//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include #include #include #include "cmdlfem4x.h" uint64_t g_em410xid = 0; static int CmdHelp(const char *Cmd); int CmdEMdemodASK(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); int findone = (cmdp == '1') ? 1 : 0; UsbCommand c={CMD_EM410X_DEMOD}; c.arg[0]=findone; SendCommand(&c); return 0; } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xRead(const char *Cmd) { uint32_t hi=0; uint64_t lo=0; if(!AskEm410xDemod("", &hi, &lo, false)) return 0; PrintAndLog("EM410x pattern found: "); printEM410x(hi, lo); if (hi){ PrintAndLog ("EM410x XL pattern found"); return 0; } g_em410xid = lo; return 1; } // emulate an EM410X tag int CmdEM410xSim(const char *Cmd) { int i, n, j, binary[4], parity[4]; uint8_t uid[5] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: lf em4x em410xsim "); PrintAndLog(""); PrintAndLog(" sample: lf em4x em410xsim 0F0368568B"); return 0; } /* clock is 64 in EM410x tags */ uint8_t clock = 64; if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLog("UID must include 10 HEX symbols"); return 0; } param_getdec(Cmd, 1, &clock); PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); PrintAndLog("Press pm3-button to about simulation"); /* clear our graph */ ClearGraph(0); /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(0, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++) { /* read each hex char */ sscanf(&Cmd[i], "%1x", &n); for (j = 3; j >= 0; j--, n/= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(0, clock, binary[0]); AppendGraph(0, clock, binary[1]); AppendGraph(0, clock, binary[2]); AppendGraph(0, clock, binary[3]); /* append parity bit */ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(0, clock, parity[0]); AppendGraph(0, clock, parity[1]); AppendGraph(0, clock, parity[2]); AppendGraph(0, clock, parity[3]); /* stop bit */ AppendGraph(1, clock, 0); CmdLFSim("0"); //240 start_gap. return 0; } /* Function is equivalent of lf read + data samples + em410xread * looped until an EM410x tag is detected * * Why is CmdSamples("16000")? * TBD: Auto-grow sample size based on detected sample rate. IE: If the * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 */ int CmdEM410xWatch(const char *Cmd) { do { if (ukbhit()) { printf("\naborted via keyboard!\n"); break; } CmdLFRead("s"); getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9) } while (!CmdEM410xRead("")); return 0; } //currently only supports manchester modulations // todo: helptext int CmdEM410xWatchnSpoof(const char *Cmd) { // loops if the captured ID was in XL-format. CmdEM410xWatch(Cmd); PrintAndLog("# Replaying captured ID: %llu", g_em410xid); CmdLFaskSim(""); return 0; } int CmdEM410xWrite(const char *Cmd) { uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value uint32_t clock = 0; // invalid clock value sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { PrintAndLog("Error! ID is required.\n"); return 0; } if (id >= 0x10000000000) { PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } // Check Card if (card == 0xFF) { PrintAndLog("Error! Card type required.\n"); return 0; } if (card < 0) { PrintAndLog("Error! Bad card type selected.\n"); return 0; } // Check Clock // Default: 64 if (clock == 0) clock = 64; // Allowed clock rates: 16, 32, 40 and 64 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); return 0; } if (card == 1) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); // NOTE: We really should pass the clock in as a separate argument, but to // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else if (card == 0) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); card = (card & 0xFF) | ((clock << 8) & 0xFF00); } else { PrintAndLog("Error! Bad card type selected.\n"); return 0; } UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return false; uint8_t colP=0; //assume last col is a parity and do not test for (uint8_t colNum = 0; colNum < cols-1; colNum++) { for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { colP ^= BitStream[(rowNum*cols)+colNum]; } if (colP != pType) return false; } return true; } bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows*cols>size) return false; uint8_t rowP=0; //assume last row is a parity row and do not test for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { for (uint8_t colNum = 0; colNum < cols; colNum++) { rowP ^= BitStream[(rowNum*cols)+colNum]; } if (rowP != pType) return false; } return true; } uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) { if (size<45) return 0; uint32_t code = bytebits_to_byte(BitStream,8); code = code<<8 | bytebits_to_byte(BitStream+9,8); code = code<<8 | bytebits_to_byte(BitStream+18,8); code = code<<8 | bytebits_to_byte(BitStream+27,8); if (verbose || g_debugMode){ for (uint8_t i = 0; i<5; i++){ if (i == 4) PrintAndLog(""); //parity byte spacer PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", BitStream[i*9], BitStream[i*9+1], BitStream[i*9+2], BitStream[i*9+3], BitStream[i*9+4], BitStream[i*9+5], BitStream[i*9+6], BitStream[i*9+7], BitStream[i*9+8], bytebits_to_byte(BitStream+i*9,8) ); } if (pTest) PrintAndLog("Parity Passed"); else PrintAndLog("Parity Failed"); } return code; } /* Read the transmitted data of an EM4x50 tag * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ //completed by Marshmellow int EM4x50Read(const char *Cmd, bool verbose) { uint8_t fndClk[] = {8,16,32,40,50,64,128}; int clk = 0; int invert = 0; int tol = 0; int i, j, startblock, skip, block, start, end, low, high, minClk; bool complete = false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; uint32_t Code[6]; char tmp[6]; char tmp2[20]; int phaseoff; high = low = 0; memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); // get user entry if any sscanf(Cmd, "%i %i", &clk, &invert); // save GraphBuffer - to restore it later save_restoreGB(1); // first