//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include "cmdlfem4x.h" uint64_t g_em410xid = 0; static int CmdHelp(const char *Cmd); //////////////// 410x commands int usage_lf_em410x_demod(void) { PrintAndLogEx(NORMAL, "Usage: lf em 410x_demod [h] [clock] <0|1> [maxError]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " clock - set clock as integer, optional, if not set, autodetect."); PrintAndLogEx(NORMAL, " <0|1> - 0 normal output, 1 for invert output"); PrintAndLogEx(NORMAL, " maxerror - set maximum allowed errors, default = 100."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_demod = demod an EM410x Tag ID from GraphBuffer"); PrintAndLogEx(NORMAL, " lf em 410x_demod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); PrintAndLogEx(NORMAL, " lf em 410x_demod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLogEx(NORMAL, " lf em 410x_demod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); PrintAndLogEx(NORMAL, " lf em 410x_demod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); return 0; } int usage_lf_em410x_write(void) { PrintAndLogEx(NORMAL, "Writes EM410x ID to a T55x7 / T5555 (Q5) tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 410x_write [h] [clock]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " - ID number"); PrintAndLogEx(NORMAL, " - 0|1 T5555 (Q5) / T55x7"); PrintAndLogEx(NORMAL, " - 16|32|40|64, optional, set R/F clock rate, defaults to 64"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_write 0F0368568B 1 = write ID to t55x7 card"); return 0; } int usage_lf_em410x_ws(void) { PrintAndLogEx(NORMAL, "Watch 'nd Spoof, activates reader, waits until a EM410x tag gets presented then it starts simulating the found UID"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 410x_spoof [h]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_spoof"); return 0; } int usage_lf_em410x_clone(void) { PrintAndLogEx(NORMAL, "Simulating EM410x tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 410x_clone [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " uid - uid (10 HEX symbols)"); PrintAndLogEx(NORMAL, " clock - clock (32|64) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_clone 0F0368568B"); PrintAndLogEx(NORMAL, " lf em 410x_clone 0F0368568B 32"); return 0; } int usage_lf_em410x_sim(void) { PrintAndLogEx(NORMAL, "Simulating EM410x tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 410x_sim [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " uid - uid (10 HEX symbols)"); PrintAndLogEx(NORMAL, " clock - clock (32|64) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_sim 0F0368568B"); PrintAndLogEx(NORMAL, " lf em 410x_sim 0F0368568B 32"); return 0; } int usage_lf_em410x_brute(void) { PrintAndLogEx(NORMAL, "Bruteforcing by emulating EM410x tag"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 410x_brute [h] ids.txt [d 2000] [c clock]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " ids.txt - file with UIDs in HEX format, one per line"); PrintAndLogEx(NORMAL, " d (2000) - pause delay in milliseconds between UIDs simulation, default 1000 ms (optional)"); PrintAndLogEx(NORMAL, " c (32) - clock (32|64), default 64 (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt"); PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt c 32"); PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt d 3000"); PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt d 3000 c 32"); return 0; } //////////////// 4050 / 4450 commands int usage_lf_em4x50_dump(void) { PrintAndLogEx(NORMAL, "Dump EM4x50/EM4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x50_dump [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x50_dump"); PrintAndLogEx(NORMAL, " lf em 4x50_dump 11223344"); return 0; } int usage_lf_em4x50_read(void) { PrintAndLogEx(NORMAL, "Read EM 4x50/EM4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x50_read [h]
"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " address - memory address to read. (0-15)"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x50_read 1"); PrintAndLogEx(NORMAL, " lf em 4x50_read 1 11223344"); return 0; } int usage_lf_em4x50_write(void) { PrintAndLogEx(NORMAL, "Write EM 4x50/4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x50_write [h]
"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " address - memory address to write to. (0-15)"); PrintAndLogEx(NORMAL, " data - data to write (hex)"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x50_write 1 deadc0de"); PrintAndLogEx(NORMAL, " lf em 4x50_write 1 deadc0de 11223344"); return 0; } //////////////// 4205 / 4305 commands int usage_lf_em4x05_dump(void) { PrintAndLogEx(NORMAL, "Dump EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x05_dump [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x05_dump"); PrintAndLogEx(NORMAL, " lf em 4x05_dump 11223344"); return 0; } int usage_lf_em4x05_read(void) { PrintAndLogEx(NORMAL, "Read EM4x05/EM4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x05_read [h]
"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " address - memory address to read. (0-15)"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x05_read 1"); PrintAndLogEx(NORMAL, " lf em 4x05_read 1 11223344"); return 0; } int usage_lf_em4x05_write(void) { PrintAndLogEx(NORMAL, "Write EM4x05/4x69. Tag must be on antenna. "); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x05_write [h]
"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " address - memory address to write to. (0-15)"); PrintAndLogEx(NORMAL, " data - data to write (hex)"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x05_write 1 deadc0de"); PrintAndLogEx(NORMAL, " lf em 4x05_write 1 deadc0de 11223344"); return 0; } int usage_lf_em4x05_info(void) { PrintAndLogEx(NORMAL, "Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf em 4x05_info [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h - this help"); PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf em 4x05_info"); PrintAndLogEx(NORMAL, " lf em 4x05_info deadc0de"); return 0; } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ // Construct the graph for emulating an EM410X tag void ConstructEM410xEmulGraph(const char *uid, const uint8_t clock) { int i, j, binary[4], parity[4]; uint32_t n; /* clear our graph */ ClearGraph(false); /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(false, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++) { /* read each hex char */ sscanf(&uid[i], "%1x", &n); for (j = 3; j >= 0; j--, n /= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(false, clock, binary[0]); AppendGraph(false, clock, binary[1]); AppendGraph(false, clock, binary[2]); AppendGraph(false, clock, binary[3]); /* append parity bit */ AppendGraph(false, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(false, clock, parity[0]); AppendGraph(false, clock, parity[1]); AppendGraph(false, clock, parity[2]); AppendGraph(false, clock, parity[3]); /* stop bit */ AppendGraph(true, clock, 0); } //by marshmellow //print 64 bit EM410x ID in multiple formats void printEM410x(uint32_t hi, uint64_t id) { if (!id && !hi) return; PrintAndLogEx(SUCCESS, "EM410x %s pattern found", (hi) ? "XL" : ""); uint64_t n = 1; uint64_t id2lo = 0; uint8_t m, i; for (m = 5; m > 0; m--) { for (i = 0; i < 8; i++) { id2lo = (id2lo << 1LL) | ((id & (n << (i + ((m - 1) * 8)))) >> (i + ((m - 1) * 8))); } } if (hi) { //output 88 bit em id PrintAndLogEx(NORMAL, "\nEM TAG ID : %06X%016" PRIX64, hi, id); } else { //output 40 bit em id PrintAndLogEx(NORMAL, "\nEM TAG ID : %010" PRIX64, id); PrintAndLogEx(NORMAL, "\nPossible de-scramble patterns"); PrintAndLogEx(NORMAL, "Unique TAG ID : %010" PRIX64, id2lo); PrintAndLogEx(NORMAL, "HoneyWell IdentKey {"); PrintAndLogEx(NORMAL, "DEZ 8 : %08" PRIu64, id & 0xFFFFFF); PrintAndLogEx(NORMAL, "DEZ 10 : %010" PRIu64, id & 0xFFFFFFFF); PrintAndLogEx(NORMAL, "DEZ 5.5 : %05" PRIu64 ".%05" PRIu64, (id >> 16LL) & 0xFFFF, (id & 0xFFFF)); PrintAndLogEx(NORMAL, "DEZ 3.5A : %03" PRIu64 ".%05" PRIu64, (id >> 32ll), (id & 0xFFFF)); PrintAndLogEx(NORMAL, "DEZ 3.5B : %03" PRIu64 ".%05" PRIu64, (id & 0xFF000000) >> 24, (id & 0xFFFF)); PrintAndLogEx(NORMAL, "DEZ 3.5C : %03" PRIu64 ".%05" PRIu64, (id & 0xFF0000) >> 16, (id & 0xFFFF)); PrintAndLogEx(NORMAL, "DEZ 14/IK2 : %014" PRIu64, id); PrintAndLogEx(NORMAL, "DEZ 15/IK3 : %015" PRIu64, id2lo); PrintAndLogEx(NORMAL, "DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64, (id2lo & 0xf000000000) >> 36, (id2lo & 0x0f00000000) >> 32, (id2lo & 0x00f0000000) >> 28, (id2lo & 0x000f000000) >> 24, (id2lo & 0x0000f00000) >> 20, (id2lo & 0x00000f0000) >> 16, (id2lo & 0x000000f000) >> 12, (id2lo & 0x0000000f00) >> 8, (id2lo & 0x00000000f0) >> 4, (id2lo & 0x000000000f) ); uint64_t paxton = (((id >> 32) << 24) | (id & 0xffffff)) + 0x143e00; PrintAndLogEx(NORMAL, "}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64, (id & 0xFFFF), ((id >> 16LL) & 0xFF), (id & 0xFFFFFF)); PrintAndLogEx(NORMAL, "Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton); uint32_t p1id = (id & 0xFFFFFF); uint8_t arr[32] = {0x00}; int j = 23; for (int k = 0 ; k < 24; ++k, --j) { arr[k] = (p1id >> k) & 1; } uint32_t p1 = 0; p1 |= arr[23] << 21; p1 |= arr[22] << 23; p1 |= arr[21] << 20; p1 |= arr[20] << 22; p1 |= arr[19] << 18; p1 |= arr[18] << 16; p1 |= arr[17] << 19; p1 |= arr[16] << 17; p1 |= arr[15] << 13; p1 |= arr[14] << 15; p1 |= arr[13] << 12; p1 |= arr[12] << 14; p1 |= arr[11] << 6; p1 |= arr[10] << 2; p1 |= arr[9] << 7; p1 |= arr[8] << 1; p1 |= arr[7] << 0; p1 |= arr[6] << 8; p1 |= arr[5] << 11; p1 |= arr[4] << 3; p1 |= arr[3] << 10; p1 |= arr[2] << 4; p1 |= arr[1] << 5; p1 |= arr[0] << 9; PrintAndLogEx(NORMAL, "Pattern 1 : %d [0x%X]", p1, p1); uint16_t sebury1 = id & 0xFFFF; uint8_t sebury2 = (id >> 16) & 0x7F; uint32_t sebury3 = id & 0x7FFFFF; PrintAndLogEx(NORMAL, "Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); } } /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo) { size_t idx = 0; uint8_t bits[512] = {0}; size_t size = sizeof(bits); if (!getDemodBuff(bits, &size)) { PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x problem during copy from ASK demod"); return 0; } int ans = Em410xDecode(bits, &size, &idx, hi, lo); if (ans < 0) { if (ans == -2) PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x not enough samples after demod"); else if (ans == -4) PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x preamble not found"); else if (ans == -5) PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x Size not correct: %d", size); else if (ans == -6) PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x parity failed"); return 0; } if (!lo && !hi) { PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x decoded to all zeros"); return 0; } //set GraphBuffer for clone or sim command setDemodBuff(DemodBuffer, (size == 40) ? 64 : 128, idx + 1); setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx + 1)*g_DemodClock)); PrintAndLogEx(DEBUG, "DEBUG: Em410x idx: %d, Len: %d, Printing Demod Buffer:", idx, size); if (g_debugMode) printDemodBuff(); if (verbose) printEM410x(*hi, *lo); return 1; } int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) { bool st = true; if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0; return AskEm410xDecode(verbose, hi, lo); } // this read is the "normal" read, which download lf signal and tries to demod here. int CmdEM410xRead(const char *Cmd) { lf_read(true, 8192); return CmdEM410xDemod(Cmd); } // this read loops on device side. // uses the demod in lfops.c int CmdEM410xRead_device(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); uint8_t findone = (cmdp == '1') ? 1 : 0; UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}}; SendCommand(&c); return 0; } //by marshmellow //takes 3 arguments - clock, invert and maxErr as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int CmdEM410xDemod(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) > 10 || cmdp == 'h') return usage_lf_em410x_demod(); uint32_t hi = 0; uint64_t lo = 0; if (AskEm410xDemod(Cmd, &hi, &lo, true) != 1) return 0; g_em410xid = lo; return 1; } // emulate an EM410X tag int CmdEM410xSim(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_lf_em410x_sim(); uint8_t uid[5] = {0x00}; /* clock is 64 in EM410x tags */ uint8_t clock1 = 64; if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLogEx(FAILED, "UID must include 10 HEX symbols"); return 0; } param_getdec(Cmd, 1, &clock1); PrintAndLogEx(SUCCESS, "Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0], uid[1], uid[2], uid[3], uid[4], clock1); PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation"); ConstructEM410xEmulGraph(Cmd, clock1); CmdLFSim("0"); //240 start_gap. return 0; } int CmdEM410xBrute(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0}; FILE *f = NULL; char buf[11]; uint32_t uidcnt = 0; uint8_t stUidBlock = 20; uint8_t *uidBlock = NULL, *p = NULL; uint8_t uid[5] = {0x00}; /* clock is 64 in EM410x tags */ uint8_t clock1 = 64; /* default pause time: 1 second */ uint32_t delay = 1000; char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_lf_em410x_brute(); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 'd') { delay = param_get32ex(Cmd, 2, 1000, 10); param_getdec(Cmd, 4, &clock1); } else if (cmdp == 'c') { param_getdec(Cmd, 2, &clock1); delay = param_get32ex(Cmd, 4, 1000, 10); } int filelen = param_getstr(Cmd, 0, filename, FILE_PATH_SIZE); if (filelen == 0) { PrintAndLogEx(WARNING, "Error: Please specify a filename"); return 1; } if ((f = fopen(filename, "r")) == NULL) { PrintAndLogEx(WARNING, "Error: Could not open UIDs file [%s]", filename); return 1; } uidBlock = calloc(stUidBlock, 5); if (uidBlock == NULL) { fclose(f); return 1; } while (fgets(buf, sizeof(buf), f)) { if (strlen(buf) < 10 || buf[9] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)); //goto next line //The line start with # is comment, skip if (buf[0] == '#') continue; if (param_gethex(buf, 0, uid, 10)) { PrintAndLogEx(FAILED, "UIDs must include 10 HEX symbols"); free(uidBlock); fclose(f); return 1; } buf[10] = 0; if (stUidBlock - uidcnt < 2) { p = realloc(uidBlock, 5 * (stUidBlock += 10)); if (!p) { PrintAndLogEx(WARNING, "Cannot allocate memory for UIDs"); free(uidBlock); fclose(f); return 1; } uidBlock = p; } memset(uidBlock + 5 * uidcnt, 0, 5); num_to_bytes(strtoll(buf, NULL, 16), 5, uidBlock + 5 * uidcnt); uidcnt++; memset(buf, 0, sizeof(buf)); } fclose(f); if (uidcnt == 0) { PrintAndLogEx(FAILED, "No UIDs found in file"); free(uidBlock); return 1; } PrintAndLogEx(SUCCESS, "Loaded %d UIDs from %s, pause delay: %d ms", uidcnt, filename, delay); // loop for (uint32_t c = 0; c < uidcnt; ++c) { char testuid[11]; testuid[10] = 0; if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\nAborted via keyboard!