay) { case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; } uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18; uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19; uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20; uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21; uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22; uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23; uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24; uint8_t pigeon = (wordData & (1<<26))>>26; PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); PrintAndLog("Config Breakdown:"); PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); PrintAndLog(" Encoder: %u | %s", encoder, enc); PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); PrintAndLog(" Delay: %u | %s", delay, cdelay); PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks); PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required"); PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required"); PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required"); PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required"); PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off"); PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted"); PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled"); PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled"); } void printEM4x05info(uint32_t block0, uint32_t serial) { uint8_t chipType = (block0 >> 1) & 0xF; uint8_t cap = (block0 >> 5) & 3; uint16_t custCode = (block0 >> 9) & 0x3FF; switch (chipType) { case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; case 8: PrintAndLog("\n Chip Type: %u | EM4205", chipType); break; case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; //add more here when known default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; } switch (cap) { case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; default: PrintAndLog(" Cap Type: %u | unknown",cap); break; } PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); if (serial != 0) PrintAndLog("\n Serial #: %08X\n", serial); } void printEM4x05ProtectionBits(uint32_t word) { for (uint8_t i = 0; i < 15; i++) { PrintAndLog(" Word: %02u | %s", i, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); if (i==14) PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & word ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); } } //quick test for EM4x05/EM4x69 tag bool EM4x05IsBlock0(uint32_t *word) { int res = EM4x05ReadWord_ext(0, 0, false, word); return (res > 0) ? true : false; } int CmdEM4x05Info(const char *Cmd) { #define EM_SERIAL_BLOCK 1 #define EM_CONFIG_BLOCK 4 #define EM_PROT1_BLOCK 14 #define EM_PROT2_BLOCK 15 uint32_t pwd; uint32_t word = 0, block0 = 0, serial = 0; bool usePwd = false; uint8_t ctmp = param_getchar(Cmd, 0); if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if ( pwd != 1 ) usePwd = true; // read word 0 (chip info) // block 0 can be read even without a password. if ( !EM4x05IsBlock0(&block0) ) return -1; // read word 1 (serial #) doesn't need pwd // continue if failed, .. non blocking fail. EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial); printEM4x05info(block0, serial); // read word 4 (config block) // needs password if one is set if ( EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1 ) return 0; printEM4x05config(word); // read word 14 and 15 to see which is being used for the protection bits if ( EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1 ) { return 0; } // if status bit says this is not the used protection word if (!(word & 0x8000)) { if ( EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1 ) return 0; } //something went wrong if (!(word & 0x8000)) return 0; printEM4x05ProtectionBits(word); return 1; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, //{"410x_demod", CmdEMdemodASK, 0, "Extract ID from EM410x tag on antenna)"}, {"410x_demod", CmdEM410xDemod, 0, "demodulate a EM410x tag from the GraphBuffer"}, {"410x_read", CmdEM410xRead, 1, "attempt to read and extract tag data"}, {"410x_sim", CmdEM410xSim, 0, "simulate EM410x tag"}, {"410x_brute", CmdEM410xBrute, 0, "reader bruteforce attack by simulating EM410x tags"}, {"410x_watch", CmdEM410xWatch, 0, "watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, {"410x_spoof", CmdEM410xWatchnSpoof, 0, "watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, {"410x_write", CmdEM410xWrite, 0, "write EM410x UID to T5555(Q5) or T55x7 tag"}, {"4x05_dump", CmdEM4x05Dump, 0, "dump EM4x05/EM4x69 tag"}, {"4x05_info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"}, {"4x05_read", CmdEM4x05Read, 0, "read word data from EM4x05/EM4x69"}, {"4x05_write", CmdEM4x05Write, 0, "write word data to EM4x05/EM4x69"}, {"4x50_dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"}, {"4x50_read", CmdEM4x50Read, 0, "read word data from EM4x50"}, {"4x50_write", CmdEM4x50Write, 0, "write word data to EM4x50"}, {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }