//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Compression tool for FPGA config files. Compress several *.bit files at // compile time. Decompression is done at run time (see fpgaloader.c). // This uses the zlib library tuned to this specific case. The small file sizes // allow to use "insane" parameters for optimum compression ratio. //----------------------------------------------------------------------------- #include #include #include #include #include #include #include "zlib.h" #define MAX(a,b) ((a)>(b)?(a):(b)) // zlib configuration #define COMPRESS_LEVEL 9 // use best possible compression #define COMPRESS_WINDOW_BITS 15 // default = max = 15 for a window of 2^15 = 32KBytes #define COMPRESS_MEM_LEVEL 9 // determines the amount of memory allocated during compression. Default = 8. /* COMPRESS_STRATEGY can be Z_DEFAULT_STRATEGY (the default), Z_FILTERED (more huffmann, less string matching), Z_HUFFMAN_ONLY (huffman only, no string matching) Z_RLE (distances limited to one) Z_FIXED (prevents the use of dynamic Huffman codes) */ #define COMPRESS_STRATEGY Z_DEFAULT_STRATEGY // zlib tuning parameters: #define COMPRESS_GOOD_LENGTH 258 #define COMPRESS_MAX_LAZY 258 #define COMPRESS_MAX_NICE_LENGTH 258 #define COMPRESS_MAX_CHAIN 8192 #define FPGA_INTERLEAVE_SIZE 288 // (the FPGA's internal config frame size is 288 bits. Interleaving with 288 bytes should give best compression) #define FPGA_CONFIG_SIZE 42336 // our current fpga_[lh]f.bit files are 42175 bytes. Rounded up to next multiple of FPGA_INTERLEAVE_SIZE static void usage(void) { fprintf(stderr, "Usage: fpga_compress ... \n"); fprintf(stderr, " Combine n FPGA bitstream files and compress them into one.\n\n"); fprintf(stderr, " fpga_compress -d "); fprintf(stderr, " Decompress . Write result to "); } static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size) { return malloc(items*size); } static void fpga_deflate_free(voidpf opaque, voidpf address) { return free(address); } static bool all_feof(FILE *infile[], uint8_t num_infiles) { for (uint16_t i = 0; i < num_infiles; i++) { if (!feof(infile[i])) { return false; } } return true; } int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile) { uint8_t *fpga_config; uint32_t i; int ret; int c; z_stream compressed_fpga_stream; fpga_config = malloc(num_infiles * FPGA_CONFIG_SIZE); // read the input files. Interleave them into fpga_config[] i = 0; do { if (i >= num_infiles * FPGA_CONFIG_SIZE) { fprintf(stderr, "Input files too big (total > %d bytes). These are probably not PM3 FPGA config files.\n", num_infiles * FPGA_CONFIG_SIZE); for(uint16_t j = 0; j < num_infiles; j++) { fclose(infile[j]); } free(fpga_config); return(EXIT_FAILURE); } for(uint16_t j = 0; j < num_infiles; j++) { for(uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) { c = fgetc(infile[j]); if (!feof(infile[j])) { fpga_config[i++] = c &0xFF; } else if (num_infiles > 1) { fpga_config[i++] = '\0'; } } } } while (!all_feof(infile, num_infiles)); // initialize zlib structures compressed_fpga_stream.next_in = fpga_config; compressed_fpga_stream.avail_in = i; compressed_fpga_stream.zalloc = fpga_deflate_malloc; compressed_fpga_stream.zfree = fpga_deflate_free; compressed_fpga_stream.opaque = Z_NULL; ret = deflateInit2(&compressed_fpga_stream, COMPRESS_LEVEL, Z_DEFLATED, COMPRESS_WINDOW_BITS, COMPRESS_MEM_LEVEL, COMPRESS_STRATEGY); // estimate the size of the compressed output unsigned int outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in); uint8_t *outbuf = malloc(outsize_max); compressed_fpga_stream.next_out = outbuf; compressed_fpga_stream.avail_out = outsize_max; if (ret == Z_OK) { ret = deflateTune(&compressed_fpga_stream, COMPRESS_GOOD_LENGTH, COMPRESS_MAX_LAZY, COMPRESS_MAX_NICE_LENGTH, COMPRESS_MAX_CHAIN); } if (ret == Z_OK) { ret = deflate(&compressed_fpga_stream, Z_FINISH); } fprintf(stderr, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out); if (ret != Z_STREAM_END) { fprintf(stderr, "Error in deflate(): %d %s\n", ret, compressed_fpga_stream.msg); free(outbuf); deflateEnd(&compressed_fpga_stream); for(uint16_t j = 0; j < num_infiles; j++) { fclose(infile[j]); } fclose(outfile); free(infile); free(fpga_config); return(EXIT_FAILURE); } for (i = 0; i < compressed_fpga_stream.total_out; i++) { fputc(outbuf[i], outfile); } free(outbuf); deflateEnd(&compressed_fpga_stream); for(uint16_t j = 0; j < num_infiles; j++) { fclose(infile[j]); } fclose(outfile); free(infile); free(fpga_config); return(EXIT_SUCCESS); } int zlib_decompress(FILE *infile, FILE *outfile) { #define DECOMPRESS_BUF_SIZE 1024 uint8_t outbuf[DECOMPRESS_BUF_SIZE]; uint8_t inbuf[DECOMPRESS_BUF_SIZE]; int ret; z_stream compressed_fpga_stream; // initialize zlib structures compressed_fpga_stream.next_in = inbuf; compressed_fpga_stream.avail_in = 0; compressed_fpga_stream.next_out = outbuf; compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE; compressed_fpga_stream.zalloc = fpga_deflate_malloc; compressed_fpga_stream.zfree = fpga_deflate_free; compressed_fpga_stream.opaque = Z_NULL; ret = inflateInit2(&compressed_fpga_stream, 0); do { if (compressed_fpga_stream.avail_in == 0) { compressed_fpga_stream.next_in = inbuf; uint16_t i = 0; do { int c = fgetc(infile); if (!feof(infile)) { inbuf[i++] = c; compressed_fpga_stream.avail_in++; } else { break; } } while (i < DECOMPRESS_BUF_SIZE); } ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { break; } if (compressed_fpga_stream.avail_out == 0) { for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) { fputc(outbuf[i], outfile); } compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE; compressed_fpga_stream.next_out = outbuf; } } while (ret == Z_OK); if (ret == Z_STREAM_END) { // reached end of input uint16_t i = 0; while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) { fputc(outbuf[i++], outfile); compressed_fpga_stream.avail_out++; } fclose(outfile); fclose(infile); return(EXIT_SUCCESS); } else { fprintf(stderr, "Error. Inflate() returned error %d, %s", ret, compressed_fpga_stream.msg); fclose(outfile); fclose(infile); return(EXIT_FAILURE); } } int main(int argc, char **argv) { FILE **infiles; FILE *outfile; if (argc == 1 || argc == 2) { usage(); return(EXIT_FAILURE); } if (!strcmp(argv[1], "-d")) { // Decompress infiles = calloc(1, sizeof(FILE*)); if (argc != 4) { usage(); return(EXIT_FAILURE); } infiles[0] = fopen(argv[2], "rb"); if (infiles[0] == NULL) { fprintf(stderr, "Error. Cannot open input file %s", argv[2]); return(EXIT_FAILURE); } outfile = fopen(argv[3], "wb"); if (outfile == NULL) { fprintf(stderr, "Error. Cannot open output file %s", argv[3]); return(EXIT_FAILURE); } return zlib_decompress(infiles[0], outfile); } else { // Compress infiles = calloc(argc-2, sizeof(FILE*)); for (uint16_t i = 0; i < argc-2; i++) { infiles[i] = fopen(argv[i+1], "rb"); if (infiles[i] == NULL) { fprintf(stderr, "Error. Cannot open input file %s", argv[i+1]); return(EXIT_FAILURE); } } outfile = fopen(argv[argc-1], "wb"); if (outfile == NULL) { fprintf(stderr, "Error. Cannot open output file %s", argv[argc-1]); return(EXIT_FAILURE); } return zlib_compress(infiles, argc-2, outfile); } }