\n"); free(uidBlock); return 0; } sprintf(testuid, "%010" PRIX64, bytes_to_num(uidBlock + 5 * c, 5)); PrintAndLogEx(NORMAL, "Bruteforce %d / %d: simulating UID %s, clock %d", c + 1, uidcnt, testuid, clock1); ConstructEM410xEmulGraph(testuid, clock1); CmdLFSim("0"); //240 start_gap. msleep(delay); } free(uidBlock); return 0; } /* Function is equivalent of lf read + data samples + em410xread * looped until an EM410x tag is detected * * Why is CmdSamples("16000")? * TBD: Auto-grow sample size based on detected sample rate. IE: If the * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 * * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow */ int CmdEM410xWatch(const char *Cmd) { do { if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\naborted via keyboard!\n"); break; } lf_read(true, 8201); } while (!CmdEM410xRead("")); return 0; } //currently only supports manchester modulations int CmdEM410xWatchnSpoof(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_lf_em410x_ws(); // loops if the captured ID was in XL-format. CmdEM410xWatch(Cmd); PrintAndLogEx(SUCCESS, "# Replaying captured ID: %010" PRIx64, g_em410xid); CmdLFaskSim(""); return 0; } int CmdEM410xWrite(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 0x00 || cmdp == 'h') return usage_lf_em410x_write(); uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value uint32_t clock1 = 0; // invalid clock value sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock1); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { PrintAndLogEx(WARNING, "Error! ID is required.\n"); return 0; } if (id >= 0x10000000000) { PrintAndLogEx(WARNING, "Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } // Check Card if (card == 0xFF) { PrintAndLogEx(WARNING, "Error! Card type required.\n"); return 0; } if (card < 0) { PrintAndLogEx(WARNING, "Error! Bad card type selected.\n"); return 0; } // Check Clock if (clock1 == 0) clock1 = 64; // Allowed clock rates: 16, 32, 40 and 64 if ((clock1 != 16) && (clock1 != 32) && (clock1 != 64) && (clock1 != 40)) { PrintAndLogEx(WARNING, "Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock1); return 0; } if (card == 1) { PrintAndLogEx(SUCCESS, "Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock1); // NOTE: We really should pass the clock in as a separate argument, but to // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value card = (card & 0xFF) | ((clock1 << 8) & 0xFF00); } else if (card == 0) { PrintAndLogEx(SUCCESS, "Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock1); card = (card & 0xFF) | ((clock1 << 8) & 0xFF00); } else { PrintAndLogEx(FAILED, "Error! Bad card type selected.\n"); return 0; } UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } //**************** Start of EM4x50 Code ************************ bool EM_EndParityTest(uint8_t *bs, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows * cols > size) return false; uint8_t colP = 0; //assume last col is a parity and do not test for (uint8_t colNum = 0; colNum < cols - 1; colNum++) { for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { colP ^= bs[(rowNum * cols) + colNum]; } if (colP != pType) return false; } return true; } bool EM_ByteParityTest(uint8_t *bs, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { if (rows * cols > size) return false; uint8_t rowP = 0; //assume last row is a parity row and do not test for (uint8_t rowNum = 0; rowNum < rows - 1; rowNum++) { for (uint8_t colNum = 0; colNum < cols; colNum++) { rowP ^= bs[(rowNum * cols) + colNum]; } if (rowP != pType) return false; } return true; } // EM word parity test. // 9*5 = 45 bits in total // 012345678|r1 // 012345678|r2 // 012345678|r3 // 012345678|r4 // ------------ //c012345678| 0 // |- must be zero bool EMwordparitytest(uint8_t *bits) { // last row/col parity must be 0 if (bits[44] != 0) return false; // col parity check uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits + 9, 8) ^ bytebits_to_byte(bits + 18, 8) ^ bytebits_to_byte(bits + 27, 8); uint8_t c2 = bytebits_to_byte(bits + 36, 8); if (c1 != c2) return false; // row parity check uint8_t rowP = 0; for (uint8_t i = 0; i < 36; ++i) { rowP ^= bits[i]; if (i > 0 && (i % 9) == 0) { if (rowP != EVEN) return false; rowP = 0; } } // all checks ok. return true; } //////////////// 4050 / 4450 commands uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) { if (size < 45) return 0; uint32_t code = bytebits_to_byte(BitStream, 8); code = code << 8 | bytebits_to_byte(BitStream + 9, 8); code = code << 8 | bytebits_to_byte(BitStream + 18, 8); code = code << 8 | bytebits_to_byte(BitStream + 27, 8); if (verbose || g_debugMode) { for (uint8_t i = 0; i < 5; i++) { if (i == 4) PrintAndLogEx(NORMAL, ""); //parity byte spacer PrintAndLogEx(NORMAL, "%d%d%d%d%d%d%d%d %d -> 0x%02x", BitStream[i * 9], BitStream[i * 9 + 1], BitStream[i * 9 + 2], BitStream[i * 9 + 3], BitStream[i * 9 + 4], BitStream[i * 9 + 5], BitStream[i * 9 + 6], BitStream[i * 9 + 7], BitStream[i * 9 + 8], bytebits_to_byte(BitStream + i * 9, 8) ); } PrintAndLogEx(SUCCESS, "Parity checks | %s", (pTest) ? _GREEN_("Passed") : _RED_("Failed")); } return code; } /* Read the transmitted