get high and low values for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } i = 0; j = 0; minClk = 255; // get to first full low to prime loop and skip incomplete first pulse while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; skip = i; // populate tmpbuff buffer with pulse lengths while (i < GraphTraceLen) { // measure from low to low while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; start= i; while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) ++i; while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) ++i; if (j>=(MAX_GRAPH_TRACE_LEN/64)) { break; } tmpbuff[j++]= i - start; if (i-start < minClk && i < GraphTraceLen) { minClk = i - start; } } // set clock if (!clk) { for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { tol = fndClk[clkCnt]/8; if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { clk=fndClk[clkCnt]; break; } } if (!clk) return 0; } else tol = clk/8; // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) start = -1; for (i= 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { start= i + 4; break; } } startblock = i + 4; // skip over the remainder of LW skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; if (tmpbuff[i+3]>clk) phaseoff = tmpbuff[i+3]-clk; else phaseoff = 0; // now do it again to find the end end = skip; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following { complete= true; break; } } end = i; // report back if (verbose || g_debugMode) { if (start >= 0) { PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); } else { PrintAndLog("No data found!, clock tried:%d",clk); PrintAndLog("Try again with more samples."); PrintAndLog(" or after a 'data askedge' command to clean up the read"); return 0; } } else if (start < 0) return 0; start = skip; snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); // get rid of leading crap snprintf(tmp, sizeof(tmp), "%i", skip); CmdLtrim(tmp); bool pTest; bool AllPTest = true; // now work through remaining buffer printing out data blocks block = 0; i = startblock; while (block < 6) { if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); skip = phaseoff; // look for LW before start of next block for ( ; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) if (tmpbuff[i+1] >= clk-tol) break; } if (i >= j-4) break; //next LW not found skip += clk; if (tmpbuff[i+1]>clk) phaseoff = tmpbuff[i+1]-clk; else phaseoff = 0; i += 2; if (ASKDemod(tmp2, false, false, 1) < 1) { save_restoreGB(0); return 0; } //set DemodBufferLen to just one block DemodBufferLen = skip/clk; //test parities pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); AllPTest &= pTest; //get output Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); //skip to start of next block snprintf(tmp,sizeof(tmp),"%i",skip); CmdLtrim(tmp); block++; if (i >= end) break; //in case chip doesn't output 6 blocks } //print full code: if (verbose || g_debugMode || AllPTest){ if (!complete) { PrintAndLog("*** Warning!"); PrintAndLog("Partial data - no end found!"); PrintAndLog("Try again with more samples."); } PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); end = block; for (block=0; block < end; block++){ PrintAndLog("Block %d: %08x",block,Code[block]); } if (AllPTest) { PrintAndLog("Parities Passed"); } else { PrintAndLog("Parities Failed"); PrintAndLog("Try cleaning the read samples with 'data askedge'"); } } //restore GraphBuffer save_restoreGB(0); return (int)AllPTest; } int CmdEM4x50Read(const char *Cmd) { return EM4x50Read(Cmd, true); } int CmdReadWord(const char *Cmd) { int Word = -1; //default to invalid word UsbCommand c; sscanf(Cmd, "%d", &Word); if ( (Word > 15) | (Word < 0) ) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Reading word %d", Word); c.cmd = CMD_EM4X_READ_WORD; c.d.asBytes[0] = 0x0; //Normal mode c.arg[0] = 0; c.arg[1] = Word; c.arg[2] = 0; SendCommand(&c); return 0; } int CmdReadWordPWD(const char *Cmd) { int Word = -1; //default to invalid word int Password = 0xFFFFFFFF; //default to blank password UsbCommand c; sscanf(Cmd, "%d %x", &Word, &Password); if ( (Word > 15) | (Word < 0) ) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Reading word %d with password %08X", Word, Password); c.cmd = CMD_EM4X_READ_WORD; c.d.asBytes[0] = 0x1; //Password mode c.arg[0] = 0; c.arg[1] = Word; c.arg[2] = Password; SendCommand(&c); return 0; } int CmdWriteWord(const char *Cmd) { int Word = 16; //default to invalid block int Data = 0xFFFFFFFF; //default to blank data UsbCommand c; sscanf(Cmd, "%x %d", &Data, &Word); if (Word > 15) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Writing word %d with data %08X", Word, Data); c.cmd = CMD_EM4X_WRITE_WORD; c.d.asBytes[0] = 0x0; //Normal mode c.arg[0] = Data; c.arg[1] = Word; c.arg[2] = 0; SendCommand(&c); return 0; } int CmdWriteWordPWD(const char *Cmd) { int Word = 16; //default to invalid word int Data = 0xFFFFFFFF; //default to blank data int Password = 0xFFFFFFFF; //default to blank password UsbCommand c; sscanf(Cmd, "%x %d %x", &Data, &Word, &Password); if (Word > 15) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password); c.cmd = CMD_EM4X_WRITE_WORD; c.d.asBytes[0] = 0x1; //Password mode c.arg[0] = Data; c.arg[1] = Word; c.arg[2] = Password; SendCommand(&c); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"}, {"em410xsim", CmdEM410xSim, 0, " -- Simulate EM410x tag"}, {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, {"em410xwrite", CmdEM410xWrite, 0, " <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"}, {"readword", CmdReadWord, 1, " -- Read EM4xxx word data"}, {"readwordPWD", CmdReadWordPWD, 1, " -- Read EM4xxx word data in password mode"}, {"writeword", CmdWriteWord, 1, " -- Write EM4xxx word data"}, {"writewordPWD", CmdWriteWordPWD, 1, " -- Write EM4xxx word data in password mode"}, {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }