//----------------------------------------------------------------------------- // Copyright (C) 2017 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // EMV core functions //----------------------------------------------------------------------------- #include "emvcore.h" #include "emvjson.h" #include "util_posix.h" // Got from here. Thanks) // https://eftlab.co.uk/index.php/site-map/knowledge-base/211-emv-aid-rid-pix static const char *PSElist [] = { "325041592E5359532E4444463031", // 2PAY.SYS.DDF01 - Visa Proximity Payment System Environment - PPSE "315041592E5359532E4444463031" // 1PAY.SYS.DDF01 - Visa Payment System Environment - PSE }; //static const size_t PSElistLen = sizeof(PSElist)/sizeof(char*); char *TransactionTypeStr[] = { "MSD", "VSDC", "qVCDCMCHIP", "CDA" }; typedef struct { enum CardPSVendor vendor; const char* aid; } TAIDList; static const TAIDList AIDlist [] = { // Visa International { CV_VISA, "A00000000305076010"}, // VISA ELO Credit { CV_VISA, "A0000000031010" }, // VISA Debit/Credit (Classic) { CV_VISA, "A000000003101001" }, // VISA Credit { CV_VISA, "A000000003101002" }, // VISA Debit { CV_VISA, "A0000000032010" }, // VISA Electron { CV_VISA, "A0000000032020" }, // VISA { CV_VISA, "A0000000033010" }, // VISA Interlink { CV_VISA, "A0000000034010" }, // VISA Specific { CV_VISA, "A0000000035010" }, // VISA Specific { CV_VISA, "A0000000036010" }, // Domestic Visa Cash Stored Value { CV_VISA, "A0000000036020" }, // International Visa Cash Stored Value { CV_VISA, "A0000000038002" }, // VISA Auth, VisaRemAuthen EMV-CAP (DPA) { CV_VISA, "A0000000038010" }, // VISA Plus { CV_VISA, "A0000000039010" }, // VISA Loyalty { CV_VISA, "A000000003999910" }, // VISA Proprietary ATM // Visa USA { CV_VISA, "A000000098" }, // Debit Card { CV_VISA, "A0000000980848" }, // Debit Card // Mastercard International { CV_MASTERCARD, "A00000000401" }, // MasterCard PayPass { CV_MASTERCARD, "A0000000041010" }, // MasterCard Credit { CV_MASTERCARD, "A00000000410101213" }, // MasterCard Credit { CV_MASTERCARD, "A00000000410101215" }, // MasterCard Credit { CV_MASTERCARD, "A0000000042010" }, // MasterCard Specific { CV_MASTERCARD, "A0000000043010" }, // MasterCard Specific { CV_MASTERCARD, "A0000000043060" }, // Maestro (Debit) { CV_MASTERCARD, "A000000004306001" }, // Maestro (Debit) { CV_MASTERCARD, "A0000000044010" }, // MasterCard Specific { CV_MASTERCARD, "A0000000045010" }, // MasterCard Specific { CV_MASTERCARD, "A0000000046000" }, // Cirrus { CV_MASTERCARD, "A0000000048002" }, // SecureCode Auth EMV-CAP { CV_MASTERCARD, "A0000000049999" }, // MasterCard PayPass // American Express { CV_AMERICANEXPRESS, "A000000025" }, { CV_AMERICANEXPRESS, "A0000000250000" }, { CV_AMERICANEXPRESS, "A00000002501" }, { CV_AMERICANEXPRESS, "A000000025010402" }, { CV_AMERICANEXPRESS, "A000000025010701" }, { CV_AMERICANEXPRESS, "A000000025010801" }, // Groupement des Cartes Bancaires "CB" { CV_CB, "A0000000421010" }, // Cartes Bancaire EMV Card { CV_CB, "A0000000422010" }, { CV_CB, "A0000000423010" }, { CV_CB, "A0000000424010" }, { CV_CB, "A0000000425010" }, // JCB CO., LTD. { CV_JCB, "A00000006510" }, // JCB { CV_JCB, "A0000000651010" }, // JCB J Smart Credit // Other { CV_OTHER, "A0000001544442" }, // Banricompras Debito - Banrisul - Banco do Estado do Rio Grande do SUL - S.A. { CV_OTHER, "F0000000030001" }, // BRADESCO { CV_OTHER, "A0000005241010" }, // RuPay - RuPay { CV_OTHER, "D5780000021010" } // Bankaxept - Bankaxept }; static const size_t AIDlistLen = sizeof(AIDlist)/sizeof(TAIDList); static bool APDULogging = false; void SetAPDULogging(bool logging) { APDULogging = logging; } enum CardPSVendor GetCardPSVendor(uint8_t * AID, size_t AIDlen) { char buf[100] = {0}; if (AIDlen < 1) return CV_NA; hex_to_buffer((uint8_t *)buf, AID, AIDlen, sizeof(buf) - 1, 0, 0, true); for(int i = 0; i < AIDlistLen; i ++) { if (strncmp(AIDlist[i].aid, buf, strlen(AIDlist[i].aid)) == 0){ return AIDlist[i].vendor; } } return CV_NA; } static bool print_cb(void *data, const struct tlv *tlv, int level, bool is_leaf) { emv_tag_dump(tlv, stdout, level); if (is_leaf) { dump_buffer(tlv->value, tlv->len, stdout, level); } return true; } bool TLVPrintFromBuffer(uint8_t *data, int datalen) { struct tlvdb *t = NULL; t = tlvdb_parse_multi(data, datalen); if (t) { PrintAndLogEx(NORMAL, "-------------------- TLV decoded --------------------"); tlvdb_visit(t, print_cb, NULL, 0); tlvdb_free(t); return true; } else { PrintAndLogEx(WARNING, "TLV ERROR: Can't parse response as TLV tree."); } return false; } void TLVPrintFromTLVLev(struct tlvdb *tlv, int level) { if (!tlv) return; tlvdb_visit(tlv, print_cb, NULL, level); } void TLVPrintFromTLV(struct tlvdb *tlv) { TLVPrintFromTLVLev(tlv, 0); } void TLVPrintAIDlistFromSelectTLV(struct tlvdb *tlv) { PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|"); PrintAndLogEx(NORMAL, "| AID |Priority| Name |"); PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|"); struct tlvdb *ttmp = tlvdb_find(tlv, 0x6f); if (!ttmp) PrintAndLogEx(NORMAL, "| none |"); while (ttmp) { const struct tlv *tgAID = tlvdb_get_inchild(ttmp, 0x84, NULL); const struct tlv *tgName = tlvdb_get_inchild(ttmp, 0x50, NULL); const struct tlv *tgPrio = tlvdb_get_inchild(ttmp, 0x87, NULL); if (!tgAID) break; PrintAndLogEx(NORMAL, "|%s| %s |%s|", sprint_hex_inrow_ex(tgAID->value, tgAID->len, 18), (tgPrio) ? sprint_hex(tgPrio->value, 1) : " ", (tgName) ? sprint_ascii_ex(tgName->value, tgName->len, 25) : " "); ttmp = tlvdb_find_next(ttmp, 0x6f); } PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|"); } struct tlvdb *GetPANFromTrack2(const struct tlv *track2) { char track2Hex[200] = {0}; uint8_t PAN[100] = {0}; int PANlen = 0; char *tmp = track2Hex; if (!track2) return NULL; for (int i = 0; i < track2->len; ++i, tmp += 2) sprintf(tmp, "%02x", (unsigned int)track2->value[i]); int posD = strchr(track2Hex, 'd') - track2Hex; if (posD < 1) return NULL; track2Hex[posD] = 0; if (strlen(track2Hex) % 2) { track2Hex[posD] = 'F'; track2Hex[posD + 1] = '\0'; } param_gethex_to_eol(track2Hex, 0, PAN, sizeof(PAN), &PANlen); return tlvdb_fixed(0x5a, PANlen, PAN); } struct tlvdb *GetdCVVRawFromTrack2(const struct tlv *track2) { char track2Hex[200] = {0}; char dCVVHex[100] = {0}; uint8_t dCVV[100] = {0}; int dCVVlen = 0; const int PINlen = 5; // must calculated from 9F67 MSD Offset but i have not seen this tag) char *tmp = track2Hex; if (!track2) return NULL; for (int i = 0; i < track2->len; ++i, tmp += 2) sprintf(tmp, "%02x", (unsigned int)track2->value[i]); int posD = strchr(track2Hex, 'd') - track2Hex; if (posD < 1) return NULL; memset(dCVVHex, '0', 32); // ATC memcpy(dCVVHex + 0, track2Hex + posD + PINlen + 11, 4); // PAN 5 hex memcpy(dCVVHex + 4, track2Hex, 5); // expire date memcpy(dCVVHex + 9, track2Hex + posD + 1, 4); // service code memcpy(dCVVHex + 13, track2Hex + posD + 5, 3); param_gethex_to_eol(dCVVHex, 0, dCVV, sizeof(dCVV), &dCVVlen); return tlvdb_fixed(0x02, dCVVlen, dCVV); } int EMVExchangeEx(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, sAPDU apdu, bool IncludeLe, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { uint8_t data[APDU_RES_LEN] = {0}; *ResultLen = 0; if (sw) *sw = 0; uint16_t isw = 0; int res = 0; if (ActivateField) { DropField(); msleep(50); } // COMPUTE APDU memcpy(data, &apdu, 5); if (apdu.data) memcpy(&data[5], apdu.data, apdu.Lc); if (APDULogging) PrintAndLogEx(SUCCESS, ">>>> %s", sprint_hex(data, (IncludeLe?6:5) + apdu.Lc)); switch(channel) { case ECC_CONTACTLESS: // 6 byes + data = INS + CLA + P1 + P2 + Lc + + Le(?IncludeLe) res = ExchangeAPDU14a(data, (IncludeLe?6:5) + apdu.Lc, ActivateField, LeaveFieldON, Result, (int)MaxResultLen, (int *)ResultLen); if (res) { return res; } break; case ECC_CONTACT: //int ExchangeAPDUSC(uint8_t *datain, int datainlen, bool activateCard, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen); res = ExchangeAPDUSC(data, (IncludeLe?6:5) + apdu.Lc, ActivateField, LeaveFieldON, Result, (int)MaxResultLen, (int *)ResultLen); if (res) { return res; } break; } if (APDULogging) PrintAndLogEx(SUCCESS, "<<<< %s", sprint_hex(Result, *ResultLen)); if (*ResultLen < 2) { return 200; } *ResultLen -= 2; isw = Result[*ResultLen] * 0x0100 + Result[*ResultLen + 1]; if (sw) *sw = isw; if (isw != 0x9000) { if (APDULogging) { if (*sw >> 8 == 0x61) { PrintAndLogEx(ERR, "APDU chaining len:%02x -->", *sw & 0xff); } else { PrintAndLogEx(ERR, "APDU(%02x%02x) ERROR: [%4X] %s", apdu.CLA, apdu.INS, isw, GetAPDUCodeDescription(*sw >> 8, *sw & 0xff)); return 5; } } } // add to tlv tree if (tlv) { struct tlvdb *t = tlvdb_parse_multi(Result, *ResultLen); tlvdb_add(tlv, t); } return 0; } int EMVExchange(EMVCommandChannel channel, bool LeaveFieldON, sAPDU apdu, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchangeEx(channel, false, LeaveFieldON, apdu, (channel == ECC_CONTACTLESS), Result, MaxResultLen, ResultLen, sw, tlv); } int EMVSelect(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, uint8_t *AID, size_t AIDLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchangeEx(channel, ActivateField, LeaveFieldON, (sAPDU){0x00, 0xa4, 0x04, 0x00, AIDLen, AID}, (channel == ECC_CONTACTLESS), Result, MaxResultLen, ResultLen, sw, tlv); } int EMVSelectPSE(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, uint8_t PSENum, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw) { uint8_t buf[APDU_AID_LEN] = {0}; *ResultLen = 0; int len = 0; int res = 0; switch (PSENum) { case 1: param_gethex_to_eol(PSElist[1], 0, buf, sizeof(buf), &len); break; case 2: param_gethex_to_eol(PSElist[0], 0, buf, sizeof(buf), &len); break; default: return -1; } // select res = EMVSelect(channel, ActivateField, LeaveFieldON, buf, len, Result, MaxResultLen, ResultLen, sw, NULL); return res; } int EMVSelectWithRetry(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, uint8_t *AID, size_t AIDLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { int retrycnt = 0; int res = 0; do { res = EMVSelect(channel, false, true, AID, AIDLen, Result, MaxResultLen, ResultLen, sw, tlv); // retry if error and not returned sw error if (res && res != 5) { if (++retrycnt < 3){ continue; } else { // card select error, proxmark error if (res == 1) { PrintAndLogEx(WARNING, "Exit..."); return 1; } retrycnt = 0; PrintAndLogEx(NORMAL, "Retry failed [%s]. Skiped...", sprint_hex_inrow(AID, AIDLen)); return res; } } } while (res && res != 5); return res; } int EMVCheckAID(EMVCommandChannel channel, bool decodeTLV, struct tlvdb *tlvdbelm, struct tlvdb *tlv){ uint8_t data[APDU_RES_LEN] = {0}; size_t datalen = 0; int res = 0; uint16_t sw = 0; while (tlvdbelm) { const struct tlv *tgAID = tlvdb_get_inchild(tlvdbelm, 0x4f, NULL); if (tgAID) { res = EMVSelectWithRetry(channel, false, true, (uint8_t *)tgAID->value, tgAID->len, data, sizeof(data), &datalen, &sw, tlv); // if returned sw error if (res == 5) { // next element tlvdbelm = tlvdb_find_next(tlvdbelm, 