data of an EM4x50 tag from the graphbuffer * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ //completed by Marshmellow int EM4x50Read(const char *Cmd, bool verbose) { uint8_t fndClk[] = {8, 16, 32, 40, 50, 64, 128}; int clk = 0, invert = 0, tol = 0, phaseoff; int i = 0, j = 0, startblock, skip, block, start, end, low = 0, high = 0, minClk = 255; uint32_t Code[6]; char tmp[6]; char tmp2[20]; bool complete = false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; memset(tmpbuff, 0, sizeof(tmpbuff)); // get user entry if any sscanf(Cmd, "%i %i", &clk, &invert); uint8_t bits[MAX_GRAPH_TRACE_LEN] = {0}; size_t size = getFromGraphBuf(bits); computeSignalProperties(bits, size); signal_t *sp = getSignalProperties(); high = sp->high; low = sp->low; // get to first full low to prime loop and skip incomplete first pulse while ((i < size) && (bits[i] < high)) ++i; while ((i < size) && (bits[i] > low)) ++i; skip = i; // populate tmpbuff buffer with pulse lengths while (i < size) { // measure from low to low while ((i < size) && (bits[i] > low)) ++i; start = i; while ((i < size) && (bits[i] < high)) ++i; while ((i < size) && (bits[i] > low)) ++i; if (j >= (MAX_GRAPH_TRACE_LEN / 64)) { break; } tmpbuff[j++] = i - start; if (i - start < minClk && i < size) { minClk = i - start; } } // set clock if (!clk) { for (uint8_t clkCnt = 0; clkCnt < 7; clkCnt++) { tol = fndClk[clkCnt] / 8; if (minClk >= fndClk[clkCnt] - tol && minClk <= fndClk[clkCnt] + 1) { clk = fndClk[clkCnt]; break; } } if (!clk) { if (verbose || g_debugMode) PrintAndLogEx(WARNING, "Error: EM4x50 - didn't find a clock"); return 0; } } else tol = clk / 8; // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) start = -1; for (i = 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol) //3 clocks if (tmpbuff[i + 1] >= clk * 2 - tol && tmpbuff[i + 1] <= clk * 2 + tol) //2 clocks if (tmpbuff[i + 2] >= clk * 3 - tol && tmpbuff[i + 2] <= clk * 3 + tol) //3 clocks if (tmpbuff[i + 3] >= clk - tol) { //1.5 to 2 clocks - depends on bit following start = i + 4; break; } } startblock = i + 4; // skip over the remainder of LW skip += (tmpbuff[i + 1] + tmpbuff[i + 2] + clk); if (tmpbuff[i + 3] > clk) phaseoff = tmpbuff[i + 3] - clk; else phaseoff = 0; // now do it again to find the end end = skip; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol) //3 clocks if (tmpbuff[i + 1] >= clk * 2 - tol && tmpbuff[i + 1] <= clk * 2 + tol) //2 clocks if (tmpbuff[i + 2] >= clk * 3 - tol && tmpbuff[i + 2] <= clk * 3 + tol) //3 clocks if (tmpbuff[i + 3] >= clk - tol) { //1.5 to 2 clocks - depends on bit following complete = true; break; } } end = i; // report back if (verbose || g_debugMode) { if (start >= 0) { PrintAndLogEx(NORMAL, "\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); } else { PrintAndLogEx(NORMAL, "No data found!, clock tried:%d", clk); PrintAndLogEx(NORMAL, "Try again with more samples."); PrintAndLogEx(NORMAL, " or after a 'data askedge' command to clean up the read"); return 0; } } else if (start < 0) return 0; start = skip; snprintf(tmp2, sizeof(tmp2), "%d %d 1000 %d", clk, invert, clk * 47); // save GraphBuffer - to restore it later save_restoreGB(GRAPH_SAVE); // get rid of leading crap snprintf(tmp, sizeof(tmp), "%i", skip); CmdLtrim(tmp); bool pTest; bool AllPTest = true; // now work through remaining buffer printing out data blocks block = 0; i = startblock; while (block < 6) { if (verbose || g_debugMode) PrintAndLogEx(NORMAL, "\nBlock %i:", block); skip = phaseoff; // look for LW before start of next block for (; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol) if (tmpbuff[i + 1] >= clk - tol) break; } if (i >= j - 4) break; //next LW not found skip += clk; if (tmpbuff[i + 1] > clk) phaseoff = tmpbuff[i + 1] - clk; else phaseoff = 0; i += 2; if (ASKDemod(tmp2, false, false, 1) < 1) { save_restoreGB(GRAPH_RESTORE); return 0; } //set DemodBufferLen to just one block DemodBufferLen = skip / clk; //test parities pTest = EM_ByteParityTest(DemodBuffer, DemodBufferLen, 5, 9, 0); pTest &= EM_EndParityTest(DemodBuffer, DemodBufferLen, 5, 9, 0); AllPTest &= pTest; //get output Code[block] = OutputEM4x50_Block(DemodBuffer, DemodBufferLen, verbose, pTest); PrintAndLogEx(DEBUG, "\nskipping %d samples, bits:%d", skip, skip / clk); //skip to start of next block snprintf(tmp, sizeof(tmp), "%i", skip); CmdLtrim(tmp); block++; if (i >= end) break; //in case chip doesn't output 6 blocks } //print full code: if (verbose || g_debugMode || AllPTest) { if (!complete) { PrintAndLogEx(NORMAL, _RED_("* **Warning!")); PrintAndLogEx(NORMAL, "Partial data - no end found!"); PrintAndLogEx(NORMAL, "Try again with more samples."); } PrintAndLogEx(NORMAL, "Found data at sample: %i - using clock: %i", start, clk); end = block; for (block = 0; block < end; block++) { PrintAndLogEx(NORMAL, "Block %d: %08x", block, Code[block]); } PrintAndLogEx(NORMAL, "Parities checks | %s", (AllPTest) ? _GREEN_("Passed") : _RED_("Failed")); if (AllPTest == 0) { PrintAndLogEx(NORMAL, "Try cleaning the read samples with " _YELLOW_("'data askedge'")); } } //restore GraphBuffer save_restoreGB(GRAPH_RESTORE); return (int)AllPTest; } int CmdEM4x50Read(const char *Cmd) { uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_lf_em4x50_read(); return EM4x50Read(Cmd, true); } int CmdEM4x50Write(const char *Cmd) { uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_lf_em4x50_write(); PrintAndLogEx(NORMAL, "no implemented yet"); return 0; } int CmdEM4x50Dump(const char *Cmd) { uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_lf_em4x50_dump(); PrintAndLogEx(NORMAL, "no implemented yet"); return 0; } #define EM_PREAMBLE_LEN 6 // download samples from device and copy to Graphbuffer bool downloadSamplesEM() { // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) uint8_t got[6000]; if (!GetFromDevice(BIG_BUF, got, sizeof(got), 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return false; } setGraphBuf(got, sizeof(got)); // set signal properties low/high/mean/amplitude and is_noise detection computeSignalProperties(got, sizeof(got)); RepaintGraphWindow(); if (getSignalProperties()->isnoise) { PrintAndLogEx(DEBUG, "No tag found - signal looks like noise"); return false; } return true; } // em_demod bool doPreambleSearch(size_t *startIdx) { // sanity check if (DemodBufferLen < EM_PREAMBLE_LEN) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM4305 demodbuffer too small"); return false; } // set size to 20 to only test first 14 positions for the preamble size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20; *startIdx = 0; // skip first two 0 bits as they might have been missed in the demod uint8_t preamble[EM_PREAMBLE_LEN] = {0, 0, 1, 0, 1, 0}; if (!preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, true)) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM4305 preamble not found :: %d", *startIdx); return false; } return true; } bool detectFSK() { // detect fsk clock if (!GetFskClock("", false)) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: FSK clock failed"); return false; } // demod int ans = FSKrawDemod("0 0", false); if (!ans) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: FSK Demod failed"); return false; } return true; } // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) bool detectPSK() { int ans = GetPskClock("", false); if (ans <= 0) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK clock failed"); return false; } //demod //try psk1 -- 0 0 6 (six errors?!?) ans = PSKDemod("0 0 6", false); if (!ans) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK1 Demod failed"); //try psk1 inverted ans = PSKDemod("0 1 6", false); if (!ans) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK1 inverted Demod failed"); return false; } } // either PSK1 or PSK1 inverted is ok from here. // lets check PSK2 later. return true; } // try manchester - NOTE: ST only applies to T55x7 tags. bool detectASK_MAN() { bool stcheck = false; if (!ASKDemod_ext("0 0 0", false, false, 1, &stcheck)) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/Manchester Demod failed"); return false; } return true; } bool detectASK_BI() { int ans = ASKbiphaseDemod("0 0 1", false); if (!ans) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/biphase normal demod failed"); ans = ASKbiphaseDemod("0 1 1", false); if (!ans) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/biphase inverted demod failed"); return false; } } return true; } // param: idx - start index in demoded data. bool setDemodBufferEM(uint32_t *word, size_t idx) { //test for even parity bits. uint8_t parity[45] = {0}; memcpy(parity, DemodBuffer, 45); if (!EMwordparitytest(parity)) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM Parity tests failed"); return false; } // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) { PrintAndLogEx(DEBUG, "DEBUG: Error - EM, failed removing parity"); return false; } setDemodBuff(DemodBuffer, 32, 0); *word = bytebits_to_byteLSBF(DemodBuffer, 32); return true; } // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE // should cover 90% of known used configs // the rest will need to be manually demoded for now... bool demodEM4x05resp(uint32_t *word) { size_t idx = 0; *word = 0; if (detectASK_MAN() && doPreambleSearch(&idx)) return setDemodBufferEM(word, idx); if (detectASK_BI() && doPreambleSearch(&idx)) return setDemodBufferEM(word, idx); if (detectFSK() && doPreambleSearch(&idx)) return setDemodBufferEM(word, idx); if (detectPSK()) { if (doPreambleSearch(&idx)) return setDemodBufferEM(word, idx); psk1TOpsk2(DemodBuffer, DemodBufferLen); if (doPreambleSearch(&idx)) return setDemodBufferEM(word, idx); } return false; } //////////////// 4205 / 4305 commands int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) { UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { PrintAndLogEx(DEBUG, "timeout while waiting for reply."); return -1; } if (!downloadSamplesEM()) { return -1; } return