// Merlok, 2011, 2012 // people from mifare@nethemba.com, 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // mifare commands //----------------------------------------------------------------------------- #include #include #include #include #include "mifarehost.h" #include "proxmark3.h" // MIFARE int compar_int(const void * a, const void * b) { // didn't work: (the result is truncated to 32 bits) //return (*(uint64_t*)b - *(uint64_t*)a); // better: if (*(uint64_t*)b == *(uint64_t*)a) return 0; else if (*(uint64_t*)b > *(uint64_t*)a) return 1; else return -1; } // Compare 16 Bits out of cryptostate int Compare16Bits(const void * a, const void * b) { if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0; else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1; else return -1; } typedef struct { union { struct Crypto1State *slhead; uint64_t *keyhead; } head; union { struct Crypto1State *sltail; uint64_t *keytail; } tail; uint32_t len; uint32_t uid; uint32_t blockNo; uint32_t keyType; uint32_t nt; uint32_t ks1; } StateList_t; // wrapper function for multi-threaded lfsr_recovery32 void* nested_worker_thread(void *arg) { struct Crypto1State *p1; StateList_t *statelist = arg; statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++); statelist->len = p1 - statelist->head.slhead; statelist->tail.sltail = --p1; qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits); return statelist->head.slhead; } int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate) { uint16_t i, len; uint32_t uid; UsbCommand resp; StateList_t statelists[2]; struct Crypto1State *p1, *p2, *p3, *p4; // flush queue WaitForResponseTimeout(CMD_ACK,NULL,100); UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { len = resp.arg[1]; if (len == 2) { memcpy(&uid, resp.d.asBytes, 4); PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); for (i = 0; i < 2; i++) { statelists[i].blockNo = resp.arg[2] & 0xff; statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; statelists[i].uid = uid; memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); } } else { PrintAndLog("Got 0 keys from proxmark."); return 1; } } // calc keys pthread_t thread_id[2]; // create and run worker threads for (i = 0; i < 2; i++) { pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); } // wait for threads to terminate: for (i = 0; i < 2; i++) { pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); } // the first 16 Bits of the cryptostate already contain part of our key. // Create the intersection of the two lists based on these 16 Bits and // roll back the cryptostate p1 = p3 = statelists[0].head.slhead; p2 = p4 = statelists[1].head.slhead; while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { if (Compare16Bits(p1, p2) == 0) { struct Crypto1State savestate, *savep = &savestate; savestate = *p1; while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { *p3 = *p1; lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); p3++; p1++; } savestate = *p2; while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { *p4 = *p2; lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); p4++; p2++; } } else { while (Compare16Bits(p1, p2) == -1) p1++; while (Compare16Bits(p1, p2) == 1) p2++; } } p3->even = 0; p3->odd = 0; p4->even = 0; p4->odd = 0; statelists[0].len = p3 - statelists[0].head.slhead; statelists[1].len = p4 - statelists[1].head.slhead; statelists[0].tail.sltail=--p3; statelists[1].tail.sltail=--p4; // the statelists now contain possible keys. The key we are searching for must be in the // intersection of both lists. Create the intersection: qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int); qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int); uint64_t *p5, *p6, *p7; p5 = p7 = statelists[0].head.keyhead; p6 = statelists[1].head.keyhead; while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) { if (compar_int(p5, p6) == 0) { *p7++ = *p5++; p6++; } else { while (compar_int(p5, p6) == -1) p5++; while (compar_int(p5, p6) == 1) p6++; } } statelists[0].len = p7 - statelists[0].head.keyhead; statelists[0].tail.keytail=--p7; memset(resultKey, 0, 6); // The list may still contain several key candidates. Test each of them with mfCheckKeys for (i = 0; i < statelists[0].len; i++) { uint8_t keyBlock[6]; uint64_t key64; crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); num_to_bytes(key64, 6, keyBlock); key64 = 0; if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, 1, keyBlock, &key64)) { num_to_bytes(key64, 6, resultKey); break; } } free(statelists[0].head.slhead); free(statelists[1].head.slhead); return 0; } int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){ *key = 0; UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}}; memcpy(c.d.asBytes, keyBlock, 6 * keycnt); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1; if ((resp.arg[0] & 0xff) != 0x01) return 2; *key = bytes_to_num(resp.d.asBytes, 6); return 0; } // EMULATOR int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1; memcpy(data, resp.d.asBytes, blocksCount * 16); return 0; } int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; memcpy(c.d.asBytes, data, blocksCount * 16); SendCommand(&c); return 0; } // "MAGIC" CARD int mfCSetUID(uint8_t *uid, uint8_t *oldUID, bool wantWipe) { uint8_t block0[16]; memset(block0, 0, 16); memcpy(block0, uid, 4); block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // Mifare UID BCC // mifare classic SAK(byte 5) and ATQA(byte 6 and 7) block0[5] = 0x88; block0[6] = 0x04; block0[7] = 0x00; return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER); } int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_EML_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; memcpy(c.d.asBytes, data, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; if (uid != NULL) memcpy(uid, resp.d.asBytes, 4); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_EML_CGETBLOCK, {params, 0, blockNo}}; SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; memcpy(data, resp.d.asBytes, 16); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } // SNIFFER // constants static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; // variables char logHexFileName[200] = {0x00}; static uint8_t traceCard[4096] = {0x00}; static char traceFileName[200] = {0}; static int traceState = TRACE_IDLE; static uint8_t traceCurBlock = 0; static uint8_t traceCurKey = 0; struct Crypto1State *traceCrypto1 = NULL; struct Crypto1State *revstate; uint64_t lfsr; uint32_t ks2; uint32_t ks3; uint32_t uid; // serial number uint32_t nt; // tag challenge uint32_t nr_enc; // encrypted reader challenge uint32_t ar_enc; // encrypted reader response uint32_t at_enc; // encrypted tag response int isTraceCardEmpty(void) { return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); } int isBlockEmpty(int blockN) { for (int i = 0; i < 16; i++) if (traceCard[blockN * 16 + i] != 0) return 0; return 1; } int isBlockTrailer(int blockN) { return ((blockN & 0x03) == 0x03); } int loadTraceCard(uint8_t *tuid) { FILE * f; char buf[64]; uint8_t buf8[64]; int i, blockNum; if (!isTraceCardEmpty()) saveTraceCard(); memset(traceCard, 0x00, 4096); memcpy(traceCard, tuid + 3, 4); FillFileNameByUID(traceFileName, tuid, ".eml", 7); f = fopen(traceFileName, "r"); if (!f) return 1; blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { PrintAndLog("File reading error."); fclose(f); return 2; } if (strlen(buf) < 32){ if (feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); memcpy(traceCard + blockNum * 16, buf8, 16); blockNum++; } fclose(f); return 0; } int saveTraceCard(void) { FILE * f; if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; f = fopen(traceFileName, "w+"); for (int i = 0; i < 64; i++) { // blocks for (int j = 0; j < 16; j++) // bytes fprintf(f, "%02x", *(traceCard + i * 16 + j)); fprintf(f,"\n"); } fclose(f); return 0; } int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { if (traceCrypto1) crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; if (wantSaveToEmlFile) loadTraceCard(tuid); traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; traceCard[5] = sak; memcpy(&traceCard[6], atqa, 2); traceCurBlock = 0; uid = bytes_to_num(tuid + 3, 4); traceState = TRACE_IDLE; return 0; } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ uint8_t bt = 0; int i; if (len != 1) { for (i = 0; i < len; i++) data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; } else { bt = 0; for (i = 0; i < 4; i++) bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i; data[0] = bt; } return; } int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) { uint8_t data[64]; if (traceState == TRACE_ERROR) return 1; if (len > 64) { traceState = TRACE_ERROR; return 1; } memcpy(data, data_src, len); if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { mf_crypto1_decrypt(traceCrypto1, data, len, 0); PrintAndLog("dec> %s", sprint_hex(data, len)); AddLogHex(logHexFileName, "dec> ", data, len); } switch (traceState) { case TRACE_IDLE: // check packet crc16! if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) { PrintAndLog("dec> CRC ERROR!!!"); AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!"); traceState = TRACE_ERROR; // do not decrypt the next commands return 1; } // AUTHENTICATION if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) { traceState = TRACE_AUTH1; traceCurBlock = data[1]; traceCurKey = data[0] == 60 ? 1:0; return 0; } // READ if ((len ==4) && ((data[0] == 0x30))) { traceState = TRACE_READ_DATA; traceCurBlock = data[1]; return 0; } // WRITE if ((len ==4) && ((data[0] == 0xA0))) { traceState = TRACE_WRITE_OK; traceCurBlock = data[1]; return 0; } // HALT if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) { traceState = TRACE_ERROR; // do not decrypt the next commands return 0; } return 0; break; case TRACE_READ_DATA: if (len == 18) { traceState = TRACE_IDLE; if (isBlockTrailer(traceCurBlock)) { memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); } else { memcpy(traceCard + traceCurBlock * 16, data, 16); } if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_OK: if ((len == 1) && (data[0] == 0x0a)) { traceState = TRACE_WRITE_DATA; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_DATA: if (len == 18) { traceState = TRACE_IDLE; memcpy(traceCard + traceCurBlock * 16, data, 16); if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH1: if (len == 4) { traceState = TRACE_AUTH2; nt = bytes_to_num(data, 4); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH2: if (len == 8) { traceState = TRACE_AUTH_OK; nr_enc = bytes_to_num(data, 4); ar_enc = bytes_to_num(data + 4, 4); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH_OK: if (len ==4) { traceState = TRACE_IDLE; at_enc = bytes_to_num(data, 4); // decode key here) ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); crypto1_get_lfsr(revstate, &lfsr); printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF)); AddLogUint64(logHexFileName, "key> ", lfsr); int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); if (traceCurKey) { num_to_bytes(lfsr, 6, traceCard + blockShift + 10); } else { num_to_bytes(lfsr, 6, traceCard + blockShift); } if (wantSaveToEmlFile) saveTraceCard(); if (traceCrypto1) { crypto1_destroy(traceCrypto1); } // set cryptosystem state traceCrypto1 = lfsr_recovery64(ks2, ks3); // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt; /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr crypto1_word(traceCrypto1, nt ^ uid, 0); crypto1_word(traceCrypto1, ar, 1); crypto1_word(traceCrypto1, 0, 0); crypto1_word(traceCrypto1, 0, 0);*/ return 0; } else { traceState = TRACE_ERROR; return 1; } break; default: traceState = TRACE_ERROR; return 1; } return 0; }