0x61); continue; } if (res) break; // all is ok if (decodeTLV){ PrintAndLogEx(NORMAL, "%s:", sprint_hex_inrow(tgAID->value, tgAID->len)); TLVPrintFromBuffer(data, datalen); } } tlvdbelm = tlvdb_find_next(tlvdbelm, 0x61); } return res; } int EMVSearchPSE(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, uint8_t PSENum, bool decodeTLV, struct tlvdb *tlv) { uint8_t data[APDU_RES_LEN] = {0}; size_t datalen = 0; uint8_t sfidata[0x11][APDU_RES_LEN]; size_t sfidatalen[0x11] = {0}; uint16_t sw = 0; int res; bool fileFound = false; // select PPSE res = EMVSelectPSE(channel, ActivateField, true, PSENum, data, sizeof(data), &datalen, &sw); if (!res){ if (sw != 0x9000) { PrintAndLogEx(FAILED, "Select PSE error. APDU error: %04x.", sw); return 1; } struct tlvdb *t = NULL; t = tlvdb_parse_multi(data, datalen); if (t) { // PSE/PPSE with SFI struct tlvdb *tsfi = tlvdb_find_path(t, (tlv_tag_t[]){0x6f, 0xa5, 0x88, 0x00}); if (tsfi) { uint8_t sfin = 0; tlv_get_uint8(tlvdb_get_tlv(tsfi), &sfin); PrintAndLogEx(INFO, "* PPSE get SFI: 0x%02x.", sfin); for (uint8_t ui = 0x01; ui <= 0x10; ui++) { PrintAndLogEx(INFO, "* * Get SFI: 0x%02x. num: 0x%02x", sfin, ui); res = EMVReadRecord(channel, true, sfin, ui, sfidata[ui], APDU_RES_LEN, &sfidatalen[ui], &sw, NULL); // end of records if (sw == 0x6a83) { sfidatalen[ui] = 0; PrintAndLogEx(INFO, "* * PPSE get SFI. End of records."); break; } // error catch! if (sw != 0x9000) { sfidatalen[ui] = 0; PrintAndLogEx(FAILED, "PPSE get Error. APDU error: %04x.", sw); break; } if (decodeTLV){ TLVPrintFromBuffer(sfidata[ui], sfidatalen[ui]); } } for (uint8_t ui = 0x01; ui <= 0x10; ui++) { if (sfidatalen[ui]) { struct tlvdb *tsfi = NULL; tsfi = tlvdb_parse_multi(sfidata[ui], sfidatalen[ui]); if (tsfi) { struct tlvdb *tsfitmp = tlvdb_find_path(tsfi, (tlv_tag_t[]){0x70, 0x61, 0x00}); if (!tsfitmp) { PrintAndLogEx(FAILED, "SFI 0x%02d don't have records.", sfidatalen[ui]); continue; } res = EMVCheckAID(channel, decodeTLV, tsfitmp, tlv); fileFound = true; } tlvdb_free(tsfi); } } } // PSE/PPSE plain (wo SFI) struct tlvdb *ttmp = tlvdb_find_path(t, (tlv_tag_t[]){0x6f, 0xa5, 0xbf0c, 0x61, 0x00}); if (ttmp) { res = EMVCheckAID(channel, decodeTLV, ttmp, tlv); fileFound = true; } if (!fileFound) PrintAndLogEx(FAILED, "PPSE don't have records."); tlvdb_free(t); } else { PrintAndLogEx(WARNING, "PPSE ERROR: Can't get TLV from response."); } } else { PrintAndLogEx(WARNING, "PPSE ERROR: Can't select PPSE AID. Error: %d", res); } if(!LeaveFieldON) DropField(); return res; } int EMVSearch(EMVCommandChannel channel, bool ActivateField, bool LeaveFieldON, bool decodeTLV, struct tlvdb *tlv) { uint8_t aidbuf[APDU_AID_LEN] = {0}; int aidlen = 0; uint8_t data[APDU_RES_LEN] = {0}; size_t datalen = 0; uint16_t sw = 0; int res = 0; int retrycnt = 0; for(int i = 0; i < AIDlistLen; i ++) { param_gethex_to_eol(AIDlist[i].aid, 0, aidbuf, sizeof(aidbuf), &aidlen); res = EMVSelect(channel, (i == 0) ? ActivateField : false, (i == AIDlistLen - 1) ? LeaveFieldON : true, aidbuf, aidlen, data, sizeof(data), &datalen, &sw, tlv); // retry if error and not returned sw error if (res && res != 5) { if (++retrycnt < 3){ i--; } else { // (1) - card select error, proxmark error OR (200) - result length = 0 if (res == 1 || res == 200) { PrintAndLogEx(WARNING, "Exit..."); return 1; } retrycnt = 0; PrintAndLogEx(FAILED, "Retry failed [%s]. Skipped...", AIDlist[i].aid); } continue; } retrycnt = 0; if (res) continue; if (!datalen) continue; if (decodeTLV) { PrintAndLogEx(SUCCESS, "%s", AIDlist[i].aid); TLVPrintFromBuffer(data, datalen); } } return 0; } int EMVSelectApplication(struct tlvdb *tlv, uint8_t *AID, size_t *AIDlen) { // check priority. 0x00 - highest int prio = 0xffff; *AIDlen = 0; struct tlvdb *ttmp = tlvdb_find(tlv, 0x6f); if (!ttmp) return 1; while (ttmp) { const struct tlv *tgAID = tlvdb_get_inchild(ttmp, 0x84, NULL); const struct tlv *tgPrio = tlvdb_get_inchild(ttmp, 0x87, NULL); if (!tgAID) break; if (tgPrio) { int pt = bytes_to_num((uint8_t*)tgPrio->value, (tgPrio->len < 2) ? tgPrio->len : 2); if (pt < prio) { prio = pt; memcpy(AID, tgAID->value, tgAID->len); *AIDlen = tgAID->len; } } else { // takes the first application from list wo priority if (!*AIDlen) { memcpy(AID, tgAID->value, tgAID->len); *AIDlen = tgAID->len; } } ttmp = tlvdb_find_next(ttmp, 0x6f); } return 0; } int EMVGPO(EMVCommandChannel channel, bool LeaveFieldON, uint8_t *PDOL, size_t PDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchange(channel, LeaveFieldON, (sAPDU){0x80, 0xa8, 0x00, 0x00, PDOLLen, PDOL}, Result, MaxResultLen, ResultLen, sw, tlv); } int EMVReadRecord(EMVCommandChannel channel, bool LeaveFieldON, uint8_t SFI, uint8_t SFIrec, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { int res = EMVExchange(channel, LeaveFieldON, (sAPDU){0x00, 0xb2, SFIrec, (SFI << 3) | 0x04, 0, NULL}, Result, MaxResultLen, ResultLen, sw, tlv); if (*sw == 0x6700) { PrintAndLogEx(INFO, ">>> trying to reissue command withouth Le..."); res = EMVExchangeEx(channel, false, LeaveFieldON, (sAPDU){0x00, 0xb2, SFIrec, (SFI << 3) | 0x04, 0, NULL}, false, Result, MaxResultLen, ResultLen, sw, tlv); } return res; } int EMVAC(EMVCommandChannel channel, bool LeaveFieldON, uint8_t RefControl, uint8_t *CDOL, size_t CDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchange(channel, LeaveFieldON, (sAPDU){0x80, 0xae, RefControl, 0x00, CDOLLen, CDOL}, Result, MaxResultLen, ResultLen, sw, tlv); } int EMVGenerateChallenge(EMVCommandChannel channel, bool LeaveFieldON, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { int res = EMVExchange(channel, LeaveFieldON, (sAPDU){0x00, 0x84, 0x00, 0x00, 0x00, NULL}, Result, MaxResultLen, ResultLen, sw, tlv); if (*sw == 0x6700) { PrintAndLogEx(INFO, ">>> trying to reissue command withouth Le..."); res = EMVExchangeEx(channel, false, LeaveFieldON, (sAPDU){0x00, 0x84, 0x00, 0x00, 0x00, NULL}, false, Result, MaxResultLen, ResultLen, sw, tlv); } return res; } int EMVInternalAuthenticate(EMVCommandChannel channel, bool LeaveFieldON, uint8_t *DDOL, size_t DDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchangeEx(channel, false, LeaveFieldON, (sAPDU){0x00, 0x88, 0x00, 0x00, DDOLLen, DDOL}, true, Result, MaxResultLen, ResultLen, sw, tlv); } int MSCComputeCryptoChecksum(EMVCommandChannel channel, bool LeaveFieldON, uint8_t *UDOL, uint8_t UDOLlen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) { return EMVExchange(channel, LeaveFieldON, (sAPDU){0x80, 0x2a, 0x8e, 0x80, UDOLlen, UDOL}, Result, MaxResultLen, ResultLen, sw, tlv); } // Authentication struct emv_pk *get_ca_pk(struct tlvdb *db) { const struct tlv *df_tlv = tlvdb_get(db, 0x84, NULL); const struct tlv *caidx_tlv = tlvdb_get(db, 0x8f, NULL); if (!df_tlv || !caidx_tlv || df_tlv->len < 6 || caidx_tlv->len != 1) return NULL; PrintAndLogEx(NORMAL, "CA public key index 0x%0x", caidx_tlv->value[0]); return emv_pk_get_ca_pk(df_tlv->value, caidx_tlv->value[0]); } int trSDA(struct tlvdb *tlv) { struct emv_pk *pk = get_ca_pk(tlv); if (!pk) { PrintAndLogEx(WARNING, "Error: Key not found. Exit."); return 2; } struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv); if (!issuer_pk) { emv_pk_free(pk); PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit."); return 2; } PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx", issuer_pk->rid[0], issuer_pk->rid[1], issuer_pk->rid[2], issuer_pk->rid[3], issuer_pk->rid[4], issuer_pk->index, issuer_pk->serial[0], issuer_pk->serial[1], issuer_pk->serial[2] ); const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL); if (!sda_tlv || sda_tlv->len < 1) { emv_pk_free(issuer_pk); emv_pk_free(pk); PrintAndLogEx(WARNING, "Can't find input list for Offline Data Authentication. Exit."); return 3; } struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv); if (dac_db) { const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL); PrintAndLogEx(NORMAL, "SDA verified OK. (Data Authentication Code: %02hhx:%02hhx)\n", dac_tlv->value[0], dac_tlv->value[1]); tlvdb_add(tlv, dac_db); } else { emv_pk_free(issuer_pk); emv_pk_free(pk); PrintAndLogEx(WARNING, "SSAD verify error"); return 4; } emv_pk_free(issuer_pk); emv_pk_free(pk); return 0; } static const unsigned char default_ddol_value[] = {0x9f, 0x37, 0x04}; static struct tlv default_ddol_tlv = {.tag = 0x9f49, .len = 3, .value = default_ddol_value }; int trDDA(EMVCommandChannel channel, bool decodeTLV, struct tlvdb *tlv) { uint8_t buf[APDU_RES_LEN] = {0}; size_t len = 0; uint16_t sw = 0; struct emv_pk *pk = get_ca_pk(tlv); if (!pk) { PrintAndLogEx(WARNING, "Error: Key not found. Exit."); return 2; } const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL); /* if (!sda_tlv || sda_tlv->len < 1) { it may be 0!!!! emv_pk_free(pk); PrintAndLogEx(WARNING, "Error: Can't find input list for Offline Data Authentication. Exit."); return 3; } */ struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv); if (!issuer_pk) { emv_pk_free(pk); PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit."); return 2; } PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", issuer_pk->rid[0], issuer_pk->rid[1], issuer_pk->rid[2], issuer_pk->rid[3], issuer_pk->rid[4], issuer_pk->index, issuer_pk->serial[0], issuer_pk->serial[1], issuer_pk->serial[2] ); struct emv_pk *icc_pk = emv_pki_recover_icc_cert(issuer_pk, tlv, sda_tlv); if (!icc_pk) { emv_pk_free(pk); emv_pk_free(issuer_pk); PrintAndLogEx(WARNING, "Error: ICC certificate not found. Exit."); return 2; } PrintAndLogEx(SUCCESS, "ICC PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", icc_pk->rid[0], icc_pk->rid[1], icc_pk->rid[2], icc_pk->rid[3], icc_pk->rid[4], icc_pk->index, icc_pk->serial[0], icc_pk->serial[1], icc_pk->serial[2] ); if (tlvdb_get(tlv, 0x9f2d, NULL)) { struct emv_pk *icc_pe_pk = emv_pki_recover_icc_pe_cert(issuer_pk, tlv); if (!icc_pe_pk) { PrintAndLogEx(WARNING, "WARNING: ICC PE PK recover error. "); } else { PrintAndLogEx(SUCCESS, "ICC PE PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", icc_pe_pk->rid[0], icc_pe_pk->rid[1], icc_pe_pk->rid[2], icc_pe_pk->rid[3], icc_pe_pk->rid[4], icc_pe_pk->index, icc_pe_pk->serial[0], icc_pe_pk->serial[1], icc_pe_pk->serial[2] ); } } else { PrintAndLogEx(INFO, "ICC PE PK (PIN Encipherment Public Key Certificate) not found.\n"); } // 9F4B: Signed Dynamic Application Data const struct tlv *sdad_tlv = tlvdb_get(tlv, 0x9f4b, NULL); // DDA with internal authenticate OR fDDA with filled 0x9F4B tag (GPO result) // EMV kernel3 v2.4, contactless book C-3, C.1., page 147 if (sdad_tlv) { PrintAndLogEx(NORMAL, "\n* * Got Signed Dynamic Application Data (9F4B) form GPO. Maybe fDDA..."); const struct tlvdb *atc_db = emv_pki_recover_atc_ex(icc_pk, tlv, true); if (!atc_db) { PrintAndLogEx(WARNING, "Error: Can't recover IDN (ICC Dynamic Number)"); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 8; } // 9f36 Application Transaction Counter (ATC) const struct tlv *atc_tlv = tlvdb_get(atc_db, 0x9f36, NULL); if(atc_tlv) { PrintAndLogEx(NORMAL, "\nATC (Application Transaction Counter) [%zu] %s", atc_tlv->len, sprint_hex_inrow(atc_tlv->value, atc_tlv->len)); const struct tlv *core_atc_tlv = tlvdb_get(tlv, 0x9f36, NULL); if(tlv_equal(core_atc_tlv, atc_tlv)) { PrintAndLogEx(SUCCESS, "ATC check OK."); PrintAndLogEx(SUCCESS, "fDDA (fast DDA) verified OK."); } else { PrintAndLogEx(WARNING, "Error: fDDA verified, but ATC in the certificate and ATC in the record not the same."); } } else { PrintAndLogEx(NORMAL, "\nERROR: fDDA (fast DDA) verify error"); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 9; } } else { struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv); if (dac_db) { const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL); PrintAndLogEx(NORMAL, "SDA verified OK. (Data Authentication Code: %02hhx:%02hhx)\n", dac_tlv->value[0], dac_tlv->value[1]); tlvdb_add(tlv, dac_db); } else { PrintAndLogEx(WARNING, "Error: SSAD verify error"); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 4; } PrintAndLogEx(NORMAL, "\n* Calc DDOL"); const struct tlv *ddol_tlv = tlvdb_get(tlv, 0x9f49, NULL); if (!ddol_tlv) { ddol_tlv = &default_ddol_tlv; PrintAndLogEx(NORMAL, "DDOL [9f49] not found. Using default DDOL"); } struct tlv *ddol_data_tlv = dol_process(ddol_tlv, tlv, 0); if (!ddol_data_tlv) { PrintAndLogEx(WARNING, "Error: Can't create DDOL TLV"); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 5; } PrintAndLogEx(NORMAL, "DDOL data[%d]: %s", ddol_data_tlv->len, sprint_hex(ddol_data_tlv->value, ddol_data_tlv->len)); PrintAndLogEx(NORMAL, "\n* Internal Authenticate"); int res = EMVInternalAuthenticate(channel, true, (uint8_t *)ddol_data_tlv->value, ddol_data_tlv->len, buf, sizeof(buf), &len, &sw, NULL); if (res) { PrintAndLogEx(WARNING, "Internal Authenticate error(%d): %4x. Exit...", res, sw); free(ddol_data_tlv); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 6; } struct tlvdb *dda_db = NULL; if (buf[0] == 0x80) { if (len < 3 ) { PrintAndLogEx(WARNING, "Error: Internal Authenticate format1 parsing error. length=%d", len); } else { // 9f4b Signed Dynamic Application Data dda_db = tlvdb_fixed(0x9f4b, len - 2, buf + 2); tlvdb_add(tlv, dda_db); if (decodeTLV){ PrintAndLogEx(NORMAL, "* * Decode response format 1:"); TLVPrintFromTLV(dda_db); } } } else { dda_db = tlvdb_parse_multi(buf, len); if(!dda_db) { PrintAndLogEx(WARNING, "Error: Can't parse Internal Authenticate result as TLV"); free(ddol_data_tlv); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 7; } tlvdb_add(tlv, dda_db); if (decodeTLV) TLVPrintFromTLV(dda_db); } struct tlvdb *idn_db = emv_pki_recover_idn_ex(icc_pk, dda_db, ddol_data_tlv, true); free(ddol_data_tlv); if (!idn_db) { PrintAndLogEx(WARNING, "Error: Can't recover IDN (ICC Dynamic Number)"); tlvdb_free(dda_db); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 8; } tlvdb_free(dda_db); // 9f4c ICC Dynamic Number const struct tlv *idn_tlv = tlvdb_get(idn_db, 0x9f4c, NULL); if(idn_tlv) { PrintAndLogEx(NORMAL, "\nIDN (ICC Dynamic Number) [%zu] %s", idn_tlv->len, sprint_hex_inrow(idn_tlv->value, idn_tlv->len)); PrintAndLogEx(NORMAL, "DDA verified OK."); tlvdb_add(tlv, idn_db); tlvdb_free(idn_db); } else { PrintAndLogEx(NORMAL, "\nERROR: DDA verify error"); tlvdb_free(idn_db); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 9; } } emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 0; } int trCDA(struct tlvdb *tlv, struct tlvdb *ac_tlv, struct tlv *pdol_data_tlv, struct tlv *ac_data_tlv) { struct emv_pk *pk = get_ca_pk(tlv); if (!pk) { PrintAndLogEx(WARNING, "Error: Key not found. Exit."); return 2; } const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL); if (!sda_tlv || sda_tlv->len < 1) { PrintAndLogEx(WARNING, "Error: Can't find input list for Offline Data Authentication. Exit."); emv_pk_free(pk); return 3; } struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv); if (!issuer_pk) { PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit."); emv_pk_free(pk); return 2; } PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", issuer_pk->rid[0], issuer_pk->rid[1], issuer_pk->rid[2], issuer_pk->rid[3], issuer_pk->rid[4], issuer_pk->index, issuer_pk->serial[0], issuer_pk->serial[1], issuer_pk->serial[2] ); struct emv_pk *icc_pk = emv_pki_recover_icc_cert(issuer_pk, tlv, sda_tlv); if (!icc_pk) { PrintAndLogEx(WARNING, "Error: ICC setrificate not found. Exit."); emv_pk_free(pk); emv_pk_free(issuer_pk); return 2; } PrintAndLogEx(SUCCESS, "ICC PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", icc_pk->rid[0], icc_pk->rid[1], icc_pk->rid[2], icc_pk->rid[3], icc_pk->rid[4], icc_pk->index, icc_pk->serial[0], icc_pk->serial[1], icc_pk->serial[2] ); struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv); if (dac_db) { const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL); PrintAndLogEx(NORMAL, "SSAD verified OK. (%02hhx:%02hhx)", dac_tlv->value[0], dac_tlv->value[1]); tlvdb_add(tlv, dac_db); } else { PrintAndLogEx(WARNING, "Error: SSAD verify error"); emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 4; } PrintAndLogEx(NORMAL, "\n* * Check Signed Dynamic Application Data (SDAD)"); struct tlvdb *idn_db = emv_pki_perform_cda_ex(icc_pk, tlv, ac_tlv, pdol_data_tlv, // pdol ac_data_tlv, // cdol1 NULL, // cdol2 true); if (idn_db) { const struct tlv *idn_tlv = tlvdb_get(idn_db, 0x9f4c, NULL); PrintAndLogEx(NORMAL, "\nIDN (ICC Dynamic Number) [%zu] %s", idn_tlv->len, sprint_hex_inrow(idn_tlv->value, idn_tlv->len)); PrintAndLogEx(NORMAL, "CDA verified OK."); tlvdb_add(tlv, idn_db); } else { PrintAndLogEx(NORMAL, "\nERROR: CDA verify error"); } emv_pk_free(pk); emv_pk_free(issuer_pk); emv_pk_free(icc_pk); return 0; } int RecoveryCertificates(struct tlvdb *tlvRoot, json_t *root) { struct emv_pk *pk = get_ca_pk(tlvRoot); if (!pk) { PrintAndLog("ERROR: Key not found. Exit."); return 1; } struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlvRoot); if (!issuer_pk) { emv_pk_free(pk); PrintAndLog("WARNING: Issuer certificate not found. Exit."); return 2; } PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx", issuer_pk->rid[0], issuer_pk->rid[1], issuer_pk->rid[2], issuer_pk->rid[3], issuer_pk->rid[4], issuer_pk->index, issuer_pk->serial[0], issuer_pk->serial[1], issuer_pk->serial[2] ); JsonSaveBufAsHex(root, "$.ApplicationData.RID", issuer_pk->rid, 5); char *issuer_pk_c = emv_pk_dump_pk(issuer_pk); JsonSaveStr(root, "$.ApplicationData.IssuerPublicKeyDec", issuer_pk_c); JsonSaveBufAsHex(root, "$.ApplicationData.IssuerPublicKeyModulus", issuer_pk->modulus, issuer_pk->mlen); free(issuer_pk_c); struct emv_pk *icc_pk = emv_pki_recover_icc_cert(issuer_pk, tlvRoot, NULL); if (!icc_pk) { emv_pk_free(pk); emv_pk_free(issuer_pk); PrintAndLogEx(WARNING, "WARNING: ICC certificate not found. Exit."); return 2; } PrintAndLogEx(SUCCESS, "ICC PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n", icc_pk->rid[0], icc_pk->rid[1], icc_pk->rid[2], icc_pk->rid[3], icc_pk->rid[4], icc_pk->index, icc_pk->serial[0], icc_pk->serial[1], icc_pk->serial[2] ); char *icc_pk_c = emv_pk_dump_pk(icc_pk); JsonSaveStr(root, "$.ApplicationData.ICCPublicKeyDec", icc_pk_c); JsonSaveBufAsHex(root, "$.ApplicationData.ICCPublicKeyModulus", icc_pk->modulus, icc_pk->mlen); free(issuer_pk_c); return 0; }