demodEM4x05resp(word); } int CmdEM4x05Dump(const char *Cmd) { uint8_t addr = 0; uint32_t pwd = 0; bool usePwd = false; uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_lf_em4x05_dump(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if (pwd != 1) usePwd = true; int success = 1; uint32_t word = 0; PrintAndLogEx(NORMAL, "Addr | data | ascii"); PrintAndLogEx(NORMAL, "-----+--------+------"); for (; addr < 16; addr++) { if (addr == 2) { if (usePwd) { PrintAndLogEx(NORMAL, " %02u | %08X", addr, pwd, word); } else { PrintAndLogEx(NORMAL, " 02 | " _RED_("cannot read")); } } else { success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word); } } return success; } int CmdEM4x05Read(const char *Cmd) { uint8_t addr; uint32_t pwd; bool usePwd = false; uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || ctmp == 'h') return usage_lf_em4x05_read(); addr = param_get8ex(Cmd, 0, 50, 10); pwd = param_get32ex(Cmd, 1, 1, 16); if (addr > 15) { PrintAndLogEx(NORMAL, "Address must be between 0 and 15"); return 1; } if (pwd == 1) { PrintAndLogEx(NORMAL, "Reading address %02u", addr); } else { usePwd = true; PrintAndLogEx(NORMAL, "Reading address %02u | password %08X", addr, pwd); } uint32_t word = 0; int isOk = EM4x05ReadWord_ext(addr, pwd, usePwd, &word); if (isOk) PrintAndLogEx(NORMAL, "Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : ""); else PrintAndLogEx(NORMAL, "Read Address %02d | " _RED_("failed"), addr); return isOk; } int CmdEM4x05Write(const char *Cmd) { uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || ctmp == 'h') return usage_lf_em4x05_write(); bool usePwd = false; uint8_t addr; uint32_t data, pwd; addr = param_get8ex(Cmd, 0, 50, 10); data = param_get32ex(Cmd, 1, 0, 16); pwd = param_get32ex(Cmd, 2, 1, 16); if (addr > 15) { PrintAndLogEx(NORMAL, "Address must be between 0 and 15"); return 1; } if (pwd == 1) PrintAndLogEx(NORMAL, "Writing address %d data %08X", addr, data); else { usePwd = true; PrintAndLogEx(NORMAL, "Writing address %d data %08X using password %08X", addr, data, pwd); } uint16_t flag = (addr << 8) | (usePwd); UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { PrintAndLogEx(WARNING, "Error occurred, device did not respond during write operation."); return -1; } if (!downloadSamplesEM()) return -1; //need 0 bits demoded (after preamble) to verify write cmd uint32_t dummy = 0; int isOk = demodEM4x05resp(&dummy); if (isOk) PrintAndLogEx(NORMAL, "Write " _GREEN_("Verified")); else PrintAndLogEx(NORMAL, "Write could " _RED_("not") "be verified"); return isOk; } void printEM4x05config(uint32_t wordData) { uint16_t datarate = (((wordData & 0x3F) + 1) * 2); uint8_t encoder = ((wordData >> 6) & 0xF); char enc[14]; memset(enc, 0, sizeof(enc)); uint8_t PSKcf = (wordData >> 10) & 0x3; char cf[10]; memset(cf, 0, sizeof(cf)); uint8_t delay = (wordData >> 12) & 0x3; char cdelay[33]; memset(cdelay, 0, sizeof(cdelay)); uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData); uint8_t LWR = numblks + 5 - 1; //last word read switch (encoder) { case 0: snprintf(enc, sizeof(enc), "NRZ"); break; case 1: snprintf(enc, sizeof(enc), "Manchester"); break; case 2: snprintf(enc, sizeof(enc), "Biphase"); break; case 3: snprintf(enc, sizeof(enc), "Miller"); break; case 4: snprintf(enc, sizeof(enc), "PSK1"); break; case 5: snprintf(enc, sizeof(enc), "PSK2"); break; case 6: snprintf(enc, sizeof(enc), "PSK3"); break; case 7: snprintf(enc, sizeof(enc), "Unknown"); break; case 8: snprintf(enc, sizeof(enc), "FSK1"); break; case 9: snprintf(enc, sizeof(enc), "FSK2"); break; default: snprintf(enc, sizeof(enc), "Unknown"); break; } switch (PSKcf) { case 0: snprintf(cf, sizeof(cf), "RF/2"); break; case 1: snprintf(cf, sizeof(cf), "RF/8"); break; case 2: snprintf(cf, sizeof(cf), "RF/4"); break; case 3: snprintf(cf, sizeof(cf), "unknown"); break; } switch (delay) { case 0: snprintf(cdelay, sizeof(cdelay), "no delay"); break; case 1: snprintf(cdelay, sizeof(cdelay), "BP/8 or 1/8th bit period delay"); break; case 2: snprintf(cdelay, sizeof(cdelay), "BP/4 or 1/4th bit period delay"); break; case 3: snprintf(cdelay, sizeof(cdelay), "no delay"); break; } uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ) >> 18; uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ) >> 19; uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ) >> 20; uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ) >> 21; uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE) >> 22; uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED) >> 23; uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST) >> 24; uint8_t pigeon = (wordData & (1 << 26)) >> 26; PrintAndLogEx(NORMAL, "ConfigWord: %08X (Word 4)\n", wordData); PrintAndLogEx(NORMAL, "Config Breakdown:"); PrintAndLogEx(NORMAL, " Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); PrintAndLogEx(NORMAL, " Encoder: %u | %s", encoder, enc); PrintAndLogEx(NORMAL, " PSK CF: %u | %s", PSKcf, cf); PrintAndLogEx(NORMAL, " Delay: %u | %s", delay, cdelay); PrintAndLogEx(NORMAL, " LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks); PrintAndLogEx(NORMAL, " ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required"); PrintAndLogEx(NORMAL, " ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required"); PrintAndLogEx(NORMAL, "WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required"); PrintAndLogEx(NORMAL, " WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required"); PrintAndLogEx(NORMAL, " R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off"); PrintAndLogEx(NORMAL, " Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted"); PrintAndLogEx(NORMAL, " R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled"); PrintAndLogEx(NORMAL, " Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled"); } void printEM4x05info(uint32_t block0, uint32_t serial) { uint8_t chipType = (block0 >> 1) & 0xF; uint8_t cap = (block0 >> 5) & 3; uint16_t custCode = (block0 >> 9) & 0x3FF; switch (chipType) { case 9: PrintAndLogEx(NORMAL, "\n Chip Type: %u | EM4305", chipType); break; case 8: PrintAndLogEx(NORMAL, "\n Chip Type: %u | EM4205", chipType); break; case 4: PrintAndLogEx(NORMAL, " Chip Type: %u | Unknown", chipType); break; case 2: PrintAndLogEx(NORMAL, " Chip Type: %u | EM4469", chipType); break; //add more here when known default: PrintAndLogEx(NORMAL, " Chip Type: %u Unknown", chipType); break; } switch (cap) { case 3: PrintAndLogEx(NORMAL, " Cap Type: %u | 330pF", cap); break; case 2: PrintAndLogEx(NORMAL, " Cap Type: %u | %spF", cap, (chipType == 2) ? "75" : "210"); break; case 1: PrintAndLogEx(NORMAL, " Cap Type: %u | 250pF", cap); break; case 0: PrintAndLogEx(NORMAL, " Cap Type: %u | no resonant capacitor", cap); break; default: PrintAndLogEx(NORMAL, " Cap Type: %u | unknown", cap); break; } PrintAndLogEx(NORMAL, " Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default" : "Unknown"); if (serial != 0) PrintAndLogEx(NORMAL, "\n Serial #: %08X\n", serial); } void printEM4x05ProtectionBits(uint32_t word) { for (uint8_t i = 0; i < 15; i++) { PrintAndLogEx(NORMAL, " Word: %02u | %s", i, (((1 << i) & word) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); if (i == 14) PrintAndLogEx(NORMAL, " Word: %02u | %s", i + 1, (((1 << i) & word) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); } } //quick test for EM4x05/EM4x69 tag bool EM4x05IsBlock0(uint32_t *word) { int res = EM4x05ReadWord_ext(0, 0, false, word); return (res > 0) ? true : false; } int CmdEM4x05Info(const char *Cmd) { #define EM_SERIAL_BLOCK 1 #define EM_CONFIG_BLOCK 4 #define EM_PROT1_BLOCK 14 #define EM_PROT2_BLOCK 15 uint32_t pwd; uint32_t word = 0, block0 = 0, serial = 0; bool usePwd = false; uint8_t ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_lf_em4x05_info(); // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) pwd = param_get32ex(Cmd, 0, 1, 16); if (pwd != 1) usePwd = true; // read word 0 (chip info) // block 0 can be read even without a password. if (!EM4x05IsBlock0(&block0)) return -1; // read word 1 (serial #) doesn't need pwd // continue if failed, .. non blocking fail. EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial); printEM4x05info(block0, serial); // read word 4 (config block) // needs password if one is set if (EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != 1) return 0; printEM4x05config(word); // read word 14 and 15 to see which is being used for the protection bits if (EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != 1) { return 0; } // if status bit says this is not the used protection word if (!(word & 0x8000)) { if (EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != 1) return 0; } //something went wrong if (!(word & 0x8000)) return 0; printEM4x05ProtectionBits(word); return 1; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, //{"410x_demod", CmdEMdemodASK, 0, "Extract ID from EM410x tag on antenna)"}, {"410x_demod", CmdEM410xDemod, 1, "demodulate a EM410x tag from the GraphBuffer"}, {"410x_read", CmdEM410xRead, 0, "attempt to read and extract tag data"}, {"410x_sim", CmdEM410xSim, 0, "simulate EM410x tag"}, {"410x_brute", CmdEM410xBrute, 0, "reader bruteforce attack by simulating EM410x tags"}, {"410x_watch", CmdEM410xWatch, 0, "watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, {"410x_spoof", CmdEM410xWatchnSpoof, 0, "watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, {"410x_write", CmdEM410xWrite, 0, "write EM410x UID to T5555(Q5) or T55x7 tag"}, {"4x05_dump", CmdEM4x05Dump, 0, "dump EM4x05/EM4x69 tag"}, {"4x05_info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"}, {"4x05_read", CmdEM4x05Read, 0, "read word data from EM4x05/EM4x69"}, {"4x05_write", CmdEM4x05Write, 0, "write word data to EM4x05/EM4x69"}, {"4x50_dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"}, {"4x50_read", CmdEM4x50Read, 0, "read word data from EM4x50"}, {"4x50_write", CmdEM4x50Write, 0, "write word data to EM4x50"}, {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }