//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // utilities //----------------------------------------------------------------------------- // ensure gmtime_r is available even with -std=c99; must be included before #if !defined(_WIN32) && !defined(__APPLE__) #define _POSIX_C_SOURCE 200112L #endif #include "util.h" #include #include #include #include #include #include #include // Mingw #include "ui.h" // PrintAndLog #define UTIL_BUFFER_SIZE_SPRINT 8193 // global client debug variable uint8_t g_debugMode = 0; // global client disable logging variable uint8_t g_printAndLog = PRINTANDLOG_PRINT | PRINTANDLOG_LOG; // global client tell if a pending prompt is present bool g_pendingPrompt = false; #ifdef _WIN32 #include #endif #define MAX_BIN_BREAK_LENGTH (3072+384+1) #ifndef _WIN32 #include #include int kbd_enter_pressed(void) { int flags; if ((flags = fcntl(STDIN_FILENO, F_GETFL, 0)) < 0) { PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed"); return -1; } //non-blocking flags |= O_NONBLOCK; if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) { PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed"); return -1; } int c; int ret = 0; do { //get all available chars c = getchar(); ret |= c == '\n'; } while (c != EOF); //blocking flags &= ~O_NONBLOCK; if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) { PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed"); return -1; } return ret; } #else #include int kbd_enter_pressed(void) { int ret = 0; while (kbhit()) { ret |= getch() == '\r'; } return ret; } #endif // create filename on hex uid. // param *fn - pointer to filename char array // param *uid - pointer to uid byte array // param *ext - ".log" // param uidlen - length of uid array. void FillFileNameByUID(char *filenamePrefix, const uint8_t *uid, const char *ext, const int uidlen) { if (filenamePrefix == NULL || uid == NULL || ext == NULL) { return; } int len = strlen(filenamePrefix); for (int j = 0; j < uidlen; j++) sprintf(filenamePrefix + len + j * 2, "%02X", uid[j]); strcat(filenamePrefix, ext); } // fill buffer from structure [{uint8_t data, size_t length},...] int FillBuffer(uint8_t *data, size_t maxDataLength, size_t *dataLength, ...) { *dataLength = 0; va_list valist; va_start(valist, dataLength); uint8_t *vdata = NULL; do { vdata = va_arg(valist, uint8_t *); if (!vdata) break; size_t vlength = va_arg(valist, size_t); if (*dataLength + vlength > maxDataLength) { va_end(valist); return 1; } memcpy(&data[*dataLength], vdata, vlength); *dataLength += vlength; } while (vdata); va_end(valist); return 0; } bool CheckStringIsHEXValue(const char *value) { for (size_t i = 0; i < strlen(value); i++) if (!isxdigit(value[i])) return false; if (strlen(value) % 2) return false; return true; } void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len, const size_t min_str_len, const size_t spaces_between, bool uppercase) { if (buf == NULL) return; char *tmp = (char *)buf; size_t i; memset(tmp, 0x00, hex_max_len); size_t max_len = (hex_len > hex_max_len) ? hex_max_len : hex_len; for (i = 0; i < max_len; ++i, tmp += 2 + spaces_between) { sprintf(tmp, (uppercase) ? "%02X" : "%02x", (unsigned int) hex_data[i]); for (size_t j = 0; j < spaces_between; j++) sprintf(tmp + 2 + j, " "); } i *= (2 + spaces_between); size_t mlen = min_str_len > i ? min_str_len : 0; if (mlen > hex_max_len) mlen = hex_max_len; for (; i < mlen; i++, tmp += 1) sprintf(tmp, " "); // remove last space *tmp = '\0'; return; } // printing and converting functions void print_hex(const uint8_t *data, const size_t len) { if (data == NULL || len == 0) return; for (size_t i = 0; i < len; i++) PrintAndLogEx(NORMAL, "%02x " NOLF, data[i]); PrintAndLogEx(NORMAL, ""); } void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) { if (data == NULL || len == 0 || breaks == 0) return; uint16_t rownum = 0; int i; for (i = 0; i < len; i += breaks, rownum++) { if (len - i < breaks) { // incomplete block, will be treated out of the loop break; } PrintAndLogEx(INFO, "%02u | %s", rownum, sprint_hex_ascii(data + i, breaks)); } // the last odd bytes uint8_t mod = len % breaks; if (mod) { char buf[UTIL_BUFFER_SIZE_SPRINT + 3]; memset(buf, 0, sizeof(buf)); hex_to_buffer((uint8_t *)buf, data + i, mod, (sizeof(buf) - 1), 0, 1, true); // add the spaces... snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " "); snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod)); PrintAndLogEx(INFO, "%02u | %s", rownum, buf); } } static void print_buffer_ex(const uint8_t *data, const size_t len, int level, uint8_t breaks) { if (len < 1) return; char buf[UTIL_BUFFER_SIZE_SPRINT + 3]; int i; for (i = 0; i < len; i += breaks) { if (len - i < breaks) { // incomplete block, will be treated out of the loop break; } // (16 * 3) + (16) + + 1 memset(buf, 0, sizeof(buf)); sprintf(buf, "%*s%02x: ", (level * 4), " ", i); hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, breaks, (sizeof(buf) - strlen(buf) - 1), 0, 1, true); snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, breaks)); PrintAndLogEx(INFO, "%s", buf); } // the last odd bytes uint8_t mod = len % breaks; if (mod) { memset(buf, 0, sizeof(buf)); sprintf(buf, "%*s%02x: ", (level * 4), " ", i); hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, mod, (sizeof(buf) - strlen(buf) - 1), 0, 1, true); // add the spaces... snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " "); snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod)); PrintAndLogEx(INFO, "%s", buf); } } void print_buffer(const uint8_t *data, const size_t len, int level) { print_buffer_ex(data, len, level, 16); } void print_buffer_with_offset(const uint8_t *data, const size_t len, int offset, bool print_header) { if (print_header) { PrintAndLogEx(INFO, " Offset | Data | Ascii"); PrintAndLogEx(INFO, "----------------------------------------------------------------------------"); } for (uint32_t i = 0; i < len; i += 16) { uint32_t l = len - i; PrintAndLogEx(INFO, "%3d/0x%02X | %s" NOLF, offset + i, offset + i, sprint_hex(&data[i], l > 16 ? 16 : l)); if (l < 16) PrintAndLogEx(NORMAL, "%*s" NOLF, 3 * (16 - l), " "); PrintAndLogEx(NORMAL, "| %s", sprint_ascii(&data[i], l > 16 ? 16 : l)); } } void print_blocks(uint32_t *data, size_t len) { PrintAndLogEx(SUCCESS, "Blk | Data "); PrintAndLogEx(SUCCESS, "----+------------"); if (!data) { PrintAndLogEx(ERR, "..empty data"); } else { for (uint8_t i = 0; i < len; i++) PrintAndLogEx(SUCCESS, " %02d | %08X", i, data[i]); } } char *sprint_hex(const uint8_t *data, const size_t len) { static char buf[UTIL_BUFFER_SIZE_SPRINT - 3] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true); return buf; } char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) { static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true); return buf; } char *sprint_hex_inrow(const uint8_t *data, const size_t len) { return sprint_hex_inrow_ex(data, len, 0); } char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) { static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true); return buf; } char *sprint_bytebits_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) { // make sure we don't go beyond our char array memory size_t rowlen = (len > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len; // 3072 + end of line characters if broken at 8 bits static char buf[MAX_BIN_BREAK_LENGTH]; memset(buf, 0x00, sizeof(buf)); char *tmp = buf; // loop through the out_index to make sure we don't go too far for (int i = 0; i < rowlen; i++) { char c = data[i]; // manchester wrong bit marker if (c == 7) { c = '.'; } else if (c < 2) { c += '0'; } else { PrintAndLogEx(ERR, "Invalid data passed to sprint_bytebits_bin_break()"); return buf; } *(tmp++) = c; // check if a line break is needed and we have room to print it in our array if (breaks > 1) { if (((i + 1) % breaks) == 0) { *(tmp++) = '\n'; } } } return buf; } /* void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) { if ( src == NULL ) return; if ( srclen < 1 ) return; // make sure we don't go beyond our char array memory size_t in_index = 0, out_index = 0; int rowlen; if (breaks==0) rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len; else rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks); PrintAndLogEx(NORMAL, "(sprint_bin_break) rowlen %d", rowlen); // 3072 + end of line characters if broken at 8 bits dest = (char *)calloc(MAX_BIN_BREAK_LENGTH, sizeof(uint8_t)); if (dest == NULL) return; //clear memory memset(dest, 0x00, sizeof(dest)); // loop through the out_index to make sure we don't go too far for (out_index=0; out_index < rowlen-1; out_index++) { // set character sprintf(dest++, "%u", src[in_index]); // check if a line break is needed and we have room to print it in our array if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) { // increment and print line break out_index++; sprintf(dest++, "%s","\n"); } in_index++; } // last char. sprintf(dest++, "%u", src[in_index]); } */ char *sprint_bytebits_bin(const uint8_t *data, const size_t len) { return sprint_bytebits_bin_break(data, len, 0); } char *sprint_bin(const uint8_t *data, const size_t len) { size_t binlen = (len * 8 > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len * 8; static uint8_t buf[MAX_BIN_BREAK_LENGTH]; bytes_to_bytebits(data, binlen / 8, buf); return sprint_bytebits_bin_break(buf, binlen, 0); } char *sprint_hex_ascii(const uint8_t *data, const size_t len) { static char buf[UTIL_BUFFER_SIZE_SPRINT]; char *tmp = buf; memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT); size_t max_len = (len > 1010) ? 1010 : len; snprintf(tmp, UTIL_BUFFER_SIZE_SPRINT, "%s| ", sprint_hex(data, max_len)); size_t i = 0; size_t pos = (max_len * 3) + 2; while (i < max_len) { char c = data[i]; if ((c < 32) || (c == 127)) c = '.'; sprintf(tmp + pos + i, "%c", c); ++i; } return buf; } char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) { static char buf[UTIL_BUFFER_SIZE_SPRINT]; char *tmp = buf; memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT); size_t max_len = (len > 1010) ? 1010 : len; size_t i = 0; while (i < max_len) { char c = data[i]; tmp[i] = ((c < 32) || (c == 127)) ? '.' : c; ++i; } size_t m = min_str_len > i ? min_str_len : 0; for (; i < m; ++i) tmp[i] = ' '; return buf; } char *sprint_ascii(const uint8_t *data, const size_t len) { return sprint_ascii_ex(data, len, 0); } int hex_to_bytes(const char *hexValue, uint8_t *bytesValue, size_t maxBytesValueLen) { char buf[4] = {0}; int indx = 0; int bytesValueLen = 0; while (hexValue[indx]) { if (hexValue[indx] == '\t' || hexValue[indx] == ' ') { indx++; continue; } if (isxdigit(hexValue[indx])) { buf[strlen(buf)] = hexValue[indx]; } else { // if we have symbols other than spaces and hex return -1; } if (maxBytesValueLen && bytesValueLen >= maxBytesValueLen) { // if we don't have space in buffer and have symbols to translate return -2; } if (strlen(buf) >= 2) { uint32_t temp = 0; sscanf(buf, "%x", &temp); bytesValue[bytesValueLen] = (uint8_t)(temp & 0xff); memset(buf, 0, sizeof(buf)); bytesValueLen++; } indx++; } if (strlen(buf) > 0) //error when not completed hex bytes return -3; return bytesValueLen; } // takes a number (uint64_t) and creates a binarray in dest. void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = n & 1; n >>= 1; } } // least significant bit (lsb) first void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) { for (size_t i = 0 ; i < len ; ++i) { dest[i] = n & 1; n >>= 1; } } void bytes_to_bytebits(const void *src, const size_t srclen, void *dest) { uint8_t *s = (uint8_t *)src; uint8_t *d = (uint8_t *)dest; uint32_t i = srclen * 8; size_t j = srclen; while (j--) { uint8_t b = s[j]; d[--i] = (b >> 0) & 1; d[--i] = (b >> 1) & 1; d[--i] = (b >> 2) & 1; d[--i] = (b >> 3) & 1; d[--i] = (b >> 4) & 1; d[--i] = (b >> 5) & 1; d[--i] = (b >> 6) & 1; d[--i] = (b >> 7) & 1; } } // aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp // to // hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii // up to 64 bytes or 512 bits uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize) { static uint8_t buf[64]; memset(buf, 0x00, 64); uint8_t *tmp = buf; for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) { for (size_t i = 0; i < blockSize; i++) { tmp[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)]; } } return buf; } // takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64), // returns: the dest array contains the reordered src array. void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest) { for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) { for (size_t i = 0; i < blockSize; i++) { dest[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)]; } } } // ------------------------------------------------------------------------- // string parameters lib // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- // line - param line // bg, en - symbol numbers in param line of beginning and ending parameter // paramnum - param number (from 0) // ------------------------------------------------------------------------- int param_getptr(const char *line, int *bg, int *en, int paramnum) { int i; int len = strlen(line); *bg = 0; *en = 0; // skip spaces while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++; if (*bg >= len) { return 1; } for (i = 0; i < paramnum; i++) { while (line[*bg] != ' ' && line[*bg] != '\t' && line[*bg] != '\0')(*bg)++; while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++; if (line[*bg] == '\0') return 1; } *en = *bg; while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0')(*en)++; (*en)--; return 0; } int param_getlength(const char *line, int paramnum) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0; return en - bg + 1; } char param_getchar(const char *line, int paramnum) { return param_getchar_indx(line, 0, paramnum); } char param_getchar_indx(const char *line, int indx, int paramnum) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0x00; if (bg + indx > en) return '\0'; return line[bg + indx]; } uint8_t param_get8(const char *line, int paramnum) { return param_get8ex(line, paramnum, 0, 10); } /** * @brief Reads a decimal integer (actually, 0-254, not 255) * @param line * @param paramnum * @return -1 if error */ uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) { uint8_t val = param_get8ex(line, paramnum, 255, 10); if ((int8_t) val == -1) return 1; (*destination) = val; return 0; } /** * @brief Checks if param is decimal * @param line * @param paramnum * @return */ uint8_t param_isdec(const char *line, int paramnum) { int bg, en; //TODO, check more thorougly if (!param_getptr(line, &bg, &en, paramnum)) return 1; // return strtoul(&line[bg], NULL, 10) & 0xff; return 0; } uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base) & 0xff; else return deflt; } uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base); else return deflt; } uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoull(&line[bg], NULL, base); else return deflt; } float param_getfloat(const char *line, int paramnum, float deflt) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtof(&line[bg], NULL); else return deflt; } int param_gethex(const char *line, int paramnum, uint8_t *data, int hexcnt) { int bg, en, i; uint32_t temp; if (hexcnt & 1) return 1; if (param_getptr(line, &bg, &en, paramnum)) return 1; if (en - bg + 1 != hexcnt) return 1; for (i = 0; i < hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1; sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_gethex_ex(const char *line, int paramnum, uint8_t *data, int *hexcnt) { int bg, en, i; uint32_t temp; if (param_getptr(line, &bg, &en, paramnum)) return 1; *hexcnt = en - bg + 1; if (*hexcnt % 2) //error if not complete hex bytes return 1; for (i = 0; i < *hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1; sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) { int bg, en; uint32_t temp; char buf[5] = {0}; if (param_getptr(line, &bg, &en, paramnum)) return 1; *datalen = 0; int indx = bg; while (line[indx]) { if (line[indx] == '\t' || line[indx] == ' ') { indx++; continue; } if (isxdigit(line[indx])) { buf[strlen(buf) + 1] = 0x00; buf[strlen(buf)] = line[indx]; } else { // if we have symbols other than spaces and hex return 1; } if (*datalen >= maxdatalen) { // if we don't have space in buffer and have symbols to translate return 2; } if (strlen(buf) >= 2) { sscanf(buf, "%x", &temp); data[*datalen] = (uint8_t)(temp & 0xff); *buf = 0; (*datalen)++; } indx++; } if (strlen(buf) > 0) //error when not completed hex bytes return 3; return 0; } int param_getbin_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) { return 1; } *datalen = 0; char buf[5] = {0}; int indx = bg; while (line[indx]) { if (line[indx] == '\t' || line[indx] == ' ') { indx++; continue; } if (line[indx] == '0' || line[indx] == '1') { buf[strlen(buf) + 1] = 0x00; buf[strlen(buf)] = line[indx]; } else { // if we have symbols other than spaces and 0/1 return 1; } if (*datalen >= maxdatalen) { // if we don't have space in buffer and have symbols to translate return 2; } if (strlen(buf) > 0) { uint32_t temp = 0; sscanf(buf, "%d", &temp); data[*datalen] = (uint8_t)(temp & 0xff); *buf = 0; (*datalen)++; } indx++; } return 0; } int param_getstr(const char *line, int paramnum, char *str, size_t buffersize) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) { return 0; } // Prevent out of bounds errors if (en - bg + 1 >= buffersize) { PrintAndLogEx(ERR, "out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize); return 0; } memcpy(str, line + bg, en - bg + 1); str[en - bg + 1] = 0; return en - bg + 1; } /* The following methods comes from Rfidler sourcecode. https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/ */ // convert hex to sequence of 0/1 bit values // returns number of bits converted int hextobinarray(char *target, char *source) { int length, i, count = 0; char *start = source; length = strlen(source); // process 4 bits (1 hex digit) at a time while (length--) { char x = *(source++); // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else { PrintAndLogEx(INFO, "(hextobinarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start); return 0; } // output for (i = 0 ; i < 4 ; ++i, ++count) *(target++) = (x >> (3 - i)) & 1; } return count; } // convert hex to human readable binary string int hextobinstring(char *target, char *source) { int length = hextobinarray(target, source); if (length == 0) return 0; binarraytobinstring(target, target, length); return length; } // convert binary array of 0x00/0x01 values to hex // return number of bits converted int binarraytohex(char *target, const size_t targetlen, const char *source, size_t srclen) { uint8_t i = 0, x = 0; uint32_t t = 0; // written target chars uint32_t r = 0; // consumed bits uint8_t w = 0; // wrong bits separator printed for (size_t s = 0 ; s < srclen; s++) { if ((source[s] == 0) || (source[s] == 1)) { w = 0; x += (source[s] << (3 - i)); i++; if (i == 4) { if (t >= targetlen - 2) { return r; } sprintf(target + t, "%X", x); t++; r += 4; x = 0; i = 0; } } else { if (i > 0) { if (t >= targetlen - 5) { return r; } sprintf(target + t, "%X[%i]", x, i); t += 4; r += i; x = 0; i = 0; w = 1; } if (w == 0) { if (t >= targetlen - 2) { return r; } sprintf(target + t, " "); t++; } r++; } } return r; } // convert binary array to human readable binary void binarraytobinstring(char *target, char *source, int length) { for (int i = 0 ; i < length; ++i) *(target++) = *(source++) + '0'; *target = '\0'; } int binstring2binarray(uint8_t *target, char *source, int length) { int count = 0; char *start = source; while (length--) { char x = *(source++); // convert from binary value if (x >= '0' && x <= '1') x -= '0'; else { PrintAndLogEx(WARNING, "(binstring2binarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start); return 0; } *(target++) = x; count++; } return count; } // return parity bit required to match type uint8_t GetParity(const uint8_t *bits, uint8_t type, int length) { int x; for (x = 0 ; length > 0 ; --length) x += bits[length - 1]; x %= 2; return x ^ type; } // add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length) { *(target++) = GetParity(source, EVEN, length / 2); memcpy(target, source, length); target += length; *(target) = GetParity(source + length / 2, ODD, length / 2); } // add HID parity to binary array: ODD prefix for 1st half of ID, EVEN suffix for 2nd half void wiegand_add_parity_swapped(uint8_t *target, uint8_t *source, uint8_t length) { *(target++) = GetParity(source, ODD, length / 2); memcpy(target, source, length); target += length; *(target) = GetParity(source + length / 2, EVEN, length / 2); } // Pack a bitarray into a uint32_t. uint32_t PackBits(uint8_t start, uint8_t len, const uint8_t *bits) { if (len > 32) return 0; int i = start; int j = len - 1; uint32_t tmp = 0; for (; j >= 0; --j, ++i) tmp |= bits[i] << j; return tmp; } uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) { uint64_t remaind = 0, quotient = 0, result = 0; remaind = num % divider; quotient = num / divider; if (!(quotient == 0 && remaind == 0)) result += HornerScheme(quotient, divider, factor) * factor + remaind; return result; } // determine number of logical CPU cores (use for multithreaded functions) int num_CPUs(void) { #if defined(_WIN32) #include SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); return sysinfo.dwNumberOfProcessors; #else #include int count = sysconf(_SC_NPROCESSORS_ONLN); if (count <= 0) count = 1; return count; #endif } void str_lower(char *s) { for (size_t i = 0; i < strlen(s); i++) s[i] = tolower(s[i]); } // check for prefix in string bool str_startswith(const char *s, const char *pre) { return strncmp(pre, s, strlen(pre)) == 0; } // check for suffix in string bool str_endswith(const char *s, const char *suffix) { size_t ls = strlen(s); size_t lsuffix = strlen(suffix); if (ls >= lsuffix) { return strncmp(suffix, s + (ls - lsuffix), lsuffix) == 0; } return false; } // Replace unprintable characters with a dot in char buffer void clean_ascii(unsigned char *buf, size_t len) { for (size_t i = 0; i < len; i++) { if (!isprint(buf[i])) buf[i] = '.'; } } // replace \r \n to \0 void strcleanrn(char *buf, size_t len) { strcreplace(buf, len, '\n', '\0'); strcreplace(buf, len, '\r', '\0'); } // replace char in buffer void strcreplace(char *buf, size_t len, char from, char to) { for (size_t i = 0; i < len; i++) { if (buf[i] == from) buf[i] = to; } } char *str_dup(const char *src) { return str_ndup(src, strlen(src)); } char *str_ndup(const char *src, size_t len) { char *dest = (char *) calloc(len + 1, sizeof(uint8_t)); if (dest != NULL) { memcpy(dest, src, len); dest[len] = '\0'; } return dest; } /** * Converts a hex string to component "hi2", "hi" and "lo" 32-bit integers * one nibble at a time. * * Returns the number of nibbles (4 bits) entered. */ int hexstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) { uint32_t n = 0, i = 0; while (sscanf(&str[i++], "%1x", &n) == 1) { *hi2 = (*hi2 << 4) | (*hi >> 28); *hi = (*hi << 4) | (*lo >> 28); *lo = (*lo << 4) | (n & 0xf); } return i - 1; } /** * Converts a binary string to component "hi2", "hi" and "lo" 32-bit integers, * one bit at a time. * * Returns the number of bits entered. */ int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) { uint32_t n = 0, i = 0; for (;;) { int res = sscanf(&str[i], "%1u", &n); if ((res != 1) || (n > 1)) break; *hi2 = (*hi2 << 1) | (*hi >> 31); *hi = (*hi << 1) | (*lo >> 31); *lo = (*lo << 1) | (n & 0x1); i++; } return i; } /** * Converts a binary array to component "hi2", "hi" and "lo" 32-bit integers, * one bit at a time. * * Returns the number of bits entered. */ int binarray_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const uint8_t *arr, int arrlen) { int i = 0; for (; i < arrlen; i++) { uint8_t n = arr[i]; if (n > 1) break; *hi2 = (*hi2 << 1) | (*hi >> 31); *hi = (*hi << 1) | (*lo >> 31); *lo = (*lo << 1) | (n & 0x1); } return i; } inline uint32_t bitcount32(uint32_t a) { #if defined __GNUC__ return __builtin_popcountl(a); #else a = a - ((a >> 1) & 0x55555555); a = (a & 0x33333333) + ((a >> 2) & 0x33333333); return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24; #endif } inline uint64_t bitcount64(uint64_t a) { #if defined __GNUC__ return __builtin_popcountll(a); #else PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64"); return 0; #endif } inline uint32_t leadingzeros32(uint32_t a) { #if defined __GNUC__ return __builtin_clzl(a); #else PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64"); return 0; #endif } inline uint64_t leadingzeros64(uint64_t a) { #if defined __GNUC__ return __builtin_clzll(a); #else PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64"); return 0; #endif }